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Very preterm birth (VPT; ≤32 weeks’ gestation) is associated with altered brain development and cognitive and behavioral
difficulties across the lifespan. However, heterogeneity in outcomes among individuals born VPT makes it challenging to identify
those most vulnerable to neurodevelopmental sequelae. Here, we aimed to stratify VPT children into distinct behavioral subgroups
and explore between-subgroup differences in neonatal brain structure and function. 198 VPT children (98 females) previously
enrolled in the Evaluation of Preterm Imaging Study (EudraCT 2009-011602-42) underwent Magnetic Resonance Imaging at term-
equivalent age and neuropsychological assessments at 4–7 years. Using an integrative clustering approach, we combined neonatal
socio-demographic, clinical factors and childhood socio-emotional and executive function outcomes, to identify distinct subgroups
of children based on their similarity profiles in a multidimensional space. We characterized resultant subgroups using domain-
specific outcomes (temperament, psychopathology, IQ and cognitively stimulating home environment) and explored between-
subgroup differences in neonatal brain volumes (voxel-wise Tensor-Based-Morphometry), functional connectivity (voxel-wise
degree centrality) and structural connectivity (Tract-Based-Spatial-Statistics). Results showed two- and three-cluster data-driven
solutions. The two-cluster solution comprised a ‘resilient’ subgroup (lower psychopathology and higher IQ, executive function and
socio-emotional scores) and an ‘at-risk’ subgroup (poorer behavioral and cognitive outcomes). No neuroimaging differences
between the resilient and at-risk subgroups were found. The three-cluster solution showed an additional third ‘intermediate’
subgroup, displaying behavioral and cognitive outcomes intermediate between the resilient and at-risk subgroups. The resilient
subgroup had the most cognitively stimulating home environment and the at-risk subgroup showed the highest neonatal clinical
risk, while the intermediate subgroup showed the lowest clinical, but the highest socio-demographic risk. Compared to the
intermediate subgroup, the resilient subgroup displayed larger neonatal insular and orbitofrontal volumes and stronger
orbitofrontal functional connectivity, while the at-risk group showed widespread white matter microstructural alterations. These
findings suggest that risk stratification following VPT birth is feasible and could be used translationally to guide personalized
interventions aimed at promoting children’s resilience.
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INTRODUCTION
Very preterm birth (VPT; ≤32 weeks’ gestation) is associated with
an increased likelihood of developing cognitive and behavioral
difficulties across the lifespan [1–5]. Efforts to conceptualize these
difficulties have proposed a “preterm behavioral phenotype”,
characterized by problems in emotional and social processing, and
inattention [6]. However, while some VPT children display a
behavioral profile reflecting a preterm phenotype, others follow
typical developmental trajectories [7–9]. Such behavioral hetero-
geneity following VPT birth presents a challenge for building risk
prediction models [10], as multiple causes may lead to the same
outcome and as a single mechanism may lead to multiple
outcomes [11].

Several endogenous and exogenous factors contribute to a
child’s behavioral development and a complex interplay between
environmental, clinical, and neurobiological features could result
in co-occurring neurodevelopmental, cognitive and behavioral
difficulties following VPT birth [12]. These factors are often non-
independent and their combination (e.g., neurobiological and
socio-demographic variables) may result in improved prediction of
functional outcomes [13]. For instance, both socio-demographic
deprivation and increased neonatal clinical risk have been
associated with neurodevelopmental as well as behavioral
difficulties in VPT children. These encompass executive and
socio-emotional functions [14–16], which could be considered as
gateway mechanisms that shape behavioral outcomes, as they are
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subserved by brain networks relating to both bottom-up stimulus
processing and top-down behavioral control [17]. Impairments in
these domains have in fact been associated with later academic
and mental health difficulties [3, 18].
Previous studies have attempted to stratify outcome hetero-

geneity in preterm children using clustering and latent-class
analyses [7–9, 19, 20]. These studies typically used cognitive
and behavioral measures as input features, and then compared
subgroups in terms of specific clinical and environmental risk
factors that were not used in the stratification analyses (i.e., out-
of-model). Some found differences in neonatal clinical profiles
between subgroups of preterm children [20] and others showed
that familial characteristics, such as parental education,
maternal distress, and cognitively stimulating parenting,
differentiated resilient subgroups from those exhibiting beha-
vioral difficulties [8, 9]. Here, instead, we chose to include input
measures of known risk factors (i.e., clinical and environmental
variables) alongside in-model cognitive and behavioral mea-
sures, in order to delineate the complex interplay between
different risk factors and behavioral outcome measures; thus
increasing the likelihood of discovering nuanced subtypes of
preterm children who exhibit similar behavioral outcomes, but
with possibly different underlying correlates (i.e., equifinality)
[11].
A growing body of research, investigating specific factors

associated with later behavioral outcomes, is studying the early
neural signatures that may shape an individual’s neurodevelop-
mental trajectory. Alterations in brain volumes [21, 22], white
matter microstructure [23, 24], and functional connectivity [25, 26]
at birth in regions and networks subserving social, emotional and
attentional processes, have been associated with later behavioral
difficulties in VPT samples. Differences between latent subgroups
of VPT children and infants have been previously studied in
relation to qualitative measures of brain abnormalities and/or high
grade brain injury based on neonatal Magnetic Resonance
Imaging (MRI), as well as quantitative differences in brain tissue
volumes [8, 27, 28]. However, it remains to be explored whether
distinct multidimensional subgroups of VPT children could also be
characterized by localized differences in early brain development
using advanced quantitative measures of brain structure and
function, such as log-Jacobians, tract based spatial statistics and
degree centrality, which have previously been used in neonatal
samples [29–31]. Conducting analyses at the whole-brain and
voxel-wise level, allows for an enhanced spatial localization of
potential structural and functional between-subgroup differences,
thus extending previous research [8, 27, 28].
The main aim of this study was to parse brain-behavior

heterogeneity in VPT children, by identifying subgroups with
similar environmental, clinical and behavioral profiles and
examining between-subgroup differences in structural and func-
tional brain features at term-equivalent age. Firstly, we imple-
mented an integrative clustering approach (Similarity Network
Fusion; SNF) [32] to stratify VPT children into distinct subgroups
based on three data types: (i) neonatal clinical and socio-
demographic variables, (ii) childhood socio-emotional outcomes
and (iii) executive function measures. The advantage of this
approach is that it integrates sample-similarity networks built from
each distinct data type and constructs a final integrated network,
which contains common and complementary information from
the different data types. This is then used to stratify the sample
into distinct subgroups using clustering [32]. We also investigated
whether resultant subgroups differed in outcomes that were not
used in stratification analyses (i.e., out-of-model variables); in order
to provide external validation [33–35]. Finally, we explored
between-subgroup differences in regional brain volume and
structural and functional connectivity at term-equivalent age.
We hypothesized that there would be distinct subgroups of VPT
children characterized by unique neonatal neural signatures.

METHODS
Study design
Participants. Five hundred and eleven infants born VPT were recruited
from 14 neonatal units in London in 2010–2013 and entered the
Evaluation of Preterm Imaging Study (ePrime; EudraCT 2009-011602-42)
[36]. Infants with congenital malformation, prior MRI, metallic implants,
whose parents did not speak English or were subject to child protection
proceedings were not eligible for participation in the study.
Participants underwent multimodal MRI at 38–53 weeks post-menstrual

age (PMA) on a 3-Tesla MR imaging system (Philips Medical Systems, Best,
The Netherlands) located on the neonatal intensive care unit at Queen
Charlotte’s and Chelsea Hospital, London, using an 8-channel phased array
head coil. For data acquisition and imaging parameters see Supplemental
Information. Infants whose parents chose sedation for the procedure (87%)
received oral chloral hydrate (25–50mg/kg).
In total, 251 participants (including 29 sets of multiple pregnancy

children) were followed-up between the age of 4 and 7 years at the Center
for the Developing Brain, St Thomas’ Hospital, London. This was a
convenience sample corresponding to 82% of 306 participants who were
past their fourth birthday by the study end date, September 1st 2019, and
had consented to be contacted for future research. Invitations for follow-
up were sent in chronological order of birth.
Ethical approval was granted by the Hammersmith and Queen

Charlotte’s Research Ethic Committee (09/H0707/98) and the Stanmore
Research Ethics Committee (14/LO/0677). Informed consent was obtained
from all participants.

Clinical and socio-demographic data. We used Principal Component
Analysis (PCA) to select neonatal clinical variables of interest from a set
of 28 available variables. These were: gestational age (GA) at birth, number
of days on mechanical ventilation, number of days on continuous positive
airway pressure (CPAP) and number of days on parenteral nutrition (TPN),
which loaded onto a single component explaining 72% of the variance in
the data. This component was labeled ‘neonatal sickness index’. Please
refer to our previous work [24] and Supplemental Information for more
details on the PCA analysis.
Socio-demographic risk was evaluated using a postcode derived

measure of deprivation in England, the Index of Multiple Deprivation
2010 (IMD; http://tools.npeu.ox.ac.uk/imd/), whereby higher IMD scores
reflect greater deprivation. The IMD combines neighborhood-specific
information about seven domains of deprivation: income, employment,
education/skills/training, health, crime, housing and living environment.
The IMD was collected at the term-equivalent age. Continuous IMD scores
were used in the integrative-clustering and evaluation of subgroup profile
analyses. IMD quintiles are provided when reporting sample characteristics
(Table 1) for ease of interpretability.

Childhood assessment. Intelligence quotient (IQ) was evaluated using the
Wechsler Preschool and Primary Scale for Intelligence (WPPSI-IV) [37] and
executive function using the preschool version of the parent-rated
Behavior Rating Inventory of Executive Function (BRIEF-P) [38]. Socio-
emotional processing was evaluated using the Empathy Questionnaire
(EmQue) [39] and the Social Responsiveness Scale, Second Edition (SRS-2)
[40]. Psychopathology was assessed using the Strengths and Difficulties
Questionnaire (SDQ) [41], temperament using the Child Behavioral
Questionnaire - Very Short Form (CBQ) [42] and cognitively stimulating
home environment using an adapted version of the Cognitive Stimulating
Parenting Scale (CSPS) [43].

Exclusions. Twenty-seven participants were excluded due to incomplete
childhood outcome data, 17 due to major brain lesions (periventricular
leukomalacia, parenchymal hemorrhagic infarction, or other ischemic or
hemorrhagic lesions), detected on neonatal T2-weighted MRI images at
term by an experienced perinatal neuroradiologist, and 5 participants due
to missing T2-weighted MRI images, hence the inability to evaluate the
presence of major lesions (Fig. S1).

Data integration and clustering
Analyses were conducted in R (version 3.6.1). Using SNF, three data types
were integrated: (Type 1) neonatal socio-demographic and clinical
variables: IMD at birth, GA, days on ventilation, days on TPN and days
on CPAP. (Type 2) childhood socio-emotional outcomes: EmQue subscale
raw scores - emotion contagion, attention to others’ emotions, prosocial
behaviors and SRS-2 total raw score. (Type 3) childhood executive function:
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BRIEF-P raw subscale scores - inhibit, shift, emotional control, working
memory and plan/organize.
Prior to integration, participants with in-model outlier values greater

than 3 times the interquartile range were excluded. A total of 198 children
were included in the SNF analyses. Zero-inflated neonatal clinical risk
variables (days ventilation, days TPN and days CPAP) were converted into
ordinal categorical variables with three levels: (Level 0: zero days; Level 1:
greater than zero and not within the top quintile; Level 2: within the top
quintile). For the mixed data type (numeric and categorical data; data type
1), Gower’s standardization based on the range was applied using the daisy
function from cluster R package [44] and for numeric only matrices (data
types 2 and 3), variables were standardized to have a mean value of 0 and
a standard deviation of 1 using the standardNormalization function from
SNFtool R package [45].
An adaptation of the ExecuteSNF.CC function [46] was used for the data

integration and clustering steps. Dissimilarity Gower distance (for the

mixed data type) and Euclidean distance (for numeric data types) matrices
were calculated and used to create similarity matrices using the SNFtool R
package’s affinityMatrix function [45]. This was followed by an integration
of the similarity matrices using SNFtool’s SNF algorithm resulting in a ‘fused
similarity matrix’ [45]. The integrative clustering process can be
summarized into two steps:
Step 1: SNF method has two main hyperparameters, K and alpha. K (i.e.,

neighborhood size) indicates the number of neighbors of a node to
consider when the similarity networks are being generated and alpha is an
edge weighting parameter determining the weight of edges between
nodes in the networks. We tried 30 combinations of K and alpha
hyperparameters {K= 10, 15, 20, 25, 30; alpha= 0.3, 0.4, 0.5, 0.6, 0.7, 0.8},
similar to the approach followed in [47]. The K-alpha hyperparameter
values were chosen based on the ranges recommended in the SNFtool R
package, 10–30 for K and 0.3–0.8 for alpha [32, 45]. Consensus clustering,
using ConsensusClusterPlus function [48], was then applied to each fused

Table 1. Socio-demographic and clinical participant data.

Integrative
clustering sample
n= 198

Diffusion MRI TBSS
analysis sample
n= 166

Structural MRI log-
Jacobian analysis
sample n= 165

rs-fMRI degree
centrality analysis
sample n= 129

Corrected age at
assessment, years

Median 4.63 4.60 4.59 5.63

Range 4.18–7.17 4.18–7.17 4.18–7.17 4.18–7.17

PMA, weeks Median 42.57 42.43 42.57 42.43

Range 38.29–52.86 38.29–44.86 38.29–44.86 38.29–44.86

Sex, male:female n= 100:98 88:78 86:79 68:61

Self-reported maternal
ethnicity

n (%)

Asian 50 (25.3%) 44 (26.5%) 43 (26.1%) 34 (26.4%)

Black/African/Caribbean/
Black British

30 (15.2%) 23 (13.9%) 25 (15.2%) 15 (11.6%)

Mixed/Multiple
ethnic groups

3 (1.5%) 3 (1.8%) 3 (1.8%) 3 (2.33%)

White 112 (56.6%) 93 (56.0%) 91 (55.2%) 75 (58.1%)

Self-reported paternal
ethnicity

n (%)

Asian 34 (17.2%) 29 (17.5%) 27 (16.4%) 23 (17.8%)

Black/African/Caribbean/
Black British

23 (11.6%) 19 (11.5%) 20 (12.1%) 14 (10.9%)

Mixed/Multiple
ethnic groups

2 (1.0%) 1 (0.6%) 1 (0.6%) 0 (0.0%)

White 95 (48.0%) 80 (48.2%) 79 (47.9%) 63 (48.8%)

Neonatal IMD, quintiles n (%)

1 (least deprived) 49 (24.8%) 40 (24.1%) 38 (23.0%) 30 (23.3%)

2 37 (18.7%) 31 (18.7%) 32 (19.4%) 25 (19.4%)

3 44 (22.2%) 39 (0.6%) 38 (23.0%) 30 (23.3%)

4 48 (24.2%) 39 (23.5%) 38 (23.0%) 31 (24.0%)

5 (most deprived) 20 (10.1%) 17 (10.2%) 19 (11.5%) 13 (10.1%)

GA at birth, weeks Median 30.14 30.29 30.14 30.14

Range 23.86–32.86 24.00–32.86 24.00–32.86 24.00–32.86

Neonatal clinical risk n=

Days TPN, ratio 0:1:2 68:98:32 62:78:26 63:77:25 49:61:19

Days CPAP, ratio 0:1:2 33:125:40 30:107:29 31:103:31 23:82:24

Days ventilation,
ratio 0:1:2

101:74:23 92:59:15 92:58:15 72:46:11

Note: Table describing sample socio-demographic and clinical characteristics for the integrative clustering and MRI analyses.
Neonatal clinical risk categories (0, 1 and 2) respectively correspond to zero days, more than zero days, but less than the top quintile, and within the top
quintile. IMD quintiles 1–5 respectively correspond to the least deprived quintile (1) to the most deprived quintile (5). Ethnicity was grouped according to the
Office of National Statistics classifications 2016 (see Supplementary Information).
CPAP continuous positive airway pressure, GA gestational age at birth, IMD Index of Multiple Deprivation, PMA post-menstrual age at scan, rs-fMRI resting-state
functional MRI, TBSS Tract Based Spatial Statistics, TPN total parenteral nutrition.

L. Hadaya et al.

3

Translational Psychiatry          (2023) 13:108 



similarity matrix, corresponding to a K-alpha combination, where spectral
clustering was run 1000 times with 80% of the population randomly
subsampled for each clustering run and a single consensus clustering
result obtained from hierarchical clustering. Step 2: Next, out of the 30
clustering results produced in step 1, the one with the highest average
silhouette width score was retained. Steps 1 and 2 were repeated 1000
times in a bootstrap approach, after selecting and pre-processing the three
data matrices of 80% of the sample set. The 1000 resultant retained
clustering outputs were then fed to the diceR R package’s consensus_-
combine function [49] which implements hierarchical clustering on the
consensus matrix and generates the final consensus clustering. Figure 1
summarizes the data-integration and clustering steps and the code used
can be accessed here: https://github.com/lailahadaya/preterm-
ExecuteSNF.CC. Further details can also be found in Supplemental
Information.
Before implementing steps 1 and 2, it was essential to determine the

number of clusters. For this, we used the SNFtool R package’s
estimateNumberOfClustersGivenGraph function [45] to calculate Eigengap
and Rotation Cost heuristics for each K-alpha combination (Fig. S2). This
process suggested C= 2, C= 3 and C= 4 as the optimal number of
clusters. Consensus matrices and silhouette scores were generated and
compared for these three potential clustering solutions (Fig. S2). Resultant

subgroups from C= 2 and C= 3 were chosen to be evaluated for
phenotypic differences, as their silhouette scores and consensus matrices
gave better values in comparison to those of C= 4 (Fig. S2). More details
on the estimation of cluster numbers can be found in Supplemental
Information. An alluvial plot was used to illustrate the transition of subject
subgroup classification between the two-cluster and three-cluster solu-
tions (Fig. S3).

Evaluation of subgroup profiles
Resultant subgroups were characterized based on in-model and out-of-
model variables. For the out-of-model features, subgroups were compared
in terms of psychiatric symptoms (SDQ internalizing, externalizing
problems and total scores), temperament (CBQ negative affectivity,
surgency and effortful control scores), cognitive abilities (WPPSI full-scale
IQ), and cognitive stimulation at home (CSPS score). Details on selection of
in-model and out-of-model variables can be found in Supplemental
Information and Figs. S4 and S5.
For numeric measures, between-subgroup differences were assessed

using non-parametric one-way tests: Mann-Whitney when C= 2 or Kruskal
Wallis when C= 3 [50]. Shapiro-Wilk test was used to assess normality. For
categorical variables, Chi-squared test was used to evaluate differences in

Fig. 1 Data integration and clustering pipeline. Figure summarizing the data pre-processing (variable normalization), data integration and
clustering pipeline executed in order to obtain the final consensus cluster assignment.
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proportions of individuals in each group when count per cell was >5 and
Fischer’s Exact test was used otherwise. To compare differences between
the ordinal neonatal clinical variables with 3 categories (Levels 0, 1 and 2)
and the non-ordinal subgroups from C= 2 and C= 3, the Extended
Cochran-Armitage Test was used. We also ran supplementary post-hoc
analyses investigating subgroup differences in clinical variables not

included as in-model variables (please see Supplementary Information
for more details).
Results with p < 0.05 were considered to be statistically significant. To

correct for multiple comparisons the False Discovery Rate method was
used. The same statistical analyses were repeated using general linear
models correcting for potential confounders (age and sex) and 5000
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permutation test iterations [51]. Effect sizes for non-normally distributed
variables were measured using Wilcoxon Glass Rank Biserial Correlation
(gr) for measuring differences between two groups and Epsilon Squared
for three groups. For continuous normally distributed variables, Cohen’s F
was used and Cramer’s V for categorical variables.

Exploring neonatal brain differences between subgroups
Tract Based Spatial Statistics (TBSS) was used to assess white matter
microstructure at the voxel-level using fractional anisotropy (FA) and mean
diffusivity (MD) maps [52]. FA approximates the directional profile of water
diffusion in each voxel and MD measures the average movement of water
molecules within a voxel. Higher FA and lower MD values reflect more
optimal white matter myelination and microstructure. For diffusion MRI (d-
MRI) image pre-processing and TBSS protocol details please refer to
Supplemental Information.
Structural MRI (s-MRI) log-Jacobian determinant maps were calculated to

quantify regional brain volumes (greater log-Jacobian values reflect larger
relative structural volumes), using Tensor Based Morphometry, following
methods described in our previous work [53, 54] and in Supplemental
Information.
Resting-state functional MRI (rs-fMRI) data were pre-processed as in

our previous work;[55] for more details see Supplemental Information.
Functional connectivity was evaluated using a measure of weighted
degree centrality at the voxel-level (i.e., the sum of the correlations
between the time-series of each voxel and all other voxels within a gray
matter mask of the brain) [31, 56]. Edges with a correlation coefficient
below a threshold of 0.2 were excluded and the degree centrality values
for each voxel in the gray matter mask were z-scored and used in
subsequent between-subgroup analyses. Whilst other functional net-
work measures are available (i.e., participation coefficient and within
module-z [57], we opted to study degree centrality as we recently
showed this to be disrupted in preterm born neonates [31].
Furthermore, degree centrality is a good voxel-wise summary measure
of connectivity strength, which is reliable and correlates with relevant
phenotypes, such as age and sex [58]. It has been used to study typical
cognitive function [59] and has recently been shown to be a
reproducible metric to detect atypical functional connectivity patterns
in neurodevelopmental disorders [56].
The number of children included in the different modality-specific MRI

analyses slightly differed due data availability: TBSS (n= 166), log-Jacobian
determinant maps (n= 165) and degree centrality (n= 129); please see
Table S1. Exclusions for specific MRI analyses are depicted in Fig. S1.
Between-subgroup differences were investigated in the whole-brain

at the voxel-level in terms of: log-Jacobian determinants, TBSS metrics
(FA and MD) and degree centrality. FMRIB Software Library (FSL) [60]
randomise function was used to implement non-parametric permuta-
tion methods for statistical inference. This method was used to model
each contrast of interest for each voxel, i.e., a general linear model
(GLM) correcting for PMA at scan and sex. rs-fMRI models also included
motion estimates (standardized DVARS) as a covariate. Family Wise Error
(FWE) rate with Threshold-Free Cluster Enhancement (TFCE) was applied
to correct for multiple comparisons over the multiple voxels, while
enhancing “cluster-like” structures of voxels without defining them as
binary components [61]. Statistics were calculated using random
permutation tests with 10000 permutations. Given the exploratory
nature of our analysis, we did not correct for multiple contrasts tested
(i.e., log-Jacobians, TBSS FA and MD, degree centrality). We show results
significant at p < 0.05 FWE-corrected per contrast. Mean values from
clusters of modality-specific voxels showing significant between-
subgroup differences were extracted to calculate Cohen’s F effect sizes.

Sensitivity analyses
There were 29 sets of children born from multiple pregnancy events in our
sample. In order to account for multiple pregnancy confounding, we
conducted additional sensitivity analyses including only one child from
each set of multiple pregnancy siblings.

RESULTS
Participant characteristics
Participants’ socio-demographic and clinical characteristics are
shown in Table 1. Compared to participants who completed the
follow-up assessment (n= 251; median GA= 29.24 weeks; median
IMD at birth=19.48), individuals who were not assessed (n= 259;
median GA= 29.27 weeks; median IMD at birth= 21.40) did not
differ in GA (gr= 0.01; p= 0.807), but had greater neonatal socio-
demographic deprivation (gr= 0.11; p= 0.028). Compared to the
initial baseline cohort (n= 511; median GA= 30.00 weeks; median
IMD at birth=18.19), participants who were studied here (n= 198)
had slightly older GA (median GA= 30.14 weeks; gr=−0.13;
p= 0.009) and relative socio-demographic advantage (median
IMD score at birth=15.58, gr= 0.11; p= 0.027).

Two-cluster solution subgroup profiles
When stratifying the sample into two clusters and comparing
them in terms of in-model variables, subgroup 1 (termed here the
‘resilient’ subgroup) showed significantly better socio-
communication (i.e., lower SRS-2 scores) and executive function
abilities (i.e., lower BRIEF-P emotion control, inhibit, shift, working
memory and plan/organize scores), lower emotion contagion
(EmQue) scores, and higher prosocial actions scores (EmQue)
during childhood, than subgroup 2 (termed here the ‘at-risk’
subgroup); all ps < 0.05, after FDR correction. The resilient
subgroup had lower neonatal clinical risk compared to the at-
risk subgroup, with a greater proportion of children receiving no
neonatal mechanical ventilation and a smaller proportion of
children receiving prolonged neonatal CPAP (both ps < 0.05, after
FDR correction). Subgroups did not differ in terms of days on TPN
in the neonatal period (p > 0.05).
Differences in out-of-model variables included lower psycho-

pathology scores (SDQ internalizing and externalizing problems)
and negative affectivity scores (CBQ) as well as higher effortful
control (CBQ), IQ and cognitive stimulation at home (CSPS) during
childhood in the resilient compared to the at-risk subgroup; all
ps < 0.05, after FDR correction (Fig. 2; Table S2).
The two subgroups showed no significant differences in log-

Jacobian determinant values, degree centrality or white matter
microstructural characteristics (all ps > 0.05). Resultant subgroups
also did not show differences in sex, age at assessment or PMA at
scan (Fig. 2; Table S2).

Three-cluster solution subgroup profiles
To increase subtyping resolution and explore latent heterogeneity
not captured by a two-subgroup partitioning, the sample was
further stratified into 3 subgroups. Two of the three resulting
clusters largely reflected profiles similar to those from C= 2.

Fig. 2 Two-cluster solution subgroup profiles. A Radar plot showing the two-cluster solution subgroup profiles using z-scores for subgroup
1 (i.e., resilient subgroup; green) and subgroup 2 (i.e., at-risk subgroup; beige). For visual illustrative purposes, scales which usually indicate
poorer outcomes have been reversed so that larger z-scores on behavioral variables indicate better outcomes. B Bar plots for clinical risk
variables (days on TPN, days on mechanical ventilation and days on CPAP, left to right, respectively) for each of the two subgroups. Plots
represent the proportion of children belonging to each clinical risk category within a subgroup, where category 0 represents the lowest
clinical risk (light beige; no days of clinical intervention), category 1 represents medium clinical risk (orange; more than 0 days of intervention
but less than the top quintile), and category 2 represents the highest clinical risk (red; within the top quintile). C Violin plots showing
differences between the subgroups in terms of in-model and out-of-model variables. Significant differences are marked with bars between the
subgroups. *=p < 0.05; **=p < 0.01; ***=p < 0.001, ****=p < 0.0001.
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The first was a ‘resilient’ subgroup (subgroup 1) with favorable
childhood socio-communicative (SRS-2), empathy (EmQue) and
executive function (BRIEF-P) outcomes in terms of in-model
variables; low childhood psychopathology (SDQ internalizing
and externalizing problems) and negative affectivity scores
(CBQ) and high effortful control scores (CBQ), IQ and cognitive
stimulation at home (CPSP) in terms of out-of-model variables. The
second was an ‘at-risk’ subgroup (subgroup 2), with the poorest
outcomes in terms of in-model variables (childhood socio-
communication (SRS-2), empathy and executive function (BRIEF-
P) scores), as well as out-of-model childhood psychopathology
(SDQ), effortful control (CBQ) and negative affectivity measures
(CBQ), combined with the highest neonatal clinical risk (Fig. 3;
Table S3).
A third subgroup (labeled ‘intermediate’) emerged, which had

poorer in-model and out-of-model childhood cognitive and
behavioral scores when compared to the resilient subgroup, but
better scores when compared to those of the at-risk subgroup.
The intermediate subgroup also had the lowest neonatal clinical
risk compared to both resilient and at-risk subgroups (Fig. 3; Table
S3). The transition of subject classifications from the two- to the
three-cluster solution is illustrated in an alluvial plot (Fig. S3).
In terms of environmental factors, the resilient subgroup had

higher levels of childhood cognitive stimulation at home (CSPS) in
comparison to both at-risk and intermediate subgroups, while the
intermediate subgroup had higher neonatal socio-demographic
risk (IMD) in comparison to both at-risk and resilient subgroups. All
ps < 0.05 after FDR correction. The three subgroups did not differ
in sex, age at assessment or PMA at scan.
In terms of brain imaging markers at term, the resilient

subgroup displayed larger relative volumes (i.e., greater log-
Jacobian determinant values) in the left insula and bilateral
orbitofrontal cortices (Fig. 4A; Table S4) and higher degree
centrality in an overlapping region in the left orbitofrontal cortex
(Fig. 4B; Table S5) compared to the intermediate subgroup. The
intermediate subgroup, compared to the at-risk subgroup,
showed increased FA in several areas of the white matter
skeleton, including the fornix, corpus callosum, corticospinal tract,
inferior longitudinal, inferior fronto-occipital and uncinate fasciculi
(Fig. 4Ci; Table S4), as well as lower MD in the fornix and body of
the corpus callosum (Fig. 4Cii; Table S4). The resilient and at-risk
subgroups did not differ in any brain measures (p > 0.05).

Sensitivity analyses
Sensitivity analyses including only one sibling, selected at random
from each multiple pregnancy set, revealed similar results (Table
S5; Table S6; Fig. S6; Fig. S7), although the difference in neonatal
functional connectivity between the resilient and intermediate
groups was no longer significant (p= 0.08). In addition, the
resilient subgroup displayed larger neonatal relative volume of the
right insula compared to the intermediate subgroup. For more
details, please refer to Supplemental Information.

DISCUSSION
Using an integrative clustering approach, we identified subgroups
of VPT children with distinct neurodevelopmental profiles. We
described a two-cluster solution, showing a resilient subgroup
with comparably favorable childhood behavioral and cognitive
outcomes and increased cognitive stimulation at home, and a
second, at-risk subgroup, with poorer childhood behavioral and
cognitive outcomes and high neonatal clinical risk. We also
described a three-cluster solution, showing two subgroups largely
characterized by the profiles observed in the two-cluster solution,
as well as a newly emerging third intermediate subgroup, with a
childhood behavioral and cognitive profile intermediate between
the resilient and the at-risk subgroups. Nuanced differences in
socio-demographic, neonatal clinical and early brain measures

appeared upon comparing subgroups from the three-cluster
solution. Notably, the resilient subgroup displayed larger fronto-
limbic brain regions and increased functional connectivity at term
compared to the intermediate subgroup. The at-risk subgroup
showed widespread white matter microstructural alterations in
fronto-temporo-limbic tracts compared to the intermediate
subgroup. Furthermore, the resilient subgroup had a more
cognitively stimulating childhood home environment compared
to the at-risk and intermediate subgroups, while the intermediate
subgroup had the lowest clinical risk. Together, these findings
highlight the potential value of neonatal structural and functional
brain measures as useful biomarkers of later childhood outcomes
in distinct VPT subgroups, as well as the importance of a
supportive home environment to foster child development.
In the at-risk subgroup from the two-cluster solution, poorer

childhood socio-emotional, executive function, IQ, mental health
and temperament outcomes may have been driven by a
combination of both higher clinical risk at birth and a less
stimulating childhood home environment, when compared to the
resilient subgroup. Previous studies in VPT children have shown
cognitively stimulating parenting to be positively associated with
improved socio-emotional processing and cognitive outcomes at
2 years of age [62] and reduced psychopathology and executive
function difficulties at 4–7 [54]. A cognitively stimulating home
environment also differentiated between psychiatric profiles at 5
[8]. Moreover, increased neonatal clinical risk in the at-risk
subgroup is consistent with previous findings, showing that
perinatal medical complications following VPT birth may lead to
increased behavioral and developmental problems [15, 16, 63].
The resilient and at-risk subgroups, however, did not differ in any
of the neonatal brain measures investigated, suggesting that there
may be additional non-measured variables underlying different
childhood outcomes that need further investigation, such as
alterations in pro-inflammatory immunomarkers [64, 65] and/or
microbiome assembly [66, 67], which are reportedly associated
with increased behavioral difficulties.
To further parse heterogeneity in VPT children, we also explored

a three-cluster solution. These analyses showed that two
subgroups mostly reflected the profiles seen in the two-cluster
solution: 1) a resilient subgroup with high levels of childhood
cognitive stimulation at home and 2) an at-risk subgroup with
high levels of neonatal clinical risk. A third subgroup with
intermediate childhood behavioral and cognitive profiles also
emerged, in which childhood psychopathology, temperament and
cognitive outcomes were poorer than those observed in the
resilient subgroup, but more favorable than those observed in the
at-risk subgroup. Intriguingly, the intermediate subgroup exhib-
ited the lowest neonatal clinical risk compared to the other two
subgroups, with a greater proportion of infants receiving no
neonatal mechanical ventilation, CPAP or TPN and with higher
median GA at birth. However, the intermediate subgroup also had
higher environmental risk, namely reduced childhood cognitively
stimulating home environment, compared to the resilient
subgroup, and higher neonatal socio-demographic deprivation,
compared to both the at-risk and resilient subgroups. These
findings suggest that developmental outcomes may not be
understood by exploring a single causal pathway and are best
studied in a multidimensional space; for example, clinical risk,
which has been linearly correlated with developmental outcomes
in previous studies [16, 63], ought to be investigated together with
other factors that may influence development, i.e.,
environmental risk.
The at-risk compared to the intermediate subgroup showed

widespread alterations in white matter microstructure (lower FA
and higher MD) in the fornix, corpus callosum, corticospinal tract,
inferior longitudinal, inferior fronto-occipital and uncinate fasciculi.
The at-risk subgroup had also the highest neonatal clinical risk,
hence the observed white matter changes are likely to be
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associated with preterm-related neonatal complications
[12, 68, 69]. White matter alterations in fronto-temporo-limbic
tracts, including those observed here, have been previously
associated with poorer cognitive outcomes [70–75]. They have
also been implicated in emotion processing [76–78] and

psychiatric disorders, including depression and schizophrenia
[79–81]. The intermediate subgroup, conversely, had the lowest
neonatal clinical risk, and higher FA/lower MD values in fronto-
temporo-limbic tracts compared to the at-risk subgroup. These
findings led us to speculate that having relative fewer neonatal
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clinical complications, and hence fewer preterm-related white
matter alterations, may contribute to these children’s more
favorable cognitive, socio-emotional and behavioral outcomes,
compared to the at-risk subgroup.
Children in the resilient subgroup exhibited higher prosocial

behavior and empathy, as well as fewer childhood externalizing
and internalizing symptoms and executive function difficulties,
compared to the intermediate and at-risk subgroups. They also
showed lower childhood negative affectivity scores, referring to
the expression of dysregulated negative emotions and increased
sensitivity in response to surrounding stimuli [82, 83]. While the
resilient group showed no significant brain differences compared
to the at-risk subgroup, we speculate that the combination of two
protective factors, an enriching home environment and lower
neonatal clinical risk, may have contributed to attenuating the
expression of the behavioral and cognitive difficulties associated
with VPT birth. These findings also support the idea of multi-
finality, whereby individuals with no overt brain differences at
term may display distinct behavioral outcomes later in childhood.
Compared to the intermediate subgroup, however, the resilient

subgroup displayed larger relative volumes in the left insular and
bilateral orbitofrontal cortices and increased functional connectiv-
ity in an overlapping left orbitofrontal region at term, years before
the behavioral and cognitive childhood outcomes were assessed.
These findings could be interpreted in terms of a more advanced
maturation of the fronto-limbic network in the resilient subgroup,
as orbitofrontal functional connectivity and insular cortical
microstructure and morphology have been positively associated
with GA at birth and PMA at scan [84–86]. However, as several
other brain areas are undergoing rapid neurodevelopmental
changes at the time our participants underwent MRI, including
somatosensory, occipital, temporal, parietal and other areas of
frontal cortex [86], we speculate the orbitofrontal cortex and the
insula may be preferentially discriminating between the inter-
mediate and the resilient subgroup, in the context of the brain-
wide analysis approaches employed here, because they play
critical functional roles in the cognitive and behavioral outcomes
we studied. The orbitofrontal cortex is involved in the top-down
regulation of goal-oriented executive functions and socio-
emotional processing, reward-guided learning and decision
making [87–89]; the insula is important for regulating internal
processes, including emotional responses to external stimuli [90].
Structural alterations in the orbitofrontal cortex and insula, which
are structurally connected [91], have been associated with
emotion dysregulation [92] and with higher externalizing beha-
viors [93].
The orbitofrontal cortex is sensitive to environmental stimuli,

such as early life stress [94, 95]. Individuals with a history of
physical abuse [96] and VPT infants exposed to painful procedures
[97] both show reduced orbitofrontal volumes in childhood.
Furthermore, alterations in orbitofrontal connectivity and gyrifica-
tion have been associated with social processing impairments in
VPT children [98] and with executive function difficulties in
extremely preterm (EPT; < 28 weeks’ gestation) adolescents [99],
respectively. Smaller insular volumes have been associated with
worse emotion regulation skills [100] and weaker insular

functional connectivity with decreased empathic responses
[101]. In the late preterm period, the insula becomes a key hub
region [102] and a major source of transient bursting events that
support brain maturation [103]. A more mature fronto-limbic
network may have therefore supported a favorable development
of emotion regulation capacity, cognition, and behavior [104, 105],
resulting in the resilient subgroup exhibiting lower externalizing
and internalizing symptoms, increased empathy, emotion regula-
tion abilities and executive function skills in childhood.
This study demonstrates that it is possible to parse hetero-

geneity in VPT children in a meaningful way. We show that
protective brain maturational patterns in the neonatal period may
contribute to a more resilient behavioral profile in childhood. This
is encouraging, as the preterm brain is susceptible to neuroplastic
changes in response to behavioral and environmental interven-
tions, both early in life and later in childhood [106]. For example,
neuroplastic changes have been observed following ‘supportive-
touch’ (i.e., skin-to-skin contact or breastfeeding’) [107], maternal
sensitivity training [108], visual stimulus cues of the mother’s face
[109], parental praise [110] or music interventions in the neonatal
intensive care unit [111]. Such methods could, therefore, be used
in the future to strengthen fronto-limbic circuitry to boost
children’s resilience. Furthermore, our findings suggest that
enriching environments may promote resilience towards more
favorable behavioral outcomes. This could be done by increasing
parental awareness about the importance of cognitive stimulation
at home. Our findings also show that the subgroup of children
with the highest neonatal clinical risk exhibit the poorest
outcomes, highlighting the need to develop and implement
targeted interventions for the most clinically vulnerable VPT
children.
It is worth noting that the median outcome scores (IQ, BRIEF-P,

SRS-2 and SDQ) for our three subgroups were within normative
ranges and below clinical thresholds, even for the at-risk
subgroup. Subthreshold psychiatric symptoms have been
reported in other at-risk subgroups of VPT children [9, 8], and
have also been associated with an increased risk of developing
psychiatric disorders later in life [112]. In this context, subthres-
hold psychiatric symptoms may represent transdiagnostic traits
that would remain undetected, and therefore untreated, if
considered in a purely clinically diagnostic context, highlighting
the importance of addressing psychopathology dimensionally
[113, 114].
Strengths of this study include a fairly large sample size and a

rich longitudinal dataset with clinical data from birth, neonatal
multi-modal MRI at term and behavioral follow-up in early
childhood. However, a limitation of this study is that the VPT
participants included in our analyses (n= 198) had a relative
socio-demographic advantage and older gestational age at birth
than the initial baseline cohort (n= 511), which may limit the
generalizability of our findings to a portion of the socio-
demographic and gestational age spectrum. In addition, the lack
of a full-term group and the exclusion of children with major brain
lesions in the integrative-clustering analyses may have also limited
the variability in our data, and in turn contributed to the failure to
identify a more impaired subgroup here. Future studies must take

Fig. 3 Three-cluster solution subgroup profiles. A Radar plot showing the three-cluster solution subgroup profiles using z-scores. For visual
illustration purposes, scales which usually indicate poorer outcomes have been reversed, so that larger z-scores on behavioral variables
indicate better outcomes. Subgroup 1 (resilient) is marked in green, subgroup 2 (at-risk) in beige and subgroup 3 (intermediate outcomes but
lowest clinical risk) in pink. B Bar plots for clinical risk variables (days on TPN, days on mechanical ventilation and days on CPAP, left to right,
respectively) for each of the three subgroups. Plots represent the proportion of children belonging to each clinical risk category within a
subgroup, where category 0 represents the lowest clinical risk (light beige; no days of clinical intervention), category 1 represents medium
clinical risk (orange; more than 0 days of intervention but less than the top quintile), and category 2 represents the highest clinical risk (red;
within the top quintile). C Violin plots showing differences in in-model and out-of-model measures at the group-wise level. Significant
differences are marked with bars between the subgroups. *=p < 0.05; **=p < 0.01; ***=p < 0.001, ****=p < 0.0001.
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Fig. 4 Three-cluster solution brain differences at term-equivalent age. A Colored voxels indicate regions with significantly larger log-
Jacobian determinant values in the resilient subgroup (subgroup 1) compared to the intermediate subgroup (subgroup 3) in i) left insula and
the ii) bilateral orbitofrontal cortices (p < 0.05). GLM included sex and PMA at scan as covariates and TFCE and FWE corrections were applied.
B Voxels showing significantly larger degree centrality values in the resilient subgroup (subgroup) 1 compared to the intermediate subgroup
(subgroup 3) are seen in an overlapping left orbitofrontal region at p < 0.05. GLM included sex, PMA at scan and motion (standardized DVARS)
as covariates; TFCE and FWE were applied. C Colored voxels represent white matter regions showing i) significantly higher FA values in the
intermediate subgroup compared to the at-risk subgroup and ii) significantly higher MD values in the at-risk subgroup compared to the
intermediate subgroup (p < 0.05). T-statistic values are represented in the color bar, where red colored voxels indicate smaller T-statistic values
and yellow voxels indicate higher T-statistic values ranging between 1.70 and 5.50.
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extra caution when interpreting such results and make increased
efforts to recruit more diverse participant samples.
Additional limitations to consider include the use of parental

reports for most child behavioral measures, except IQ, which could
lead to common method variance bias [115] and result in
underreporting of psychopathology [116]. The lack of information
on familial cognitive outcomes and psychiatric history, which are
heritable traits [117], prevents us from estimating trait heritability.
Moreover, the small to moderate effect sizes reported for neonatal
brain differences between subgroups may limit their immediate
clinical meaningfulness or translatability into clinical practice.
However, the fact that these brain differences only emerged after
subdividing the sample into more refined and homogenous
phenotypic subgroups (C= 3 vs C= 2), highlights the benefit of
using advanced clustering approaches such as SNF. We speculate
that these effects may be diluted in the two-cluster solution due
to the presence of individuals within both (at-risk and resilient)
subgroups having profiles that are more similar to an intermediate
subgroup profile (please see Fig. S3).
Sensitivity analyses including one sibling only from each

twin/triplet set mostly replicated the main findings, showing
similar early brain patterns as well as cognitive, neonatal
clinical, social, and childhood behavioral profiles for both two-
and three-cluster solutions, suggesting that the effects seen
here are not biased by the presence of multiple pregnancy
siblings in the main analyses. While the functional connectivity
results were no longer significant in the sensitivity analyses, we
speculate this may be due to a loss in power associated with the
reduced sample size.
In summary, using an integrative clustering approach, we

were able to stratify VPT children into distinct multidimensional
subgroups. A subgroup of VPT children at risk of experiencing
behavioral and cognitive difficulties was characterized by high
neonatal clinical complications and white matter microstruc-
tural alterations at term, whereas a resilient subgroup, with
comparably favorable childhood behavioral outcomes, was
characterized by increased childhood cognitive stimulation at
home and larger and functionally more connected fronto-limbic
brain regions at term. These results highlight a potential
application of precision psychiatry, to enable meaningful
inferences to be made at the individual level. Patterns of
fronto-limbic brain maturation may be used as image-based
biomarkers of outcomes in VPT children, while promoting
enriching environments may foster more optimal behavioral
outcomes. Risk stratification following VPT birth could, there-
fore, guide personalized behavioral interventions aimed at
supporting healthy development in vulnerable children.
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