
ARTICLE OPEN

Investigating brain aging trajectory deviations in different brain
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magnetic resonance imaging and brain-age prediction: a
multicenter study
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Although many studies on brain-age prediction in patients with schizophrenia have been reported recently, none has predicted
brain age based on different neuroimaging modalities and different brain regions in these patients. Here, we constructed brain-age
prediction models with multimodal MRI and examined the deviations of aging trajectories in different brain regions of participants
with schizophrenia recruited from multiple centers. The data of 230 healthy controls (HCs) were used for model training. Next, we
investigated the differences in brain age gaps between participants with schizophrenia and HCs from two independent cohorts. A
Gaussian process regression algorithm with fivefold cross-validation was used to train 90, 90, and 48 models for gray matter (GM),
functional connectivity (FC), and fractional anisotropy (FA) maps in the training dataset, respectively. The brain age gaps in different
brain regions for all participants were calculated, and the differences in brain age gaps between the two groups were examined.
Our results showed that most GM regions in participants with schizophrenia in both cohorts exhibited accelerated aging,
particularly in the frontal lobe, temporal lobe, and insula. The parts of the white matter tracts, including the cerebrum and
cerebellum, indicated deviations in aging trajectories in participants with schizophrenia. However, no accelerated brain aging was
noted in the FC maps. The accelerated aging in 22 GM regions and 10 white matter tracts in schizophrenia potentially exacerbates
with disease progression. In individuals with schizophrenia, different brain regions demonstrate dynamic deviations of brain aging
trajectories. Our findings provided more insights into schizophrenia neuropathology.
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INTRODUCTION
Schizophrenia is a chronic brain disorder with both positive and
negative symptoms and a global prevalence of approximately 0.7%
[1]. The etiology of schizophrenia remains unclear thus far, and no
effective treatment for completed prevention or alleviation of
schizophrenia is available. Therefore, to further obtain new insights
into the pathogenesis of schizophrenia, many neuroimaging-based
studies have investigated schizophrenia-associated abnormalities in
brain structure and function [2–12]. Individuals with schizophrenia
have many brain regions with a smaller-than-average volume [2–4].
Similarly, abnormalities including cortical thinning in different brain
regions were also observed in these patients [5, 6]. Diffusion tensor
imaging (DTI) studies have reported significant decreases in fractional
anisotropy (FA) values in specific brain regions, including the genu of
the corpus callosum, right forceps minor, left inferior longitudinal
fasciculus, left frontal lobe, and left temporal lobe [7–10]. These
findings suggest that individuals with schizophrenia have abnorm-
alities in white matter integrity. Moreover, resting-state functional

magnetic resonance imaging (fMRI) studies have reported that
compared with healthy controls (HCs), individuals with schizophrenia
have abnormal functional connectivity (FC) in many brain regions
[11, 12]. He and colleagues indicated increased FC in the left insula
and bilateral dorsolateral prefrontal cortex of individuals with
schizophrenia [11]. Moreover, another study indicated that indivi-
duals with schizophrenia have decreased FC within the language
network was found in schizophrenia [12]. These findings jointly
suggest that individuals with schizophrenia have deteriorated
structure and function in various brain regions, which may manifest
as deviations in brain aging trajectories in these brain regions.
With the advancement of artificial intelligence, a neuroimaging-

based brain-age prediction approach has been applied in studies on
neurological and psychiatric disorders, which investigated whether
these diseases cause deviations in brain aging trajectory [13–15]. The
difference (termed the brain age gap) between chronological and
brain ages was calculated. This index is mainly used to examine
whether the neurological and psychiatric disorders of participants are
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associated with accelerated brain aging [13]. Previous studies on
brain-age prediction have also demonstrated that individuals with
schizophrenia exhibit deviations in brain aging trajectories, as
indicated in both T1-weighted magnetic resonance imaging (MRI)
[16–24] and DTI [25, 26] findings. The recent studies used multimodal
MRI to evaluate the brain age gap in patients with schizophrenia and
obtained results consistent with those of studies using a single
neuroimaging modality [27–30].
Compared with HCs, individuals with schizophrenia tend to have a

brain age that is older than their chronological age. However, this
observation has been based on brain-age prediction models
constructed using the whole-brain images and data of each
participant. Few studies on schizophrenia have focused on
constructing brain-age prediction models based on different brain
regions. Kaufmann et al. constructed the regional brain age to assess
the different spatial brain age gap patterns across several brain
disorders. They found that individuals with schizophrenia had the
most pronounced acceleration of brain aging based on the model for
frontal features [20]. Man et al. found that the brain age gap had
negative relationships with brain volume, including subcortical
regions and the prefrontal cortex [21]. Neuroimaging studies have
indicated that schizophrenia affects different brain regions differently
[2–12]. Moreover, structural and functional brain abnormalities
potentially cause deviations in brain aging trajectory [31, 32].
Therefore, the development of brain-age prediction models for
different brain regions using different neuroimaging modalities can
facilitate an examination of how schizophrenia affects different brain
regions, thus yielding more comprehensive insights into the
neuropathology of schizophrenia.
In this study, we (1) constructed brain-age prediction models for

different brain regions that were each based on T1-weighted MRI,
resting-state fMRI, or DTI; (2) examined the impacts of schizo-
phrenia on aging trajectory deviations in different brain regions;
and finally, (3) investigated relationships between clinicodemo-
graphic characteristics (e.g., illness duration, symptom severity,
age of onset, history of nicotine use, body mass index, and
antipsychotic equivalent dosage) and brain age gaps for brain
regions that aged faster than usual.

MATERIALS AND METHODS
Participants
To construct the brain-age prediction models, a total of 230 HCs (mean
age: 43.05 ± 15.59 years [range: 20–84 years]; sex distribution: 93 men and
137 women; mean Mini-Mental State Examination [MMSE] score:
29.00 ± 0.98; mean duration of education: 15.89 ± 3.67 years) from the
discovery cohort “Taiwan Aging and Mental Illness” (TAMI) were recruited
in the training dataset. We also obtained neuroimaging data (i.e., T1-
weighted MRI, resting-state MRI, and DTI data) of 194 participants with
schizophrenia (SCZ dataset) and 100 HCs (HC dataset) from the TAMI
cohort to investigate the differences in brain-age gaps between the two
groups. The HC dataset was also used to examine the reproducibility of our
brain-age prediction models. We incorporated an additional independent
cohort (labeled as the BT cohort), including 50 HCs (BT-HC dataset) and 50
individuals with schizophrenia (BT-SCZ dataset) from the Tri-Service
General Hospital Beitou Branch, for a final test of the model’s performance
and comparison results. The participants with schizophrenia were
diagnosed by two psychiatrists according to the Diagnostic and Statistical
Manual of Mental Disorders, Fourth Edition, Text Revision (DSM-IV-TR). The
participants with mood components (i.e., schizoaffective disorder) and
substance use disorders were excluded. The psychiatrists documented the
participants’ antipsychotic information from their medical records. Anti-
psychotic information was available for only 161 participants with
schizophrenia in the both cohorts. The exclusion criterion for HCs was
receiving a diagnosis of any psychiatric or neurological disease. All
participants were asked to complete the MMSE, which was used to
evaluate their general cognitive abilities [33]. In addition, participants with
schizophrenia received the Positive and Negative Syndrome Scale (PANSS)
to assess the severity of symptoms [34]. All participants provided written
informed consent, and this study was approved by the Institutional Review
Board of Taipei Veterans General Hospital.

Image acquisition
The MRI data of all participants were obtained on a 3T MRI scanner
(Siemens Magnetom Tim Trio, Erlangen, Germany) equipped with a 12-
channel head coil at National Yang Ming Chiao Tung University. The
scanning protocols were consistent with those in our previous studies
[35–37]. Details of T1-weighted MRI, resting-state MRI, and DTI scanning
protocols are provided in the supplementary material.

Image preprocessing
Gray matter map construction. We used Statistical Parametric Mapping
(SPM) 12 and the DPABI toolbox [38] running in MATLAB R2022a
(MathWorks, Natick, MA, USA) to preprocess the raw T1-weighted MRI
and raw resting-state fMRI data of each participant. For the T1-weighted
MRI data, preprocessing proceeded as follows: (1) we reoriented images
manually based on the anterior commissure-posterior commissure (AC-PC)
line; (2) we normalized all images to the MNI152 standard space and
segmented them into gray matter (GM), white matter, and cerebrospinal
fluid regions; and (3) we used the automated anatomical labeling (AAL)
[39] atlas to further segment the GM images and obtain 90 GM maps for
each participant (Fig. 1A).

FC map construction
We preprocessed the raw resting-state fMRI data per the following steps.
First, we removed the first five data points. Second, we corrected all images
by slice-timing, realigning, and manually reorienting images. Third, we
coregistered the reoriented images with T1-weighted images, normalized to
the MNI152 standard space, and resampled them to a 3 × 3 × 3mm3 voxel.
Fourth, we regressed out covariates, including those pertaining to the time
courses of 6 head motions, white matter, and cerebrospinal fluid. Finally, we
also performed temporal lowpass filtering (0.01–0.1 Hz).
Subsequently, we calculated the average voxel-wised FC using the

Pearson’s correlation coefficient (r) between the blood-oxygen-level-
dependent time series of each voxel. We also applied Fisher’s z
transformation to improve the normality of the data [40, 41]. Finally, we
acquired 90 FC maps for each participant by applying the AAL atlas [39] to
segment the participants’ images (Fig. 1A).

FA map construction
We used the FMRIB Software Library v6.0 (FSL) [42] to construct the FAmaps.
The preprocessing steps were as follows. (1) the eddy currents and
movements in the raw DTI data were corrected by the eddy tool [43]; (2)
data on the brain tissues were extracted, and data on the nonbrain tissue
were removed using the brain extraction tool [44]; (3) FA images were
created by fitting the eddy-corrected data into a tensor model at each voxel;
(4) the FMRIB58_FA standard-space image was selected as the target to
register and align all FA images [45]; and (5) all FA images were normalized to
the MNI152 standard space and segmented into 48 FA maps for each
participant on the basis of the JHU-ICBM-Labels-1mm atlas (Fig. 1A).

Features selection
In order to reduce the irrelevant or partially relevant features, which
might negatively impact model performance (e.g., overfitting to the
training data) [46, 47], we performed a feature selection procedure for
the training dataset of multimodal MRI data in our study. To identify the
set of key voxels with the strongest correlations with chronological age
in each brain region in all maps (i.e., the 90 GM, 90 FC, and 48 FA maps)
for use as the key features, we first randomly selected half of the
participants in the training dataset to calculate the Pearson’s correlation
coefficient (r) between each voxel of different brain regions (i.e., 90 GM
and 90 FC maps) and white matter tracts (i.e., 48 FA maps) and
chronological age; this step was repeated 100 times. Next, we refined
the intersection of 50% of the voxels with the highest r value with
chronological age in the 100 trials as the key voxels. We then repeated
the preceding two steps 100 times to obtain 100 sets of key voxels.
Finally, we selected the key voxels that were selected >10 times as the
key features of each brain region. Consequently, we established a set of
features in 90 GM, 90 FC, and 48 FA maps to construct a predictive
model of brain age in different brain regions (Fig. 1B).

Brain age prediction and brain age gap calculation
The Gaussian process regression algorithm [24, 48–51] with fivefold cross-
validation was used to train and assess the 90, 90, and 48 models for GM,
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Fig. 1 Flow of data processing and brain-age prediction model construction. A Illustration of neuroimaging preprocessing steps for T1-
weighted MRI, fMRI, and DTI. After data preprocessing, we obtained 90 GM, 90 FC, and 48 FA maps for subsequent analysis. B After extracting
voxels highly correlated with chronological age for each map as features, we used the Gaussian process regression algorithm to train 228
brain-age prediction models and calculated the MAEs and Pearson’s correlation coefficient between corrected brain ages and chronological
ages to evaluate our models’ performance. The HC and BT-HC datasets were also used to examine the reproducibility of our brain-age
prediction models. C The trained models were applied to the HC, SCZ, BT-HC, and BT-SCZ datasets to estimate brain ages and calculate brain-
age gaps. Finally, ANCOVA was used to examine the differences in brain age gaps between participants with schizophrenia and HCs for
different brain regions in the TAMI and BT cohorts, respectively. DTI diffusion tensor imaging, GM gray matter, WM white matter, FC functional
connectivity, FA fractional anisotropy, AAL automated anatomical labeling, MAE mean absolute error, SCZ individuals with schizophrenia, HCs
healthy controls, BAG brain age gap, TAMI Taiwan Aging and Mental Illness, BT Tri-Service General Hospital Beitou Branch.
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FC, and FA maps in the training dataset, respectively. We also applied the
trained models to the HC and BT-HC datasets to evaluate reproducibility
and predict brain ages in all participants with schizophrenia. To eliminate
bias, we corrected all predicted brain ages using the following formulas
[52]:

Brain age ¼ α ´ chronological ageþ β

The coefficient α represents the slope and β represents the intercept. This
brain age was then corrected as follows:

Corrected brain age ¼ brain ageþ ½chronologica age� ðα ´ chronological ageþ βÞ�

We calculated the mean absolute error (MAE) and Pearson’s correlation
coefficient (r) between corrected brain age and chronological age to assess
the performance of all models (Fig. 1B). The brain age gaps in different
brain regions for the TAMI cohort (194 participants with schizophrenia and
100 HCs) and BT cohort (50 participants with schizophrenia and 50 HCs)
were calculated as follows (Fig. 1C):

Brain age gap ¼ corrected brain age� chronological age

Statistical analysis
Independent t test and Chi-square test were used for the statistical
analyses of continuous and categorical clinicodemographic variables,
respectively. The P value was set at 0.05.
We used analysis of covariance (ANCOVA) to examine the differences in

the brain age gaps between participants with schizophrenia and HCs in the
TAMI and BT cohorts, with chronological age, sex, MMSE score, and
duration of education as the covariates. Moreover, the false discovery rate
(FDR) method was used to correct P values for multiple comparisons [53].
After FDR correction, the significance level was set at 0.05. The partial eta-
squared (partial η2) values were calculated as effect size measures. The
BrainNet Viewer (http://www.nitrc.org/projects/bnv/) was used for result
visualizations [54].
After comparing the brain age gaps between the two groups, we

performed a multiple regression analysis for brain regions that aged faster
than usual. In each regression model, the dependent variable was brain
age gaps for a given brain region; the independent variables were
clinicodemographic characteristics, including PANSS subscale scores (for
positive symptoms, negative symptoms, and general psychopathology
symptoms), illness duration, age of onset, history of nicotine use, and body
mass index; and the control variables were chronological age and sex. In
addition, after excluding participants without any antipsychotic informa-
tion and controlling for chronological age and sex, we used a regression
analysis to investigate the association between brain age gaps and
chlorpromazine (CPZ) equivalent dosage. Finally, the FDR method was
used to control for differences in the comparison procedures.

RESULTS
Participants’ clinicodemographic characteristics
In the TAMI cohort, the differences between the SCZ dataset
(n= 194) and the HC dataset (n= 100) were nonsignificant in
terms of age (P= 0.48) and sex (P= 0.24). Compared with the HC
dataset, the SCZ dataset had worse MMSE scores and shorter
durations of education (both P < 0.001). Similar to the TAMI cohort,
the BT cohort had nonsignificant age (P= 0.11) and sex (P= 0.69)
differences between the two groups. Moreover, the BT-HC dataset
had a longer duration of education and MMSE score than did the
BT-SCZ dataset (both P < 0.001). Table 1 details additional
clinicodemographic information in the two datasets.

Brain-age prediction model performance
In total, 228 brain-age prediction models (i.e., 90 models for GM
map, 90 models for FC map, and 48 models for FA map) were
trained using the Gaussian process regression algorithm with
fivefold cross-validation. In the 90 models for GM map, the results
showed consistent MAEs (mean MAE: 6.00 ± 0.38 years, range:
3.90–6.65 years) and strong correlations (mean r= 0.90 ± 0.01,
range: 0.88–0.95) between the corrected brain and chronological

ages (Supplementary Table 1). In the 90 models for FC map, the
results revealed that corrected brain ages had strong correlations
(mean r= 0.97 ± 0.01, range: 0.94–0.99) with chronological ages
and low MAEs (mean MAE: 3.28 ± 0.78 years, range: 0.85–4.64
years; Supplementary Table 2). In the 48 models for FA map, we
noted consistent MAEs (mean MAE: 5.38 ± 0.70 years, range:
2.55–6.24 years) and strong linear correlations (mean
r= 0.92 ± 0.02, range: 0.89–0.98) between corrected brain and
chronological ages (see Supplementary Table 3 for more details).
We then applied 228 trained models to the HC and BT-HC

datasets to verify the reproducibility of the predictions; the results
were similar to those of the training dataset (Supplementary
Tables 1–3): In the 90 GM, 90 FC, and 48 FA map models, the mean
(range) MAEs were, respectively, 6.49 ± 0.64 (4.52–7.86),
3.35 ± 0.81 (1.09–5.52), and 5.63 ± 0.93 (2.98–7.55) years for the
HC dataset and 6.15 ± 0.70 (3.78–7.59), 3.91 ± 0.79 (1.89–5.84), and
5.19 ± 0.98 (2.61–7.25) years for the BT-HC dataset; moreover, the
mean (range) r was, respectively, 0.88 ± 0.02 (0.83–0.94),
0.96 ± 0.02 (0.91–0.99), and 0.92 ± 0.03 (0.86–0.98) for the HC
dataset and 0.89 ± 0.03 (0.83–0.95), 0.95 ± 0.02 (0.92–0.99), and
0.91 ± 0.03 (0.83–0.98) for the BT-HC dataset. These results
indicated the reliability and consistency of our brain-age predic-
tion models across the different cohorts.

Comparison of brain age gaps across different brain regions
between groups
In the 90 models for GM map, our results revealed that the
participants with schizophrenia had significantly larger brain age
gaps than did the HCs in most brain regions after FDR correction
in the two cohorts. Of the 90 brain regions, 71 and 66 had
significantly larger brain age gaps in the TAMI and BT cohorts,
respectively (Fig. 2 and Supplementary Table 4). Of the top 20
brain regions with the largest brain age gap in the TAMI and BT
cohorts, 10 of the following brain regions were identified in both
the cohorts: the left insula (TAMI cohort: adjusted P < 0.001, partial
η2= 0.08; BT cohort: adjusted P= 0.002, partial η2= 0.14), right
insula (TAMI cohort: adjusted P < 0.001, partial η2= 0.06; BT
cohort: adjusted P < 0.001, partial η2= 0.20), opercular part of
right inferior frontal gyrus (TAMI cohort: adjusted P < 0.001, partial
η2= 0.07; BT cohort: adjusted P < 0.001, partial η2= 0.21), orbital
part of left inferior frontal gyrus (TAMI cohort: adjusted P < 0.001,
partial η2= 0.07; BT cohort: adjusted P= 0.001, partial η2= 0.16),
left rolandic operculum (TAMI cohort: adjusted P < 0.001, partial
η2= 0.06; BT cohort: adjusted P= 0.001, partial η2= 0.15), medial
part of left superior frontal gyrus (TAMI cohort: adjusted P < 0.001,
partial η2= 0.06; BT cohort: adjusted P= 0.002, partial η2= 0.13),
medial orbital part of right superior frontal gyrus (TAMI cohort:
adjusted P < 0.001, partial η2= 0.09; BT cohort: adjusted P= 0.002,
partial η2= 0.13), right superior temporal gyrus (TAMI cohort:
adjusted P= 0.001, partial η2= 0.05; BT cohort: adjusted P= 0.002,
partial η2= 0.13), temporal poles of left superior temporal gyrus
(TAMI cohort: adjusted P < 0.001, partial η2= 0.08; BT cohort:
adjusted P= 0.002, partial η2= 0.13), and temporal poles of right
superior temporal gyrus (TAMI cohort: adjusted P < 0.001, partial
η2= 0.07; BT cohort: adjusted P= 0.002, partial η2= 0.13).
The results for 90 models for FC map showed a trend toward

greater brain age gaps in the right middle frontal gyrus, the
triangular part of the left inferior frontal gyrus, the left
supplementary motor area, bilateral parahippocampal gyri, left
pallidum, left superior temporal gyrus, and temporal pole of
bilateral middle temporal gyri in the participants with schizo-
phrenia compared with HCs in the TAMI cohort. The results for the
BT cohort revealed a tendency to increase brain age in the
dorsolateral part of the left superior frontal gyrus in patients with
schizophrenia relative to the HCs. However, the differences
between the two groups in the TAMI and BT cohorts after the
FDR correction were nonsignificant (Supplementary Fig. 1 and
Supplementary Table 5).
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For the TAMI and BT cohorts in the 48 models for FA map, the
participants with schizophrenia and HCs significantly differed in the
aging trajectory of 15 and 33 white matter tracts, respectively (Fig. 3
and Supplementary Table 6). We identified the largest brain age gap
in the TAMI and BT cohorts in the 10 followingwhitematter tracts: the
middle cerebellar peduncle (TAMI cohort: adjusted P < 0.001, partial
η2= 0.09; BT cohort: adjusted P= 0.002, partial η2= 0.12), body of
corpus callosum (TAMI cohort: adjusted P= 0.05, partial η2= 0.02; BT
cohort: adjusted P < 0.001, partial η2= 0.21), fornix column and body
of fornix (TAMI cohort: adjusted P= 0.006, partial η2= 0.04; BT cohort:
adjusted P= 0.002, partial η2= 0.12), left cerebral peduncle (TAMI
cohort: adjusted P= 0.05, partial η2= 0.02; BT cohort: adjusted
P= 0.001, partial η2= 0.14), bilateral anterior limb of internal capsule
(left: TAMI cohort: adjusted P= 0.05, partial η2= 0.02; BT cohort:
adjusted P= 0.02, partial η2= 0.06. right: TAMI cohort: adjusted
P= 0.02, partial η2= 0.03; BT cohort: adjusted P= 0.02, partial
η2= 0.06), left posterior thalamic radiation (TAMI cohort: adjusted
P= 0.05, partial η2= 0.02; BT cohort: adjusted P= 0.03, partial
η2= 0.06), right sagittal stratum (TAMI cohort: adjusted P= 0.03,
partial η2= 0.03; BT cohort: adjusted P= 0.006, partial η2= 0.09),
right cingulum (hippocampus) (TAMI cohort: adjusted P= 0.02,
partial η2= 0.03; BT cohort: adjusted P= 0.04, partial η2= 0.05),
and right fornix cres/stria terminalis (TAMI cohort: adjusted P= 0.01,
partial η2= 0.04; BT cohort: adjusted P= 0.004, partial η2= 0.11).

Association of deviated brain aging trajectories with
clinicodemographic characteristics across different brain
regions in participants with schizophrenia
We performed multiple regression analysis to further investigate
the relationships between brain regions demonstrating

accelerated aging and clinicodemographic characteristics of the
participants with schizophrenia. The results suggested that illness
duration was positively correlated with brain age gaps in 22 GM
regions and 10 white matter tracts: bilateral insula (left: beta =
0.23, T= 3.16, adjusted P= 0.009; right: beta = 0.28, T= 3.56,
adjusted P= 0.004), bilateral posterior cingulate gyri (left: beta =
0.25, T= 3.56, adjusted P= 0.005; right: beta = 0.21, T= 3.20,
adjusted P= 0.008), temporal poles of bilateral superior temporal
gyri (left: beta = 0.31, T= 4.11, adjusted P= 0.004; right: beta =
0.28, T= 3.97, adjusted P= 0.003), orbital part of bilateral inferior
frontal gyri (left: beta = 0.26, T= 3.43, adjusted P= 0.006; right:
beta = 0.28, T= 3.91, adjusted P= 0.002), bilateral lingual gyrus
(left: beta = 0.28, T= 3.74, adjusted P= 0.004; right: beta = 0.20,
T= 2.74, adjusted P= 0.024), orbital part of left superior frontal
gyrus (beta = 0.19, T= 3.07, adjusted P= 0.010), left rolandic
operculum (beta = 0.30, T= 3.39, adjusted P= 0.006), right
hippocampus (beta = 0.22, T= 2.97, adjusted P= 0.013), left
parahippocampal gyri (beta = 0.25, T= 3.27, adjusted P= 0.007),
left amygdala (beta = 0.30, T= 4.11, adjusted P= 0.002), left
calcarine fissure and surrounding cortex (beta = 0.22, T= 3.38,
adjusted P= 0.006), right cuneus (beta = 0.20, T= 3.21, adjusted
P= 0.008), left middle occipital gyrus (beta = 0.25, T= 3.10,
adjusted P= 0.009), right postcentral gyrus (beta = 0.25, T= 3.57,
adjusted P= 0.005), left superior temporal gyrus (beta = 0.27,
T= 3.61, adjusted P= 0.005), left middle temporal gyrus (beta =
0.25, T= 3.11, adjusted P= 0.009), temporal pole of left middle
temporal gyrus (beta = 0.21, T= 3.31, adjusted P= 0.007), middle
cerebellar peduncle (beta = 0.16, T= 2.58, adjusted P= 0.020),
body of corpus callosum (beta = 0.28, T= 4.94, adjusted
P < 0.001), right inferior cerebellar peduncle (beta = 0.12,

Table 1. Clinicodemographic characteristics of individuals with schizophrenia and HCs in two cohorts.

Characteristics TAMI cohort BT cohort

SCZ dataset
(n= 194)

HC dataset
(n= 100)

Statistic
(t or χ2)

P BT-SCZ
dataset
(n= 50)

BT-HC
dataset
(n= 50)

Statistic
(t or χ2)

P

Age, year 43.25 ± 11.93 44.49 ± 15.22 0.71 0.48a 47.64 ± 10.42 43.66 ± 13.64 –1.64 0.11a

Age of onset, year 27.68 ± 9.35 – – – – – –

Sex

Male, n (%) 85 (43.8%) 36 (39.1%) 1.36 0.24b 21 (42%) 24 (48%) 0.16 0.69b

Female, n (%) 109 (56.2%) 64 (60.9%) 29 (58%) 26 (52%)

Education level, year 12.50 ± 3.55 15.78 ± 4.26 6.98 <0.001a 12.08 ± 2.86 14.62 ± 2.48 4.75 <0.001a

MMSE 26.81 ± 3.39 28.87 ± 1.10 7.70 <0.001a 25.58 ± 4.18 28.94 ± 1.36 5.40 <0.001a

Duration of
illness, year

15.56 ± 10.30 – – – 24.20 ± 8.62 – – –

PANSS score

Total 42.04 ± 10.76 – – – 73.16 ± 15.77 – – –

Positive symptoms 10.74 ± 3.37 – – – 18.14 ± 5.49 – – –

Negative symptoms 10.04 ± 3.76 – – – 19.42 ± 6.19 – – –

General
psychopathology
symptoms

21.26 ± 5.18 – – – 35.60 ± 7.49 – – –

CPZ equivalent
dosagec

402.42 ± 324.27 – – – – – – –

History of nicotine use,
n (%)

65 (33.5%) 12 (12.0%) 14.27 <0.001b 17 (34%) 3 (6%) 10.56 0.001b

Body mass index 25.10 ± 4.40 23.35 ± 3.25 3.88 <0.001a 25.44 ± 4.92 24.42 ± 3.27 1.22 0.23a

TAMI Taiwan Aging and Mental Illness, BT Tri-Service General Hospital Beitou Branch, SCZ individuals with schizophrenia, HC healthy controls, MMSE Mini-
Mental State Examination, PANSS Positive and Negative Syndrome Scale, CPZ chlorpromazine.
aIndependent t test, significance level = 0.05.
bχ2 test, significance level = 0.05.
cOnly 161 participants with schizophrenia had verified medication records in the TAMI cohort.
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T= 3.20, adjusted P= 0.005), left cerebral peduncle (beta = 0.26,
T= 3.92, adjusted P= 0.001), bilateral posterior corona radiata
(left: beta = 0.17, T= 3.30, adjusted P= 0.007; right: beta = 0.17,
T= 3.59, adjusted P= 0.003), left sagittal stratum (beta = 0.18,
T= 3.80, adjusted P= 0.002), bilateral fornix cres/stria terminalis
(left: beta = 0.22, T= 4.41, adjusted P < 0.001; right: beta = 0.18,
T= 3.23, adjusted P= 0.005), and right tapetum (beta = 0.14,
T= 3.25, adjusted P= 0.006) (Fig. 4).
For the result of age of onset, we found that the age of onset of

individuals with schizophrenia had a negative association with the
brain age gaps in four white matter tracts, including middle
cerebellar peduncle (beta=−0.18, T=−3.41, adjusted P= 0.01),
splenium of corpus callosum (beta=−0.18, T=−2.88, adjusted
P= 0.05), right cerebral peduncle (beta=−0.18, T=−2.76,
adjusted P= 0.05), and left cerebral peduncle (beta=−0.21,
T=−3.76, adjusted P= 0.01).
With regard to symptom severity, nonsignificant associations

between PANSS subscale scores and brain age gaps were noted.
In addition, our results revealed that CPZ dosages, history of
nicotine use, and body mass index had no significant correlations
with brain age gaps.

DISCUSSION
To the best of our knowledge, this is the first study to construct
brain-age prediction models based on multimodal MRI data for
different brain regions of individuals with schizophrenia and
quantify their brain aging trajectory deviations. The data were also
derived from cohorts from multiple centers. Individuals with
schizophrenia exhibited accelerated aging in brain structures
based on GM and FA maps in both the cohorts. Moreover, the
brain aging trajectory deviations varied among the brain regions.
However, the brain-age prediction models based on FC maps
indicated that the brain aging trajectories in the different brain
regions of these individuals were similar to those of HCs. In
addition, the large brain age gaps in 22 GM regions and 10 white
matter tracts in individuals with schizophrenia increased with the
progression of the illness.
Our results showed that the individuals with schizophrenia had

accelerated aging in most brain regions in models for GM map,
with the most considerable deterioration occurring primarily in
the frontal lobe, temporal lobe, and insula. Shahab et al.
suggested that the most severe brain structural abnormalities
related to schizophrenia mainly occurred in the frontotemporal

Fig. 2 Group differences in brain age gaps between participants with schizophrenia and HCs in 90 models for GM map in the two
cohorts. A Subplot A illustrates the brain regions with significantly accelerated aging and the effect sizes in participants with schizophrenia in the
TAMI cohort. B Subplot B presents the brain regions with significantly accelerated aging and effect sizes in participants with schizophrenia in the
BT cohort. The brain regions in the left panel display significant differences in brain age gaps after FDR correction in the TAMI and BT cohorts. The
color bar represents effect size (partial η2). The right panel presents bar charts of effect sizes (partial η2 values) for brain regions with significant
differences. The brain regions corresponding to the AAL number are presented in Supplementary Table 4. Participants with schizophrenia had
significant brain aging trajectory deviations in 71 of the 90 models for GM map in the TAMI cohort. Moreover, 66 brain regions had significantly
larger brain age gaps in participants with schizophrenia than in HCs in the BT cohort. We found 10 brain regions with the most pronounced
deterioration in both cohorts, occurring primarily in the frontal lobe, temporal lobe, and insula (see Supplementary Table 4). TAMI Taiwan Aging
and Mental Illness, BT Tri-Service General Hospital Beitou Branch, FDR false discovery rate, AAL automated anatomical labeling.
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regions [27]. Chen et al. found that cortical thickness significantly
contributes to normalized predicted age differences in schizo-
phrenia in the frontal lobe, bilateral precunei, middle temporal
gyri, temporal poles, lateral orbitofrontal gyri, and superior parietal
gyri [28]. Man et al. found that the subcortical regions and medial
and lateral prefrontal cortices had the most significant negative
correlations between GM volume and the brain age gap [21].
Kaufmann et al. found that among the different brain regions, the
frontal lobe of individuals with schizophrenia had the most
pronounced acceleration of brain aging [20]. Zhu et al. revealed
that individuals with schizophrenia had significantly larger brain
age gaps than those of healthy controls across different durations
of illness in the brain volume and cortical thickness models [30].
Neuroimaging-based studies have indicated that GM volume
abnormalities mainly occur in the insular cortex, temporal poles,
middle cingulum, thalamus, and orbital part of inferior and middle
frontal gyri in individuals with schizophrenia [55–57]. The results
of a meta-analysis demonstrated that patients with schizophrenia
have medium-size volume reductions in bilateral insula, particu-
larly in the anterior insular subregion [58]. These structural
imaging-based findings were consistent with our results. These
findings jointly suggest that the brain age gap can effectively
reflect schizophrenia-related deterioration in brain structure.

Moreover, the disease-related structural alteration in the frontal
lobe, temporal lobe, and insula may play a critical role in
schizophrenia.
Recent studies of brain-age prediction models based on FC

maps have focused on participants with preclinical Alzheimer
disease and estimated their brain aging trajectory [50, 59]. No
study has constructed brain-age prediction models based on FC
maps for individuals with schizophrenia. This is the first study to
train a machine learning model to predict brain age in individuals
with schizophrenia based on FC maps. Although the individuals
with schizophrenia exhibited no significantly accelerated brain
aging in the 90 models for FC map, we found similar trends in the
frontal and temporal lobes; this was similar to the results of our
models for GM map. A multimodal MRI study observed accelera-
tion of brain age in young patients with schizophrenia and
reported that several brain regions, including the temporal lobe,
insula, and parietal lobe, are crucial features in a brain-age
prediction model. Different from this study, that study extracted
the amplitude of low frequency fluctuation (ALFF), regional
homogeneity (ReHo), and degree centrality (DC) values, rather
than FC. Therefore, future studies to extract more parameters,
including ALFF, ReHo, DC, complexity, and phase coherence to
train and predict brain age in schizophrenia, were suggested for

Fig. 3 Group differences in brain-age gaps between participants with schizophrenia and HCs in 48 models for FA map in the two cohorts.
A Subplot A illustrates the white matter tracts with significantly accelerated aging and the effect sizes in participants with schizophrenia in the
TAMI cohort. B Subplot B presents the white matter tracts with significantly accelerated aging and effect sizes in participants with
schizophrenia in the BT cohort. The white matter tracts in the left panel indicate significant differences in brain age gaps after FDR correction
in the TAMI and BT cohorts. The color bar represents effect size (partial η2). The right panel illustrates bar charts of effect sizes (partial η2
values) for white matter tracts with significant differences. The white matter tracts corresponding to the JHU-ICBM-Label number are
presented in Supplementary Table 6. Participants with schizophrenia had significantly larger brain age gaps in 15 of the 48 models for FA map
in the TAMI cohort. Moreover, 33 white matter tracts had significantly larger brain age gaps in participants with schizophrenia than in HCs in
the BT cohort (see Supplementary Table 6). FA fractional anisotropy, TAMI Taiwan Aging and Mental Illness, BT Tri-Service General Hospital
Beitou Branch, FDR false discovery rate.
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providing a more comprehensive understanding of disease-
related changes in brain function [29].
Our 48 models for FA map detected 15 white matter tracts that

exhibited deviating aging trajectories in the TAMI cohort and 33
white matter tracts that exhibited larger brain age gaps than HCs
in the BT cohort. Huang et al. extracted the FA values of the fornix
column and body of fornix, splenium of corpus callosum, left
superior longitudinal fasciculus, and left superior corona radiata as
the major features in their prediction model and found that young
patients with schizophrenia had aberrant brain aging trajectories
[29]. Brain-age studies have indicated that individuals with
schizophrenia had a brain age that was older than those of HCs
in the FA-based model [25, 26]. Our recent study suggested that
there were nonsignificant differences in the global brain age gap
between participants with schizophrenia and healthy controls
across different illness durations in the FA model [30]. The possible
reason is that computing the global brain age gap might reduce
the sensitivity for detecting the deviation of aging trajectories of
individual white matter tracts. Similar to our findings, several DTI
studies have demonstrated that individuals with schizophrenia
have lower FA values in the genu and body of corpus callosum,
internal capsule, fornix, anterior and superior corona radiata, and
cingulum, as found in our findings [60, 61]. The fornix and
cingulum (hippocampus), connected to the hippocampus, play
essential roles in memory, and patients with neurodegenerative
and psychiatric disorders exhibit abnormalities in these regions
[62, 63]. In the present study, the middle cerebellar peduncle of
the individuals with schizophrenia in both the TAMI and BT
cohorts had a relatively older brain age—suggesting that
schizophrenia also results in white matter deterioration in the
cerebellum, as noted in previous neuroimaging studies [64, 65].
Studies have revealed that the disconnection between the
cerebrum and cerebellum might result in FA reduction in the
middle cerebellar peduncle along with cognitive impairments in
individuals with schizophrenia [64, 65]. Thus, our findings
suggested that cerebrocerebellar connectivity disruptions might
be involved in the neuropathology of schizophrenia.
Our results indicated that in individuals with schizophrenia,

brain aging accelerated with disease progression in 22 brain
regions, including the frontal lobe, temporal lobe, parietal lobe,
occipital lobe, insula, and subcortical regions; 10 white matter
tracts, including the cerebrum and cerebellum, also demonstrated
brain aging exacerbation with disease progression. In the TAMI
cohort, schizophrenia duration was 15.56 (range, 0–38) years,
whereas it was 24.20 (range, 10–45) years in the BT cohort; this
might further explain the larger effect sizes in the BT cohort in our
GM and FA map models compared with the TAMI cohort. In

addition, compared with the TAMI cohort, the BT cohort had more
white matter tracts that exhibited aging trajectory deviations. A
recent meta-analysis found that compared with those with first-
episode schizophrenia, patients with chronic schizophrenia
exhibited cortical thinning in the right insula, orbital part of the
right inferior frontal gyrus, left lateral middle temporal cortex, and
right temporal pole [66]. DTI studies have demonstrated that
compared with HCs, individuals with chronic schizophrenia, but
not those with first-episode schizophrenia, have lower FA values
relative to healthy individuals [8–10]; these results are consistent
with ours. In our study, most brain regions exhibited brain aging
acceleration in individuals with schizophrenia, but only 22 brain
regions and 10 white matter tracts had positive associations with
illness duration. In previous studies, brain age gap was non-
significantly correlated with illness duration because the studies
did not construct brain-region-differentiated prediction models of
brain age [18, 26, 28].
Our results suggested that individuals with early-onset schizo-

phrenia might have greater deterioration of specific white matter
tracts than those of individuals with late-onset schizophrenia. Our
findings were similar to a recent brain-age prediction study. Chen
et al. found that individuals with schizophrenia had a negative
relationship between normalized predicted age difference and the
age of onset based on the model for white matter [28]. The onset
of individuals with schizophrenia often occurs before the full
maturation of white matter and is considered a neurodevelop-
mental disorder [67]. Previous studies found that participants at
ultra-high risk of psychosis who later developed psychosis had
greater abnormalities of white matter integrity than those who did
not transit to psychosis [68, 69]. These findings of an onset-related
deterioration in FA indicated that psychosis might result from a
stall in white matter maturation [68–70].
The main strength of the current study is the development of

brain-age prediction models for different brain regions based on
data from T1-weighted MRI, resting-state fMRI, and DTI. Here, we
also included two different cohorts to validate and test our
models and results. Our methodology could quantify the
structural and functional decline of different brain regions in
individuals with schizophrenia and provide personalized quanti-
fication for clinical explainability. For clinical applications of brain-
age prediction in neuropsychiatric disorders, the brain age gap
could also serve as an indicator for psychiatrists to assess
treatment effects (e.g., whether the brain age gap decreases
after the patients receive the treatment). In addition, as opposed
to the more abstract concepts of psychiatric disorders and
symptoms, the brain-age prediction approach provides patients
with a more straightforward understanding of their disease and

Fig. 4 Association of illness duration with brain age gaps across different brain regions in participants with schizophrenia. A There were
significantly positive correlations between illness duration and brain age gaps in 22 brain regions. B Ten white matter tracts were positively
associated with illness duration.

J.-D. Zhu et al.

8

Translational Psychiatry           (2023) 13:82 



treatment progression, which may further improve their treat-
ment compliance and insight. Therefore, brain-age prediction is a
promising and innovative approach for diagnosing and assessing
the course and treatment responses of psychiatric disorders,
which could be effectively used in clinical practice. More relevant
studies and feasibility studies of brain-age applications in clinical
settings are needed in the future.
The limitations of this study are as follows. First, we used a

cross-sectional design to construct the brain-age prediction
models and examine the brain age gap in our participants with
schizophrenia. Nevertheless, future studies should collect long-
itudinal data to train and validate these brain-age prediction
models to more comprehensively understand brain aging
trajectories in schizophrenia. Second, our results showed that
brain age gaps are nonsignificantly associated with CPZ dosage
regardless of brain region. However, antipsychotics might
influence brain structure and function in individuals with
schizophrenia. In addition, understanding the effects of antipsy-
chotics on brain age is warranted. Third, we only performed the
MMSE to assess the overall cognitive function of participants.
Previous studies have shown that the increased brain age gap was
significantly associated with cognitive decline, including semantic
verbal fluency, processing speed, visual attention, cognitive
flexibility, spatial Stroop, and symbol coding [71, 72]. However,
there were no significant associations between MMSE score and
brain gap gaps of all models in both cohorts after performing
Pearson’s r correlation analysis and FDR correction (see Supple-
mentary Tables 7–9 for more details). A possible reason is that
there was a significant ceiling effect of MMSE, which limited the
sensitivity of MMSE in assessing overall cognitive function [73].
Including more cognitive assessments to investigate the relation-
ship between cognitive function and the brain age gap was
needed in future studies. Last, since this study was a retrospective
study, some clinical factors (e.g., the number of acute episodes/
relapses, the number of admissions, socio-occupational functions,
and so on) of individuals with schizophrenia could not be further
analyzed because these clinical factors were not recorded. Future
studies should collect more detailed clinicodemographic data and
investigate the associations between these factors and brain age
gaps, which might provide more valuable clinical information and
applications.
In conclusion, this is the first study to establish brain-age

prediction models for different brain regions in individuals with
schizophrenia through multimodal MRI. We noted that most GM
regions in individuals with schizophrenia exhibit accelerated
aging, particularly in the frontal lobe, temporal lobe, and insula
and that parts of the white matter tracts, including the cerebrum
and cerebellum, demonstrate aging trajectory deviations in
individuals with schizophrenia. Notably, the accelerated aging of
specific brain regions and white matter tracts worsens with the
advancement of illness duration. Moreover, four white matter
tracts had negative associations with the age of onset of
individuals with schizophrenia. The different brain regions of
individuals with schizophrenia differ in their deviations of aging
trajectories. By constructing brain-age prediction models for
different brain regions, we could quantify the structural and
functional deterioration of different brain regions and white
matter tracts in schizophrenia. In addition, our methodology could
examine the effects of schizophrenia on the dynamics in different
brain regions and provide personalized quantification for clinical
explainability.
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