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In vivo experimental analysis of human brain tissue poses substantial challenges and ethical concerns. To address this problem, we
developed a computational method called the Brain Gene Expression and Network-Imputation Engine (BrainGENIE) that leverages
peripheral-blood transcriptomes to predict brain tissue-specific gene-expression levels. Paired blood–brain transcriptomic data
collected by the Genotype-Tissue Expression (GTEx) Project was used to train BrainGENIE models to predict gene-expression levels
in ten distinct brain regions using whole-blood gene-expression profiles. The performance of BrainGENIE was compared to
PrediXcan, a popular method for imputing gene expression levels from genotypes. BrainGENIE significantly predicted brain tissue-
specific expression levels for 2947–11,816 genes (false-discovery rate-adjusted p < 0.05), including many transcripts that cannot be
predicted significantly by a transcriptome-imputation method such as PrediXcan. BrainGENIE recapitulated measured diagnosis-
related gene-expression changes in the brain for autism, bipolar disorder, and schizophrenia better than direct correlations from
blood and predictions from PrediXcan. We developed a convenient software toolset for deploying BrainGENIE, and provide
recommendations for how best to implement models. BrainGENIE complements and, in some ways, outperforms existing
transcriptome-imputation tools, providing biologically meaningful predictions and opening new research avenues.
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INTRODUCTION
Brain disorders cause considerable disability worldwide [1].
Typically, in vivo molecular assessment of human disease centers
on the primarily affected tissue(s) or the site of pathogenesis, but
that is not possible for brain disorders unless neurosurgical
intervention is required. Collecting ex vivo human brain tissue in
an experimental setting for neuropsychiatric research is infea-
sible, given the considerable risks associated with brain biopsy.
There are numerous research questions that would be answered
best by studying living human brain tissue, but which therefore
remain unaddressed. Transcriptome imputation offers a non-
invasive alternative to brain biopsy by allowing investigators to
infer tissue-specific gene expression without directly assaying
gene-expression levels.
FUSION and PrediXcan are two software tools that model tissue-

specific effects of expression quantitative trait loci (eQTLs) on the
expression of proximal genes (cis-eQTLs) in order to impute
transcriptome profiles. These methods have been successful in
prioritizing genome-wide association study (GWAS) hits and have
helped reveal putative mechanisms underlying complex disorders
[2–6]. With both methods, there is a striking disparity between the

number of genes imputable in the brain versus tissues outside of
the central nervous system (CNS): to wit, FUSION imputes an
average of 3158 genes in the brain (range= 1604–5855 across the
12 brain tissues (including a pair of re-sampled tissues from frontal
cortex [BA9] and cerebellum) compared with 5592 in non-CNS
tissues; similarly, PrediXcan imputes an average of 4337 genes in
the brain (range= 2559–6794) compared with 6262 genes
(range= 1642–10,012) outside the CNS. Furthermore, the majority
of genes in the brain transcriptome are not significantly predicted
by either FUSION or PrediXcan, suggesting that a large amount of
variance in transcriptome profiles cannot be captured by eQTLs
alone. A recent addition to the suite of genotype-based
transcriptome-imputation methods is TIGAR, which uses a Bayesian
modeling framework for predicting gene expression from eQTL
data. Using a data-driven nonparametric model of cis-eQTL signals,
TIGAR further increases the number of imputable genes by 57.8%
compared to PrediXcan, but PrediXcan was deemed the preferred
method for imputing genes that have few eQTLs influencing
expression heritability [7]. A Bayesian hierarchical model called
EpiXcan builds upon PrediXcan by applying epigenetic annotations
to optimize the weights assigned to cis-eQTLs and increase the
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predictability of gene-expression levels [8]. EpiXcan increased the
number of genes that can be significantly predicted by 94%
compared to PrediXcan. Among the 2894 genes for which
expression levels can be significantly predicted by both methods,
EpiXcan showed better average prediction accuracy (mean cross-
validation R2= 0.19) compared to PrediXcan (mean R2= 0.16).
Despite the methodological improvements that have been made
by derivatives of PrediXcan, a common limitation with existing cis-
eQTL-based toolsets is that they do not allow for predictions for
temporal changes in tissue-specific gene expression.
Tissue-specific and tissue-dependent gene expression help

differentiate between brain and peripheral tissues, but compelling
evidence also shows that brain and blood exhibit comparable
transcriptome profiles [9–12]. Our group systematically reviewed
relevant literature on this topic, and found that gene expression
profiles in blood and brain are moderately correlated (Pearson’s r of
0.24–0.64), with 35–80% of genes expressed in both tissues [9]. In a
later study, we found empirical evidence that ~90% of weighted
gene–gene interaction networks identified in prefrontal cortex
transcriptomes are preserved in peripheral blood [10]. Brain and
blood also show significant overlap with respect to eQTLs [11, 12],
signifying that shared genetic effects (albeit with small effect-sizes)
may, in part, explain the comparability of gene expression in blood
and the brain. Another advantage of capitalizing on human blood
transcriptomes for brain gene expression imputation is that such
data are widely available in public repositories and also can be
generated de novo with relative ease and cost-effectiveness. Unlike
DNA variants, transcriptome profiles in blood fluctuate over time,
and they may reflect valuable information about corresponding
temporal changes in the brain throughout development or over the
course of an exposure or intervention.
Based on this evidence and logic, we sought to capitalize on the

transcriptomic similarity between the brain and blood (and
the easy accessibility of blood) to make predictions about gene
expression in the brain solely based on observed expression in the
periphery. Simultaneously, we aimed to develop an expression-
based transcriptome-imputation method that complements
existing cis-eQTL-based transcriptome-imputation methods. We
achieved these goals with the Brain Gene-Expression and Network-
Imputation Engine (BrainGENIE), which imputes brain tissue-
specific gene-expression profiles based on gene-expression
profiles assayed from peripheral blood. BrainGENIE is implemented
in the R statistical environment and is distributed as freely available
software (https://github.com/hessJ/BrainGENIE).
BrainGENIE is not the first or only cross-tissue transcriptome-

imputation method, but it has unique strengths that compare
quite favorably with other approaches. Tissue Expression
Estimation using Blood Transcriptome (TEEBoT), like BrainGENIE,
uses principal components (PCs) of peripheral blood transcrip-
tomes to predict transcriptomes of other tissues [13]. TEEBoT was
developed using an earlier release of GTEx (v.6) data; hence, its
modeling of brain tissue-specific transcriptomes was limited to
cerebellum and caudate due to sample-size restrictions. In
contrast, BrainGENIE, which was built on the larger and more
recent release of GTEx (v.8), enabling transcriptome imputation
for 12 brain tissues (ten different brain regions). A second related
method is B-GEX, which also modeled brain regional transcrip-
tomes using an older version of GTEx that included fewer donors
with paired blood and brain data [14]. Moreover, B-GEX utilizes
individual gene transcripts from blood to predict brain gene
expression, which captures less variance than PCs and limits
predictive power. In short, because BrainGENIE was built on a
better training dataset, uses PCs of whole-blood gene expression
to optimize predictive power, and imputes transcriptomes for
more brain tissues, it matches the strengths of competing
methods and overcomes some of their limitations. Since there is
no equivalent blood-based transcriptome-imputation method
available that has modeled all regions of the brain like

BrainGENIE, we benchmarked BrainGENIE against the most
popular transcriptome-imputation method, PrediXcan. The two
methods are conceptually similar, and there are data available
from PrediXcan for all 12 brain tissues modeled by BrainGENIE,
enabling direct comparisons. As such, we used the methodology
of PrediXcan as a basis for developing BrainGENIE so that the
results from the two methods could be directly compared.
Comparing these two methods helped us to understand the
differences (and points of convergence) between the use of
blood-based gene-expression profiles versus eQTLs to impute
region-specific gene expression in the brain, and illuminated the
relative strengths and weaknesses of each approach. In addition
to delivering a convenient software toolkit for BrainGENIE, we
describe the application of the BrainGENIE method to real-world
peripheral blood transcriptomic data to demonstrate the
convergence of BrainGENIE-imputed data with disease-related
gene expression changes directly measured in postmortem brain.
Lastly, we lay the groundwork for future integrations of both
blood gene expression and eQTLs to maximize the prediction of
the brain transcriptome.

METHODS
Training and evaluation of BrainGENIE
Procedures for normalizing the RNA-sequencing (RNAseq) data from GTEx
are described in the Supplement (Supplementary Methods and Supple-
mentary Fig. 1). The process used to train BrainGENIE is illustrated in Fig. 1.
We performed a single fivefold cross-validation to estimate the predictive
performance of BrainGENIE separately for each brain region. Paired
blood–brain transcriptome profiles from GTEx donors were randomly
assigned to the fivefolds. For each training subset, a principal component
analysis (PCA) was performed on normalized blood transcriptome profiles,
and linear regression was trained to predict brain tissue-specific
expression levels per-gene using the top k= 5 (11% variance explained),
k= 10 (41% variance explained), k= 20 (58% variance explained), and
k= 40 PCs (80% variance explained) of whole-blood gene expression
(resulting in fold= {1…5} by k= {5, 10, 20, 40} by gene= {1…ngenes} linear
models). The normalized transcriptome profiles in the validation subsets
were projected onto the PCs of the training subsets. The linear regression
model used to train BrainGENIE was formulated as follows: Yi ~ β0+βi Xi+
…+ ε, where Yi represents the expression level of a gene in the brain, β0
represents the intercept, βi Xi represents the product of the estimated
regression coefficient and value of the ith PC, and ε represents the error
term. Our initial work uncovered that prediction accuracies achieved by
linear regression were as good as or better than elastic net regression (the
model used by PrediXcan); linear regression is also computationally faster
to train, thus was the chosen model for BrainGENIE. The trained models
were then deployed in the validation set to estimate the predictive
performance on unseen data. The metric for prediction performance was
the coefficient of determination for observed and predicted per-gene
expression levels (R2) in the hold-out fold. This process was repeated until
each fold was used as the validation set, and per-gene prediction
performance was averaged over the validation sets. In order to have a
reasonable side-by-side comparison between BrainGENIE and PrediXcan,
we adopted the same criterion for “significantly predicted” as adopted by
PrediXcan; i.e., genes that could be predicted with a cross-validation (CV)
R2 ≥ 0.01 and with Benjamini–Hochberg false-discovery rate-adjusted
p value (FDR) <0.05. When comparing all models, the 40-PC BrainGENIE
model exhibited the best performance in the training data in terms of
average R2 and number of genes with significantly predicted gene
expression levels, and was selected as the final model to deploy on the
external test set (described below).

Accuracy of BrainGENIE versus PrediXcan
We used two-tailed t-tests (alpha= 0.05) to compare the prediction
accuracy of BrainGENIE and PrediXcan as indexed by Pearson’s r coefficients
for genes that met the criterion for being “significantly predicted”. Tests
were performed separately for each of the 12 brain tissues, and
Benjamini–Hochberg FDR corrections were applied to resultant p values
to adjust for multiple testing. In addition, we used Pearson’s correlation
tests to assess the similarity of prediction accuracies between BrainGENIE
and PrediXcan for genes that both methods significantly predicted.
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Enrichment of cross-disorder pleiotropic gene-sets
The goal of this analysis was to employ gene-set enrichment to determine
if BrainGENIE and PrediXcan differed in their ability to significantly predict
gene-sets that show significant association with major neuropsychiatric
disorders by GWAS. Gene Ontology (GO) identifiers were obtained for 45
gene-sets identified by GWAS meta-analysis as having a shared association
across eight neuropsychiatric disorders [15]. GO identifiers were annotated
with HGNC gene symbols using the Molecular Signatures Database (v.6.2)
[16]. We counted the number of genes in each pleiotropic gene set that
were significantly predicted by either method and then performed one-
tailed Fisher’s exact tests of enrichment. A significance threshold of
FDRp < 0.05 was used to adjust for multiple comparisons.

Concordance with neuropsychiatric-related transcriptomic
signatures
To determine how well BrainGENIE captures brain-relevant signatures for
neuropsychiatric diagnosis identified in postmortem brain, we performed a
Pearson’s correlation analysis to determine the concordance of imputed
differential-expression signatures for schizophrenia (SCZ), bipolar disorder
(BD), and autism spectrum disorder (ASD) derived by BrainGENIE with
“ground-truth” differential-expression signatures from postmortem brain
published by the PsychENCODE Consortium and the CommonMind
Consortium [17, 18]. For this analysis, we deployed BrainGENIE models
on completely independent blood-based transcriptome datasets for
SCZ [19–24] (k studies= 7, n cases= 258, n controls= 241), BD [24–30]
(k studies= 8, n cases= 335, n controls= 349), and ASD [31–38]
(k studies= 5, n cases= 584, n controls= 431). Descriptions for each
dataset are provided in Supplementary Table 1. Pre-processing and
normalization steps used to prepare blood-based transcriptome profiles for
the SCZ, BD, and ASD datasets are described in our previously published
studies [10, 39, 40]. Details of our normalization procedure are available in
the supplement (Supplementary Methods). The combined set of peripheral
blood transcriptome data for each disorder was then supplied to
BrainGENIE in order to impute transcriptome profiles for the frontal cortex
using the 5-, 10-, 20-, and 40-PC models.
We estimated differential gene expression (DGE) in blood between

affected cases and unaffected comparison individuals via combined-

samples mega-analyses using linear regression models that covaried for
study, age, sex, and abundance of circulating leukocytes inferred using
CIBERSORT [41]. Similarly, we estimated DGE using predicted gene-
expression profiles for the frontal cortex obtained from BrainGENIE using
the same mega-analysis approach. We applied the PrediXcan tool for
GWAS summary statistics (S-PrediXcan) to obtain genetically predicted
DGE effect-sizes for SCZ, BD, and ASD using the latest GWAS summary
statistics for each disorder [42–44]. Transcriptome-wide DGE effect-sizes
for each disorder obtained from peripheral blood mega-analyses
(t-values), BrainGENIE mega-analyses (t-values), and S-PrediXcan
(z-scores) were then compared with DGE effect-sizes directly measured
from postmortem brain using Pearson’s correlation test, which was
chosen in order to assess the linear monotonic relationship between
DGE signals derived from different methods.

RESULTS
BrainGENIE prediction performance
Here, we summarize the performance of BrainGENIE represented
by averages per brain region for the 12 brain regions being
predicted. We found that BrainGENIE models trained with the top
40 PCs of blood-based transcriptome-wide gene expression
yielded a higher average number of imputable genes per brain
region relative to 5-, 10-, or 20-PC models. Thus, our summary
focuses on the results derived using our 40-PC model. The
prediction performance of BrainGENIE, measured by the average
cross-validation R2, ranged from 0.03–0.56 for genes that met the
criteria of significantly predicted in cross-validation (average CV
R2 ≥ 0.01, FDRp < 0.05) (Table 1). The proportion of genes
significantly predicted in the brain by BrainGENIE ranged from
16–59% of the total number of genes with detected expression in
each brain tissue based on the GENCODE version 26 genome
assembly (GRCh38) (mean number of genes= 8151; range:
2947–11,816 genes). The maximum average cross-validation
prediction accuracy of BrainGENIE across all brain tissues ranged

Fig. 1 Schematic illustrating the process for training BrainGENIE using paired blood–brain transcriptome data from the GTEx dataset.
BrainGENIE is trained using paired blood and brain transcriptome profiles collected by GTEx (v8) from adult donors. A single 5-fold cross-
validation is performed to estimate the predictive performance of BrainGENIE separately for each brain region. BrainGENIE uses top principal
components of transcriptome-wide blood-based gene expression as features to predict brain-regional gene expression levels. The metric used
for prediction performance was the coefficinent of determination (R2) to measure how well predicted per-gene expression levels captured
observed gene expression levels in the validation folds. Model performance was summarized over the 5 validation folds to obtain an estimate
of prediction performance for BrainGENIE.
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from R2= 0.47–0.70. An average of 81% (range: 70–89%) of genes
whose expression levels were significantly predicted by Brain-
GENIE were not significantly predicted by PrediXcan (Table 2). In
contrast, an average of 65% of genes significantly predicted by
PrediXcan were not significantly predicted by BrainGENIE (range:
50–88%) (Table 2). On average, 1672 genes were found to be
significantly predicted by both BrainGENIE and PrediXcan across
12 brain tissues (range: 311 [substantia nigra]–3019 genes
[cerebellum]) (Table 2). We found that expression levels of genes
in the brain significantly correlated with the prediction accuracy
of BrainGENIE (Supplementary Table 2A). Furthermore, higher
expression levels of genes in the blood (Supplementary Table 2B)
were significantly correlated with higher prediction accuracy of
BrainGENIE, indicating that genes that are more abundant in the
brain and/or blood are able to be more accurately predicted by
BrainGENIE. The mean CV accuracy for BrainGENIE averaged
across all brain regions for genes that were significantly predicted
was R2= 0.10, whereas the average CV value for PrediXcan was
R2= 0.15.
We found overlap between brain regions in terms of the

number of genes that were significantly predicted by Brain-
GENIE, which was lowest between substantia nigra and
amygdala (912 genes) and highest between nucleus accumbens
and frontal cortex [frozen] (7604 genes) (Supplementary Fig. 2A).
The pattern of inter-regional similarity with respect to the
number of genes significantly predicted by BrainGENIE mirrored
the spatial pattern of similarity that exists between brain regions
with respect to commonly expressed genes (Pearson’s r= 0.55,
p= 2 × 10−6) (Supplementary Fig. 2B), indicating that BrainGENIE
preserves and recapitulates the spatial relationship between
areas of the brain.
The distributions of cross-validation R2 values produced by

BrainGENIE and PrediXcan for all significantly predicted genes are
shown in Supplementary Fig. 3. The shapes of the distributions
found using BrainGENIE were similar to those for PrediXcan;
however, two distinctions were consistently noted across brain
tissues. First, PrediXcan featured heavier right-tails compared to
BrainGENIE (Supplementary Fig. 3), indicative of PrediXcan having
more genes with higher prediction accuracies. In contrast,
BrainGENIE produced curves whose maxima were consistently
shifted to the right relative to those of PrediXcan, indicative of

greater average predictability with BrainGENIE. We found a
significant association between the cross-validation performance
of BrainGENIE in GTEx and the average RNA qualities of brain
tissues (Supplementary Fig. 4A), wherein brain tissues that had
better RNA quality of the brain tissues exhibited a larger number
of imputable genes by BrainGENIE (Pearson’s r= 0.64, p= 0.024,
Supplementary Fig. 4B).
Among those genes that are significantly predicted by both

methods, PrediXcan showed significantly better overall predic-
tion accuracy for gene expression levels in ten brain tissues
(Supplementary Table 3). Prediction accuracies were statistically
indistinguishable between BrainGENIE and PrediXcan for the
remaining two brain tissues: the amygdala and substantia nigra
(FDRp > 0.05, Supplementary Table 3). When evaluating the
similarity of prediction accuracy among genes that are sig-
nificantly predicted by both methods, BrainGENIE showed a small
but significantly negative correlation with PrediXcan for genes in
the amygdala, caudate, cerebellum (PAXgene preserved), frontal
cortex (PAXgene preserved and fresh frozen), putamen, and
nucleus accumbens (Supplementary Table 4). This finding is
indicative of the methodological designs not converging to
achieve consistent predictions, hence lending support to a joint
imputation-modeling approach that capitalizes on blood-based
gene expression and genotypes to impute brain region-specific
gene expression levels.

Cross-disorder gene sets predicted by BrainGENIE versus
PrediXcan
Supplementary Fig. 5 shows that 31 of the 45 pleiotropic gene sets
for eight neuropsychiatric disorders identified by the Cross-
Disorder Group of the Psychiatric Genomics Consortium [15]
showed significant enrichment of genes significantly predicted by
BrainGENIE. Genes significantly predicted by PrediXcan showed
enrichment in 11 pleiotropic gene sets, though all 11 gene sets
showed more significant enrichment of genes predicted by
BrainGENIE. The null hypothesis of these analyses was that the
number of genes significantly imputable by BrainGENIE or by
PrediXcan does not relate to the membership of genes to cross-
disorder-associated gene-sets. The alternate hypotheses are that
either (or both) algorithms allow for significant imputation of
more genes that participate in cross-disorder-associated gene
ontologies than expected by chance.

Concordance of DGE changes related to neuropsychiatric
disorders
Transcriptome-wide DGE effect-sizes measured in peripheral blood
for BD and SCZ demonstrated small but significant correlations
with DGE effect-sizes directly measured in postmortem brain
(Fig. 2) (Pearson’s r range: 0.05–0.11). The total number of genes
that were represented in our analysis are provided in Supplemen-
tary Table 5. Conversely, DGE effect-sizes for ASD measured in
peripheral blood showed significant inverse correlations with
DGE effect-sizes directly measured in postmortem brain (Fig. 2) in
the PsychENCODE microarray meta-analysis (Pearson’s r=−0.09,
p= 1.7 × 10−25) and RNAseq analysis (Pearson’s r=−0.08,
p= 3.3 × 10−20), which may reflect age differences between
samples considering that individuals in the peripheral blood
datasets were predominantly children whereas those in the
postmortem brain studies were predominantly adults. DGE effect-
sizes found using S-PrediXcan were not significantly correlated with
postmortem brain DGE effect-sizes for SCZ, BD, or ASD (Fig. 2).
Conversely, DGE effects estimated from predicted genes’ expres-
sion profiles in brain using BrainGENIE were significantly correlated
with results directly measured in postmortem brain for ASD, BD,
and SCZ (Fig. 2). The strongest correlation that emerged was
between DGE effect-sizes obtained using BrainGENIE (ten PCs) and
DGE effect-sizes directly measured in postmortem brain for SCZ
found by the PsychENCODE Consortium’s microarray meta-analysis

Table 2. The number of genes for which brain tissue-specific
expression levels can be reliably predicted by BrainGENIE (40-PC
model), by PrediXcan, or by both methods.

Brain tissue BrainGENIE PrediXcan Overlap

Amygdala 4265 2787 504

Anterior cingulate
cortex BA24

6799 3544 992

Caudate basal ganglia 10,772 5004 2225

Cerebellum (Fresh
frozen)

9573 5753 2530

Cerebellum (PAXGene
preserved)

10,098 6794 3019

Frontal cortex (PAXGene
preserved)

10,186 5500 2408

Frontal Cortex (Fresh
frozen)

11,816 4563 2289

Hippocampus 4008 3688 588

Hypothalamus 5749 3652 873

Nucleus accumbens
basal ganglia

11,252 4851 2252

Putamen basal ganglia 10,350 4436 2067

Substantia nigra 2947 2559 311
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(Pearson’s r= 0.56, 95% CI: 0.54–0.58, n genes= 4130,
p < 1.0 × 10−300, Fig. 2A). The DGE correlations for ASD, BD, and
SCZ found between BrainGENIE and postmortem brain showed
significant replication in an independent PsychENCODE Consor-
tium cohort profiled via RNAseq (Fig. 2B). Furthermore, the
convergence between BrainGENIE-imputed and measured post-
mortem brain DGE effect-sizes for SCZ was replicated in a second
independent cohort from the CommonMind Consortium, with the
strongest concordance found for the 40-PC model of BrainGENIE
(Pearson’s r= 0.28, 95% CI: 0.26–0.31, n genes= 6933,
p= 1.1 × 10−131, Fig. 2C). When we restricted our analysis to genes
differentially expressed in postmortem brain (FDRp < 0.05), the
DGE agreement between BrainGENIE-imputed brain gene expres-
sion and postmortem brain measured gene expression was as good
or better (Supplementary Fig. 6). Scatterplots of the DGE
agreement for ASD, BD, and SCZ are provided in Supplementary
Fig. 7. The DGE agreement between BrainGENIE-imputed brain
gene expression and postmortem brain measured gene expression
was significantly stronger than between peripheral blood and
postmortem brain for ASD, BD, and SCZ for one or more BrainGENIE
models (z-test p values <0.05, Supplementary Table 6). Similarly,
measured DGE signals from the postmortem brain were signifi-
cantly more concordant with those predicted from BrainGENIE than
from S-PrediXcan for ASD, BD, and SCZ (Supplementary Table 6).
We also evaluated results published by the PsychENCODE
Consortium from their approach using FUSION/TWAS to prioritize
genes associated with ASD, BD, and SCZ in their cohort. Similar to
our findings from S-PrediXcan, the DGE effect-sizes imputed using
FUSION/TWAS for ASD, BD, and SCZ were not correlated with the
DGE effect-sizes directly measured in postmortem brain (ASD:
Pearson’s r= 0.003, p= 0.7; BD: Pearson’s r= 0.005, p= 0.6; SCZ:
Pearson’s r= 0.013, p= 0.12) [45].

DISCUSSION
This study introduced and benchmarked a computational method
called BrainGENIE, which predicts brain region-specific gene
expression levels based on peripheral blood transcriptomes. Over
the past decade, there has been rapid growth in the number of
blood-based transcriptome studies aimed at identifying biomar-
kers for neuropsychiatric disorders. This has led to a vast amount
of useful data that may hold untapped information about the

brain. Much of the raw data from published blood-based
transcriptome studies of neuropsychiatric disorders can be readily
downloaded from public repositories (i.e., Gene Expression
Omnibus [GEO] and ArrayExpress) or made available to investiga-
tors with controlled access (i.e., dbGaP, NIMHGR, and Synapse). It
is, therefore, possible to further mine those stores of transcrip-
tome data with BrainGENIE, thus generating novel mechanistic
hypotheses about the disease and advancing our understanding
of brain disorders in a way that is clearly superior to direct
correlation of blood and brain measures.
BrainGENIE exploits PCA as an efficient method for

dimensionality-reduction while capturing more variability in the
blood transcriptome for prediction compared to individual gene
transcripts. PCA helps to reduce the potential of overfitting; i.e.,
imposing a limit on the number of input features steers a model
away from “learning” random noise and fails to generalize to
external data. However, the risk of overfitting is not eliminated by
PCA alone. The components we derived using PCA are loosely
related to “eigengenes”, which are clusters of tightly co-expressed
genes identified by the data-driven clustering method Weighted
Gene Co-expression Network Analysis (WGCNA) [46]. A funda-
mental difference between PCA and WGNCA lies in the fact that
genes can load onto multiple PCs as opposed to eigengenes being
derived with non-overlapping sets of genes. Future work will aim
to model networks of genes that are preserved across blood and
the brain to improve BrainGENIE’s interpretability. We applied a
standard classification approach of k-fold cross-validation to
estimate the ability of BrainGENIE to generalize its predictions to
unseen data. Further validation is warranted to determine the
generalizability of our prediction models for other brain tissues
and with an external dataset that is closely matched to the
demographic and technical parameters observed in our training
set, should one become available. In the future, modifications to
BrainGENIE may allow for subsets of genes to be best predicted by
PCs and others by individual gene transcripts, or collections of a
few (or more) closely correlated transcripts. To improve the
prediction performance of BrainGENIE, methods that can account
for nonlinear mapping between blood and brain transcriptome
profiles may be incorporated.
The predictive performance of BrainGENIE was affected by a

number of factors, including the number of samples available for
training and the quality of the extracted RNAs. Brain tissues that

Fig. 2 BrainGENIE recapitulates disorder-related changes in gene expression found in postmortem brain. Concordance of case-control
differential gene expression (DGE) signals obtained by BrainGENIE and S-PrediXcan compared to A DGE signals derived from postmortem
cortical microarray meta-analyses for ASD, BD, and SCZ, B DGE signals derived from RNA-sequencing analysis for ASD, BD, and SCZ by the
PsychENCODE Consortium, and C DGE signals obtained from postmortem prefrontal cortex RNA-sequencing analysis for SCZ by the
CommonMind Consortium. ASD autism spectrum disorder, BD bipolar disorder, and SCZ schizophrenia. Symbols for significance thresholds:
p < 0.05 (*), FDRp ≤ 1 × 10−5 (***), FDRp ≤ 1 × 10−10 (#), FDRp ≤ 1 × 10−20 (##).
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had large sample sizes (i.e., frontal cortex) showed better
prediction performance than brain regions with fewer samples
(i.e., amygdala and substantia nigra). In addition, imputation
performance improved with the RNA quality of the brain tissues.
Differences in imputation performance also were seen between
pairs of re-sampled tissue collected from the frontal cortex and
cerebellum. The pair of tissues collected and preserved in
PAXgene fixative exhibited lower RIN values (likely due to
degraded RNAs) and lower imputation performance than the pair
of brain tissues that were shipped to the University of Miami
Endowment Brain Bank for collection and preservation by flash-
freezing. Though the differences in imputation performance of
flash-frozen and chemically preserved brain tissues were small, we
recommend that investigators use the BrainGENIE models derived
from flash-frozen brain tissues. Furthermore, there were, on
average, 48 fewer donors (range: 28–63) with paired blood–brain
transcriptome data in GTEx (the required input for BrainGENIE)
than donors with paired genetic and transcriptome data (the
required input for PrediXcan). It is challenging to draw strong
conclusions about differences in model performance for individual
genes between BrainGENIE and PrediXcan as PrediXcan had more
power, and yet BrainGENIE outperformed PrediXcan on a number
of benchmarks. Thus, global differences between the methods
could not be explained by variation in sample size alone, and even
as BrainGENIE was limited by a smaller sample size for model-
training, we found that BrainGENIE could impute a substantial
fraction of genes that were not imputable using PrediXcan. This
suggests that non-genetic components of gene expression
ignored by PrediXcan models hold significant information for
transcriptome imputation.
GTEx’s transcriptomic data were derived from bulk postmortem

brain tissue; thus, we did not model gene expression for any
specific brain-cell-type. We instead modeled the cross-tissue
overlap at the level of cell mixtures in the brain and blood for
BrainGENIE. It is possible that commonalities seen between brain
and blood gene expression could be driven by a possible shared
lineage between macrophages and microglia [47, 48]. Specificity
of brain cell-type transcriptome imputation with BrainGENIE may
be achieved with single-cell transcriptomics, but this is not
feasible at the moment due to the lack of available data.
The current version of BrainGENIE can predict a substantial

proportion of variance in expression levels for 2947 to 11,816 genes
in the human brain (depending on the brain region), which
accounts for about 16 to 59% of the brain transcriptome. Prior
iterations of BrainGENIE made continual improvements in the
number of significantly predicted genes, and the variance
accounted for in brain tissue-specific gene-expression levels, by
moving from an approach that used individual gene transcripts in
blood to predict brain gene-expression levels to the current
approach of using PCs of blood gene expression. This suggests that
further refinement of our models will continue to improve
predictions until they reach their (unknown) maximum per-gene
and per brain region. As one would expect, not all or even most
genes are imputable with BrainGENIE, but the number of new
genes that can be imputed with BrainGENIE and not by PrediXcan is
considerable. The amount of overlap between BrainGENIE and
PrediXcan in terms of genes whose expression can be significantly
predicted was relatively small. In addition, prediction accuracies
were not strongly correlated between BrainGENIE and PrediXcan,
indicating that the different modeling approaches achieve partially
orthogonal outcomes when predicting brain transcriptomes. This
suggests that there is value to integrating BrainGENIE and PrediXcan
for a combined and complementary approach to transcriptome
imputation wherever genotypes and blood gene-expression data
are available from the same individuals. Ideally, the strengths of
multiple modeling approaches, like those in BrainGENIE, PrediXcan,
and others, would be combined into a unified framework (or
through the integration of outputs from multiple disparate models)

to deliver a holistic portrait of the landscape of the human brain
transcriptome.
We suggest the following tool selection depending on the type

of data available for transcriptome imputation: (1) if only
transcriptome data were available from blood, use BrainGENIE,
(2) if only GWAS data are available, use PrediXcan (or a derivative),
(3) if blood transcriptome and GWAS data are available, use
BrainGENIE and PrediXcan (or a derivative) to achieve best-
predicted expression levels on a per-gene basis depending on
the target brain region. For genes that are predictable by both
methods, use the method that achieved better accuracy for the
specific gene being imputed in the target brain region, which is
often PrediXcan.
Our results showed that transcriptome-wide DGE effect-sizes

observed directly in postmortem brain were in better agreement
with DGE effect-sizes predicted using BrainGENIE than with DGE
effect-sizes found in analyses of peripheral blood and those
imputed by PrediXcan. This advantage of BrainGENIE over
peripheral blood and PrediXcan was most striking for SCZ but
was still evident for BD and ASD. The Concordance of DGE effect-
sizes between BrainGENIE and postmortem brain varied based on
the number of PCs included in the imputation models. This
finding may encourage investigators to parameterize the number
of PCs for BrainGENIE based on the model that yields the best
overall prediction accuracy. However, it is important to consider
which genes are included (or lost) or more significantly predicted
when adjusting the number of PCs used by BrainGENIE, as this can
be relevant for downstream analyses. For example, a study
focused on the frontal-cortical expression of the SCZ risk-gene
complement component 4 (C4A) would favor the 20-PC model
(average CV R2= 0.20, p= 3.8 × 10−7) as it yielded higher
accuracy than the BrainGENIE models with 5-, 10-, and 40 PCs.
Alternatively, an example wherein the 40-PC model yields better
imputation is the frontal cortex expression of Synaptic Ras GTPase
Activating Protein 1 (SYNGAP1), a leading risk gene for autism (CV
R2= 0.17, p= 5.6 × 10−7). Besides recapitulating disease-related
effects with BrainGENIE, it would be valuable to know if disease
status impacts the prediction performance of our models. To test
for disease-related differences in prediction performance, how-
ever, would require paired blood–brain transcriptomes from the
same affected individuals with characteristics that are well-
matched to the distribution of our GTEx training samples; such a
sample, to our knowledge, does not yet exist, highlighting a
critical priority for future research.
We applied statistical corrections to remove effects of age, sex,

and genetic ancestry from the gene-expression data so that
those factors would not systematically bias our models. Still, it is
possible that the characteristics of the GTEx sample are not fully
representative of the entire population. For example, donors in the
GTEx Project were predominantly of European ancestry, hence
limiting the applicability of transcriptome-imputation across
diverse ancestral groups. Amassing large sample sizes that
encompass a broader range of characteristics (e.g., environmental
exposures, genetic background, and demographics, to name a
few) would allow BrainGENIE to make use of more biological
(useful) variability that may help increase the number of
significantly predicted genes and improve variance accounted
for in gene expression levels of target tissues. Increasing sample
ascertainment from diverse human populations, coupled with
deeper phenotyping, are strategic ways to enable more effective
transcriptome-imputation modeling.
In sum, BrainGENIE is a validated approach to investigating

brain region-specific gene-expression profiles. We demonstrated
that gene-expression changes associated with disease and
imputed in the brain by BrainGENIE were in better agreement
(relative to cis-eQTL-based predictions of gene expression by
PrediXcan and to gene-expression changes detected in periph-
eral blood) with corresponding gene-expression changes
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detected in studies of postmortem brain. The main challenge of
transcriptome-imputation is identifying a model and set of
predictor variables that can efficiently and significantly predict
gene-expression levels while ensuring that downstream analyses
of predicted expression levels can yield biologically meaningful
results. PrediXcan and FUSION, respectively, can significantly
predict an average of 18 and 16% of the brain transcriptome
(compared with an average of 40% by BrainGENIE). Those
methods have been successful in identifying novel tissue-
specific dysregulation of gene expression in complex disorders.
A strength of BrainGENIE is that it can capture regulatory impacts
of genetic and non-genetic factors on gene expression that are
not yet modeled by cis-eQTL-based methods. BrainGENIE fills a
void in the study of the brain transcriptome by both allowing
analyses of genes that were not previously imputable and
improving the predictability of disease-relevant gene sets that
PrediXcan can only partially impute.
Though we showed that BrainGENIE has advantages over

conceptually similar methods, our intention is for it to serve as a
complement to genetic-based transcriptome-imputations meth-
ods. In practice, our recommendation would be to integrate
BrainGENIE with other methods, whenever possible, to boost
confidence in gene-disease associations, hence permitting a
deeper understanding of complex phenotypes. As such, Brain-
GENIE offers an important function in systems-level research into
the brain and serves as a valuable hypothesis-generating tool for
mechanistic studies. Potential applications of BrainGENIE are far-
reaching and would be best indicated (relative to PrediXcan and
FUSION) to study gene expression longitudinally, including: across
developmental timepoints of the brain, pre- and post-exposure
(e.g., environmental risks, traumatic life experiences), and
modeling the effects of medication or other clinical interventions.
BrainGENIE also could be used to impute brain region-specific
transcriptomes at any point in a person’s lifetime, opening the
possibility that we could find causal and longitudinal mechanisms
underlying neuropsychiatric disease. The reach of our toolset can
be extended with additional developments to achieve reliable
imputations of cell-type specific transcriptomes, and transcrip-
tomes of other inaccessible tissues, as well as models of
alternatively spliced mRNAs and short and long noncoding RNAs,
all of which are feasible objectives.

DATA AVAILABILITY
Data and source code can be accessed from the following GitHub repository: https://
github.com/hessJ/BrainGENIE.

CODE AVAILABILITY
Data and source code can be accessed from the following GitHub repository: https://
github.com/hessJ/BrainGENIE.
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