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The 15q11.2 BP1-BP2 copy number variant (CNV) is associated with altered brain morphology and risk for atypical development,
including increased risk for schizophrenia and learning difficulties for the deletion. However, it is still unclear whether differences in
brain morphology are associated with neurodevelopmental or neurodegenerative processes. This study derived morphological
brain MRI measures in 15q11.2 BP1-BP2 deletion (n= 124) and duplication carriers (n= 142), and matched deletion-controls
(n= 496) and duplication-controls (n= 568) from the UK Biobank study to investigate the association with brain morphology and
estimates of brain ageing. Further, we examined the ageing trajectory of age-affected measures (i.e., cortical thickness, surface area,
subcortical volume, reaction time, hand grip strength, lung function, and blood pressure) in 15q11.2 BP1-BP2 CNV carriers
compared to non-carriers. In this ageing population, the results from the machine learning models showed that the estimated brain
age gaps did not differ between the 15q11.2 BP1-BP2 CNV carriers and non-carriers, despite deletion carriers displaying thicker
cortex and lower subcortical volume compared to the deletion-controls and duplication carriers, and lower surface area compared
to the deletion-controls. Likewise, the 15q11.2 BP1-BP2 CNV carriers did not deviate from the ageing trajectory on any of the age-
affected measures examined compared to non-carriers. Despite altered brain morphology in 15q11.2 BP1-BP2 CNV carriers, the
results did not show any clear signs of apparent altered ageing in brain structure, nor in motor, lung or heart function. The results
do not indicate neurodegenerative effects in 15q11.2 BP1-BP2 CNV carriers.
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INTRODUCTION
The human brain undergoes structural changes as people age,
including cortical thinning and volume loss [1–4]. Such age-related
changes in brain morphology have been linked to cognitive
decline [5, 6] and physical deterioration [7], and are presumably
the results of a complex interplay between many neurobiological
processes, including links to genetic factors [8–10]. Ageing affects
individuals differently as reflected in increased heterogeneity in
brain structure and cognition in mid to late adulthood [11]. In the
last couple of decades, several potential age biomarkers have
been investigated, e.g., through the use of measures of telomere
length, DNA methylation [12–14] and brain structure.
Studies have used machine learning (ML) techniques to predict

chronological age by using structural MRI measures as input
features [15–17]. The estimations provide a measure of an
individual’s brain age gap, i.e., the difference between the
predicted age and chronological age. Higher brain age gap has
been suggested to reflect either (i) an accelerated ageing rate
throughout life, (ii) an accentuated, but stable ageing, or iii) an
accentuated and accelerated ageing [12]. Higher predicted brain

age has been associated with other indicators of older age—e.g.
accelerated body age, older physical appearance, lower cognitive
functioning [15], weaker grip strength, poorer lung function,
slower walking speed, and increased mortality risk [18]. Brain age
gap has been found to be heritable and increased in several
neurological and psychiatric conditions [17, 19], linking brain age
to brain disorders and genetics. However, studies investigating
brain age in individuals carrying rare genetic variants and
displaying alterations in brain structure are scarce.
Some rare recurrent copy number variants (CNVs), i.e., regions

of the genome that are either deleted or duplicated, are
associated with alterations in brain structure [20–23]. Individuals
carrying recurrent microdeletions or duplications at the 15q11.2
BP1-BP2 genomic locus display differences in brain morphology
through altered cortical thickness, surface area, and white matter
fiber tracts [24, 25]. The 15q11.2 BP1-BP2 genomic region contains
four evolutionary highly conserved genes: CYFIP1, TUBGCP5, NIPA1,
and NIPA2 [26], which have been reported to be critical for
typical neurodevelopment [27]. Indeed, both the CYFIP1 and the
NIPA1 are highly expressed in the developing mouse brain [28].
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Further, the CYFIP1 has been suggested to important for dendritic
spine morphology [29, 30] and myelination [31]. The NIPA1 and
the NIPA2 encode for magnesium transporters [32], whereas the
TUBGCP5 is important for microtubule nucleation [33]. At the
phenotypic level, 15q11.2 BP1-BP2 deletion carriers have an
increased risk for schizophrenia [34] and learning difficulties, such
as dyslexia and dyscalculia [35], as well as lower cognitive
functioning [24, 25]. Duplication carriers, on the other hand, have
not been convincingly associated with any neurodevelopmental
or psychiatric disease and perform similarly to non-carriers on
cognitive tests [35–37]. Cortical thickness displays a dose response
of the 15q11.2 BP1-BP2 CNVs (i.e., decreased cortical thickness
with increasing copy number) with deletion carriers having
significantly thicker cortices, lower surface area and smaller
nucleus accumbens compared to non-carriers. Cortical thickness,
surface area, and subcortical volume are structural brain measures
that exhibit clear age-related changes during typical aging,
including cortical thinning [9, 38, 39], reductions in surface area
[40] and lower subcortical volume [41]. However, it is unclear
whether the group differences in brain structure among 15q11.2
BP1-BP2 CNV carriers are reflected by altered ageing as indicated
by estimations of brain age gap. There are also other factors that
may indicate accentuated ageing among 15q11.2 BP1-BP2 CNV
carriers. For instance, the 15q11.2 BP1-BP2 CNV is also associated
with several physical traits that typically deteriorate in older ages,
including reaction time, hand grip strength, lung function and
blood pressure [25, 42]. All of these measures are important
features for an age biomarker that is associated with mortality and
hospital admissions in older individuals [43], emphasizing their
clinical significance. In sum, the differences in brain morphology
and performance in physical traits that declines with age may
indicate altered ageing among 15q11.2 BP1-BP2 CNV carriers.
In the current study, we investigated apparent brain ageing in

15q11.2 BP1-BP2 CNV carriers. Due to alterations in brain
morphology and in physical traits among 15q11.2 BP1-BP2 CNV
carriers [25, 42], i.e., where the majority of these traits indicate
accentuated ageing, we predicted that the 15q11.2 BP1-BP2 CNV
carriers would also exhibit group differences in brain age gap. To
test for accelerated or decelerating ageing in other age-affected
measures, we follow-up brain age gap estimations with testing for
a cross-sectional interaction effect between 15q11.2 BP-BP2 copy
number and age on brain measures and an effect on the
longitudinal ageing trajectory in reaction time, grip strength, lung
function and blood pressure.

METHODS
Participants
The present study includes 124 15q11.2 BP1-BP2 deletion and 142
duplication carriers, 496 non-carrier deletion controls and 568 non-carrier
duplication controls from the UK biobank study—all with neuroimaging
data. Four non-carrier controls were matched to each CNV carrier based on
age, sex, scanner site, affection status (diagnosis of a neurological or
mental/behavioral disorder) and estimated intracranial volume (ICV). The
CNVs were identified as described previously [25]. We also extracted a
sample of individuals diagnosed with multiple sclerosis (n= 60) to validate
the brain age prediction models against the unaffected participants from
the deletion-control and duplication-control groups (n= 1210). A training
group consisting of non-carrier individuals (n= 36,013 individuals) with no
reported neurological or mental/behavioral diagnoses was used as a
training set for brain age prediction (see supplementary note 1 and
supplementary table 1 for details and descriptive statistics for the full data
set). The estimated effect sizes for group differences that could be reliably
detected using the current test sample ranged from Cohen’s d= 0.26 to
0.36 (see supplementary note 2 for power sensitivity analysis).

MRI acquisition
All MRI data were acquired on a 3 T Siemens Skyra scanner from three
scanner sites. Detailed information about the image processing and quality
control for the UK biobank is reported elsewhere [44]. Briefly, the

T1-weighted images were acquired with a sagittal orientation at 1.0 mm
isotropic resolution, TI= 880ms, TE= 2.01ms, TR= 2000 ms.

Structural brain/morphology measures
The MR images were preprocessed in Freesurfer version 5.3.0 [45] and
provided estimates of cortical thickness, surface area, volume across 180
regions per hemisphere, in addition to subcortical and cortical summary
measures using the Human Connectome Project (HCP) parcellation atlas
[46]. These HCP features were used to create models for brain age
prediction in a training set and used to predict brain age in an
independent test sample (see below). Participants were excluded if they
had a Euler number that was missing or exceeded three standard
deviations from the sample mean, or if they had mean values that
exceeded four standard deviations from the sample mean on cortical
thickness, surface area or subcortical volume adjusted for covariates (see
supplementary notes 1 for details). Here, we focus on the mean cortical
thickness, total cortical surface area, and total subcortical volume to
increase statistical power. Regional group differences between 15q11.2
BP1-BP2 CNV carriers and non-carriers have been reported elsewhere for
34 regions of interest [25]. However, to fully exploit the complex
relationship between brain structures, we used all of the values from the
parcellated brain regions to get a single estimated score for each
participant (i.e., predicted age).

Motor, lung, and heart function
Reaction time, grip strength, forced expiratory volume (lung function),
systolic and diastolic blood pressure (incl. body mass index (BMI) as
covariate for measures of blood pressure) were extracted from the UK
biobank. These measures are available from up to three timepoints,
resulting in a mix of cross sectional and longitudinal data. We used mixed
effects models in these analyses to cope with the dependency in the data.

Brain age gap estimations
We used the XGBoost package in R [47, 48] to build a ML model to predict
age from a set of cortical thickness, cortical surface area, cortical volume,
subcortical volume (i.e., 180/180/180/8 regions of interest for each
hemisphere) and cortical summary measures from the training group, in
total 1145 measures (similar to; [17, 49, 50] henceforth termed the ‘full ML
model’). In addition, we trained three separate ML models that included
either measures of (i) cortical thickness (360 measures), (ii) surface area
(360 measures) or (iii) subcortical volume measures (16 measures) only to
predict age. These three models will be referred to as ‘cortical thickness ML
model’, ‘surface area ML model’ and ‘subcortical volume ML model’,
respectively. The XGBoost package was used as it is resource efficient and
flexible, including implementation of machine learning algorithms using
gradient boosting, parallel computation, and flexible parameter settings. It
has also been shown to be superior to other machine learning models as
demonstrated in machine learning competitions [47]. Parameters for the
brain age ML models were tuned individually for each model following an
optimization procedure (see supplementary note 3 for details). An
overestimation and underestimation of the predicted ages at the tails of
the chronological age distribution is commonly observed in brain age
prediction models [49, 51, 52]. Thus, we corrected for this bias using a
recent correction method for predicted brain age [53] (see supplementary
note 4 for details). Next, we subtracted each individual’s chronological age
from the corrected predicted brain age to get an estimate of brain age
gap. That is, if an individual is 50 years of age, while the predicted brain
age is 52, the 2-year brain age gap will indicate that the individual has an
older looking brain than what is expected based on the individual’s
chronological age.

Statistical analysis
All analyses were carried out in R version 4.0.0. The brain measures (i.e.
mean cortical thickness, total cortical surface area, total subcortical volume,
brain age gap) were pre-residualized for age, age2, sex, scanner site,
affection status, ICV and Euler number using linear regression. First, for
group comparisons, deletion and duplication carriers were compared to
their respective non-carrier matched control group, and deletion carriers
were compared to duplication carriers. The dependent variables were
brain morphological measures (mean cortical thickness, total cortical
surface area, total subcortical volume) and brain age gap (i.e., derived from
the ‘cortical thickness ML model’, ‘surface area ML model’, ‘subcortical
volume ML model’, and the ‘full ML model’). These were tested using a
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two-sided t-test. Cohen’s d was calculated as measure of effect size for the
group comparisons.
Second, we investigated an interaction effect between age and carrier

status using the following linear model: Y ~ age+ age2+ carrier status+
age*carrier status after regressing out the effect of scanner site, affection
status, ICV and Euler number from the dependent variables. Carrier status
was coded as “yes” and “no” (i.e., “yes” for deletion and duplication carriers,
and “no” for deletion-control and duplication-control). The interaction
effect was tested separately between the 15q11.2 BP1-BP2 CNV groups,
such that deletion carriers and deletion-control were tested against each
other, and duplication-carriers and duplication control were tested against
each other. Dependent variables were mean cortical thickness, total
cortical surface area and total subcortical volume.
Third, we examined the age-related trajectory of reaction time, grip

strength, lung function, systolic and diastolic blood pressure. We used
cross sectional and longitudinal data (First visit: n= 1330, Mean age= 55.3,
SD= 7.53, age range= 40.5–70.6, Second visit: n= 224, Mean age= 60.8,
SD= 7.07, age range= 45.4–73.8, Third visit: n= 1330, Mean age= 64.2,
SD= 7.62, age range= 46.8–81.3) and mixed effects models. The models
were fitted with a random effect of participant on intercepts and with sex
and affection status included as covariates (+BMI for the blood pressure
measures). To obtain the best ageing model, we compared models with
either: (a) only covariates, (b) age and covariates, or (c) age, age2 and
covariates. The models were tested stepwise to get the age model that
best fitted the data. Then, we tested this model against the same model
but including carrier status as either (d) main effect or (e) interaction effect.
We used the Akaike information criterion (AIC) as model criterion, where
the more complex model was chosen if the AIC dropped by 2 with a
p-value < 0.05 (see supplementary note 5 for details). Finally, we examined
the correlation between brain age gap and age-affected physical measures
(reaction time, grip strength, lung function, systolic and diastolic blood
pressure). Here, we pre-residualized the measures for the variables
included in the model that best fit the data as described above, before
running the correlations. Bonferroni corrections were conducted across all
comparisons. The significance threshold for group comparisons on
measures of brain structure and brain age gap (21 comparisons),
interaction effect between age and measures of brain structure
(6 comparisons), and brain age gap correlations with measures of motor,
lung, and heart function (10 correlations), resulted in alpha set to 0.05/
(21+ 6+ 10) = 0.0014. For the models of motor, lung, and heart function,

the predictors were considered significant if the p < 0.05 in the model that
best fitted the data according to the selection criterions stated above. The
uncorrected p-value is presented across all analyses.

RESULTS
15q11.2 copy number variants and brain morphology
In the current study, 15q11.2 BP1-BP2 deletion carriers had
significantly thicker cortex (d= 0.33, CI= 0.13, 0.53; d= 0.63,
CI= 0.38, 0.87, both p < 0.001), and lower subcortical volume
(d=−0.34, CI=−0.54, −0.14; d=−0.44, CI=−0.68, −0.20, both
p < 0.001) compared to deletion-controls and duplication carriers,
respectively, and lower total surface area (d=−0.35, CI=−0.55,
−0.15, p < 0.001) in comparison to deletion-controls (Fig. 1;
Supplementary Figs. 1–3). The results did not reveal any significant
difference for duplication-carriers compared to duplication-con-
trols, nor any interaction effects of age and carrier status on any of
the brain measures (see Supplementary Tables 3–4; Supplemen-
tary Fig. 4). Part of the sample has previously shown higher mean
cortical thickness and lower total cortical surface area in deletion
carriers compared to non-carriers, and lower mean cortical
thickness in duplication carriers compared to non-carriers [25].

Brain age gap in 15q11.2 BP1-BP2 copy number variant
carriers
The ‘full ML model’ yielded the highest correlation between
predicted age and chronological age (r= .80) outperforming the
three simpler/narrower models—the ‘cortical thickness ML
model’ (r= .71), the ‘surface area ML model’ (r= 0.63), and the
‘subcortical volume ML model’ (r= 0.64; Supplementary Fig. 5).
None of the four ML models for brain age gap estimations
showed any significant differences between 15q11.2 BP1-BP2
deletion and duplication carriers and non-carriers, nor between
deletion and duplication carriers (Fig. 1A, B; Supplementary Figs.
6–9). Overall, brain age gap from the cortical thickness, surface
area or subcortical volume ML models correlated negatively with

Fig. 1 Brain morphology and brain age in 15q11.2 BP1-BP2 carriers. A Scatterplots: Residualized brain measures vs brain age gap. Density
plots; Horizontal: Brain measures, Vertical: Brain age gaps from the ‘cortical thickness machine learning model’, ‘surface area machine learning
model’, and ‘subcortical volume machine learning model’. Columns: Mean cortical thickness (left), total surface area (middle), and total
subcortical volume (right). Rows: Comparisons between: Deletion carriers versus deletion-controls, duplication carriers versus duplication-
controls and deletion carriers versus duplication carriers. B Brain age gap group differences obtained from the ‘full machine learning model’.
All values were adjusted for age, age2, sex, scanner site, affection status (having either a F or G- ICD10 diagnosis), ICV and Euler number. All
values were scaled for visualization purposes. Raw residuals, confidence intervals, and p-values can be found in Supplementary Figs. 1–3 (for
measures of brain morphology) and Supplementary Figs. 6–9 (for measures of brain age gap). Red= deletion, carriers, gray= non-carriers,
blue= duplication-carriers. R= correlation value across the two included groups. d= Cohens d. Group differences that survive the multiple
comparison threshold are marked in bold. *p < 0.0014, ***p < 0.000014.
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the mean cortical thickness, total surface area and total
subcortical volume, respectively (r ranging from −0.26 to −0.48;
Fig. 1A). To ensure that the lack of identified brain age gap was
not a result of poor brain age models, we briefly validated our
brain age models in a sample of individuals diagnosed with
multiple sclerosis. In support of the validity of our models, the
results showed strong group differences in brain age gap
between the multiple sclerosis group and a healthy control
group Cohens d= 0.49 to 1.11; see Supplementary Table 6),
which is in line with the previous literature [17, 54]. Thus, this
leads us to the conclusion that the 15q11.2 BP1-BP2 CNV is not
associated with a clear altered brain age gap.

Age-related decline in motor, lung, and heart function
None of the mixed models that included an interaction term
between age and carrier status yielded a better model fit
compared to the other age models without the inclusion of the
interaction term. Thus, generally the 15q11.2 BP1-BP2 deletion
and duplication carriers do not deviate strongly from non-
carriers on the expected age-related reductions in reaction time,
grip strength, lung function, and diastolic and systolic blood
pressure based on mixed cross-sectional and longitudinal data
(Supplementary Fig. 10; Supplementary Tables 6–7). However,
there were some main effects of carrier status, as the deletion
carriers had slower reaction time compared to deletion-controls
(Supplementary Table 6), whereas duplication carriers exhibited
higher diastolic and systolic blood pressure compared to
duplication-controls (Supplementary Table 7). In general, there
were no significant associations between brain age gap derived
from the ‘full ML model’ and the selected age-affected physical
measures among the deletion-carriers and deletion-controls or
duplication-carriers and duplication-controls. The exception was
for the duplication-carriers and duplication-controls, that
displayed a significant negative correlation between higher
brain age gap and lower lung function (r=−0.17, p < 0.001;
Supplementary note 6).

DISCUSSION
Focusing exclusively on an ageing population (47–81 years of
age), we showed that the 15q11.2 BP1-BP2 deletion carriers did
not display a significant difference in brain age gap in comparison
to non-carriers. In concordance with this pattern, the cross-
sectional age effect on cortical thickness, surface area and
subcortical volume did not significantly interact with 15q11.2
BP1-BP2 copy number, indicating comparable ageing trajectory in
brain structure. Likewise, the mixed cross-sectional and long-
itudinal analysis indicate that both deletion and duplication-
carriers had age-related deterioration at a comparable rate to non-
carriers in selected age-affected measures—reaction time, grip
strength, lung function and blood pressure. Further, we expanded
on previous results to show that 15q11.2 BP1-BP2 deletion carriers
exhibited a lower total subcortical volume overall compared to
deletion-control and duplication-carriers and confirmed results on
cortical thickness and surface area (i.e., thicker cortex and lower
surface area in deletion carriers compared to non-carriers). Thus,
the data did not show evidence for accelerated ageing among
15q11.2 BP1-BP2 CNV carriers compared to non-carriers but rather
a stable ageing trajectory. Brain age gap—the difference between
the predicted age and chronological age—has been suggested to
reflect brain ageing, where higher brain age gap may reflect
accelerated ageing, or accentuated, but stable ageing, or
accentuated and accelerated ageing [12]. In contrast to our
hypothesis, the current study shows that group differences in
brain structure among 15q11.2 deletion carriers did not coincide
with group differences in brain age gap estimations, neither when
using a ML model with many (i.e., ‘the full ML model’) or fewer
features (i.e., ‘cortical thickness ML model’, ‘surface area ML

model’, or ‘subcortical volume ML model’). The results indicate
stable adult group-level differences in brain structure between the
15q11.2 BP1-BP2 deletion carriers and non-carriers. This seems to
indicate that the observed group differences in brain phenotypes
have been established before the individuals reached their current
age range. This would indicate that the structural differences are
due to other factors unrelated to ageing. Whilst caution is
warranted given the lack of data to test this more directly, this
may suggest that the brain alterations identified in 15q11.2 BP1-
BP2 CNV carriers are more likely explained by an early offset in
brain structure caused by early atypical neurodevelopment rather
than neurodegeneration.
This study has strengths and limitations. The cross-sectional

nature of the MR data limits our interpretation of the brain
ageing trajectory. For instance, it is crucial to follow individuals
over time to gain information on the slope of brain atrophy,
ideally through multiple time points across the lifespan. As
always, caution should be made when interpreting the results
of cross-sectional data. Future studies using longitudinal brain
imaging data are needed to fully characterize the age-related
changes in brain structure. However, our mixed cross-sectional
and longitudinal data on other age-affected measures (i.e.,
motor, lung and heart function) do seem to indicate a similar
ageing trajectory between 15q11.2 BP1-BP2 CNV carriers and
non-carriers.
The interpretation of the brain age gap estimations from the

brain age models are relying on the assumption that the models
are reliable and valid. Indeed, the brain age gap is simply the
difference between the predicted chronological age and
the chronological age, which means that the brain age gap is
the error term from the brain age model. In the current study,
however, brain age gap was associated with lung function among
a sample of 15q11.2 BP1-BP2 duplication carriers and duplication-
controls. This indicates that the brain age gap also carries useful
biological information beyond measurement error. In addition,
the current study showed that our brain age model yielded
strong group differences between a multiple sclerosis group and
a healthy control group, replicating previously identified brain
age gap differences [17, 54]. Furthermore, brain age estimations
are based on models that are informed by the strong associations
between MRI features and age. Thus, deviation from a healthy
brain age trajectory might reflect alterations in brain structure
unrelated to ageing. It has also been suggested that brain age
might reflect variations in the brain from early life [15]. Indeed, if
the brain age models were simply reflecting variations in the
brain, we would expect the 15q11.2 BP1-BP2 CNV carriers to
exhibit alterations in brain age as they exhibit group-level
differences in cortical thickness, surface area, and subcortical
volume. However, we did not find any significant group
differences in brain age gap among 15q11.2 BP1-BP2 CNV
carriers. The low prevalence of carriers with the 15q11.2 BP1-BP2
CNV hinders the detection of small effects. Thus, the lack of
significant statistical group differences does not imply that there
is no neurodegenerative effect at all. However, the results do not
support strong neurodegenerative effects that would have been
of potential clinical relevance.
The 15q11.2 BP1-BP2 CNV carriers show phenotypic hetero-

geneity [25, 28, 35, 55]. This is important to note as the sample is
drawn from the UK Biobank, which has a healthy volunteer bias at
baseline [56], as well as a bias in the follow-up components [57].
For instance, the participants in the UK Biobank have been found
to be healthier (e.g., lower rate of cancer, lower levels of smoking
and daily alcohol consumption, lower likelihood of obesity) [56]. In
addition, the follow-up components in the UK Biobank have been
shown to be influenced by sample characteristics, including
cognitive ability, adiposity, and liability to certain neurodevelop-
mental disorders [57]. This could potentially underestimate
differences between 15q11.2 BP1-BP2 carriers and non-carriers.

R. Boen et al.

4

Translational Psychiatry           (2023) 13:61 



Despite the overall biases in the UK Biobank, we still identify
group-level differences in brain structure but not in their brain age
gap. Thus, these results do not support clear neurodegenerative
effects among the 15q11.2 BP1-BP2 CNV. However, more research
is needed in an unbiased population and caution is urged if
extrapolating the current result to the full population of 15q11.2
BP1-BP2 carriers.

CONCLUSION
To conclude, the 15q11.2 BP1-BP2 deletion carriers exhibit altered
cortical thickness, surface area and subcortical volume compared
to non-carriers. We did not find support for the hypothesis that
the differences in brain structure among 15q11.2 BP1-BP2 CNV
carriers are due to accentuated ageing neither in cross-sectional
MR data, brain age gap, or age-affected physical measures. Thus,
despite altered brain morphology and worse performance in
physical traits, these deviations do not seem to have significant
clinical implications for neurodegeneration or physical deteriora-
tion in an ageing sample. The altered brain morphology in
15q11.2 BP1-BP2 CNV carriers could reflect other factors unrelated
to ageing, possibly atypical neurodevelopment. Future studies
should investigate early developmental trajectories of 15q11.2
BP1-BP2 CNV carriers on brain structure and other physical
measures to clarify the life-span trajectory of the altered brain
morphology. Finally, the “healthy volunteer” bias in the UK
Biobank warrants caution when interpreting the results, and
studies examining age-related changes in a more population-
representative sample are needed.
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