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Genetic studies in psychiatry have primarily focused on the effects of common genetic variants, but few have investigated the role
of rare genetic variants, particularly for major depression. In order to explore the role of rare variants in the gap between estimates
of single nucleotide polymorphism (SNP) heritability and twin study heritability, we examined the contribution of common and rare
genetic variants to latent traits underlying psychiatric disorders using high-quality imputed genotype data from the UK Biobank.
Using a pre-registered analysis, we used items from the UK Biobank Mental Health Questionnaire relevant to three psychiatric
disorders: major depression (N= 134,463), bipolar disorder (N= 117,376) and schizophrenia (N= 130,013) and identified a general
hierarchical factor for each that described participants’ responses. We calculated participants’ scores on these latent traits and
conducted single-variant genetic association testing (MAF > 0.05%), gene-based burden testing and pathway association testing
associations with these latent traits. We tested for enrichment of rare variants (MAF 0.05–1%) in genes that had been previously
identified by common variant genome-wide association studies, and genes previously associated with Mendelian disorders having
relevant symptoms. We found moderate genetic correlations between the latent traits in our study and case–control phenotypes in
previous genome-wide association studies, and identified one common genetic variant (rs72657988, minor allele
frequency= 8.23%, p= 1.01 × 10−9) associated with the general factor of schizophrenia, but no other single variants, genes or
pathways passed significance thresholds in this analysis, and we did not find enrichment in previously identified genes.
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INTRODUCTION
Psychiatric disorders, such as major depression, schizophrenia
and bipolar disorder, are devastating conditions that disrupt
individuals’ normal functioning. They are also heritable, meaning
that a proportion of the variance of the predisposition to these
disorders is attributable to genetic variation. The heritability of
these disorders can be estimated from twin and family-based
studies; for example, the heritability of major depression has been
estimated as 32% from national registries in Denmark, while
schizophrenia and bipolar disorder have estimates of 67 and 64%,
respectively [1, 2].
Several large-scale genome-wide association studies (GWAS)

have identified common genetic variants associated with these
disorders [3–6]. However, when these associations are aggre-
gated, the estimated heritability from common variants is
substantially lower than the estimates of heritability from twin
and family-based studies: while the heritability estimate of
bipolar disorder from twin studies is around 64%, the estimate
using common single-nucleotide polymorphisms (SNPs) from
GWAS is 17–23% [6].

One explanation for the discrepancy between heritability
estimated from twin studies and from SNPs is the focus of the
latter on common genetic variation (present in ≥1% of the
population) while largely ignoring the contribution of rare genetic
variants [7]. For example, where whole genome sequencing data
was used to estimate the total contribution of both rare and
common variants to height, heritability estimates from measured
genetic variants were consistent with those from family-based
studies [8].
In psychiatry, few studies have focused on rare genetic

variants associated with major depression [9, 10], while several
have investigated schizophrenia and bipolar disorder [11–13].
Studies of some psychiatric disorders including schizophrenia
have found an enrichment of ultra-rare disruptive variants
[11, 14, 15] and studies of common variants for complex diseases
have found enrichment of genes associated with matched
Mendelian disorders [16].
The high cost of genome and exome sequencing has likely

impacted the rate of progress for rare variant analysis. Sample
sizes with whole genome or exome sequence data have been
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relatively small compared to those with SNP genotyping array
data. Recently, however, studies have increased in their sample
sizes [17–19]. Also, consortia of researchers have aggregated large
panels of individuals with whole genome sequence data, which
can be used as reference samples to accurately impute variants
that have not been directly genotyped. This provides an additional
method for researchers to increase the number of genetic variants
that can be tested without significant cost.
In addition, there is growing interest and recognition of

subclinical symptoms in the general population, especially among
those with a family history of psychiatric disorders, and those who
may not seek treatment or be diagnosed [20].
Studies suggest that depressive symptoms lay on a continuum

and that dichotomisation results in a loss of information [21, 22],
although researchers often use a sum score model to categorise
individuals as cases or controls depending on whether the sum
of their responses on a questionnaire falls above or below a
certain threshold. The assumptions underlying the sum score
model—such as that items have equivalent loadings and
residuals on the underlying factor—may be violated for
symptoms of these disorders [23], and simulations have shown
that these violations reduce statistical power to detect asso-
ciated variants [24].
In this study, we investigated common and rare genetic variants

associated with latent psychiatric traits found in the population,
using high-confidence imputed genotype data from the UK
Biobank. The Mental Health Questionnaire of the UK Biobank
contains symptom-level data for >150,000 participants related to
various psychiatric disorders, which makes it a rich source of
information on the distributions of these symptoms and correla-
tions between them. Using symptom-level data of psychiatric
traits, we extracted participant-level scores on continuous latent
factors using factor analysis.
We identified items in the Mental Health Questionnaire that

matched criteria in the DSM-V and ICD-10 diagnoses of major
depression, schizophrenia and bipolar disorder, and used factor
analysis to construct latent variable models for each condition.
With these, we calculated individual scores for the latent
psychiatric traits, and investigated genetic variants and genes
across the allele frequency spectrum associated with them.
Furthermore, we explored the relationship between the latent

psychiatric traits and Mendelian disorders exhibiting similar
symptoms, by testing whether genes associated with matched
Mendelian disorders were enriched for genetic associations with
the latent psychiatric traits. We also investigated whether rare
genetic variants associated with the latent psychiatric traits were
colocalised in genes that were previously identified by case-
control studies of the psychiatric disorders that used common
variant analysis. Finally, we tested whether rare genetic variants
associated with these latent psychiatric traits had larger effect
sizes than common genetic variants.

METHODS
A flowchart summarising the methods is presented in Fig. 1.

Sample
We used data from the Mental Health Questionnaire (MHQ) in the UK
Biobank to investigate latent traits underlying psychiatric symptoms,
as this questionnaire contains items relating to current and lifetime
symptoms of psychiatric disorders that match the DSM-V and
ICD-10 criteria.
The MHQ was a follow-up study of participants that were initially

recruited for the UK Biobank between 2006–2010 and aged 40–69 years
[25, 26]. One hundred and fifty-seven thousand five hundred and thirty-
eight participants completed the questionnaire and we conducted power
calculations to ascertain that we had high power to detect the smallest
effect sizes reported in the literature (Tables S1 and S2).

Latent trait construction
We identified MHQ items (supplementary material) matching the DSM-5
and ICD-10 criteria for schizophrenia, bipolar disorder and major
depression. For major depression (pilot analysis), we used the items
and five factor model in Jermy et al. [27]. Items related to mania (for
schizophrenia and bipolar disorder) were asked as follow-ups (symptoms
experienced during a period of irritability or a period of feeling high,
excited or hyper), so negative responses to these period questions were
coded as negative responses to the follow-up items.
We imputed missing responses using their responses to other items with

the regression imputation function regressionImp() in VIM [28] and
removed participants with any remaining missing responses, as described
in the supplement. We removed participants who scored >99th percentile
on the multivariate Robust Mahalanobis Distance score [29, 30] as outliers
in combinations of their responses (except for schizophrenia, due to the
low prevalence of affirmative responses to some items). This resulted in
sample sizes of 153,693, 134,249 and 148,681 for major depression, bipolar
disorder, and schizophrenia respectively (Table S6 and Figs. S1–S11).
We split the data into two random subsamples of participants to perform

exploratory factor analysis and confirmatory factor analysis in either half.
We used weighted least squares factoring and geominQ (olique) rotation to
fit models using different numbers of latent factors [31], compared them
using fit statistics and used Thurstone’s rules to adjust item retention
(Figs. S12–S17). In confirmatory factor analysis, we estimated fit statistics to
validate chosen models and we specified a hierarchical general factor to
account for correlations between latent factors and computed fit statistics
for hierarchical models (Figs. S18–S20).
Finally, we calculated individual-level scores using the empirical Bayes

method with lavPredict() in lavaan for R [32]. Scores on the hierarchical general
factors were used as phenotypes for all genetic analyses (Figs. S21–S23). These
showed moderate genetic correlations with matched case–control phenotypes
in published GWAS (Table 1).

Genotype data quality control
DNA were extracted from samples collected during recruitment and
genotyped in 106 batches across assessment centres and aligned to build
GRCh37. Genotype data underwent quality control prior to release by the
UK Biobank [25]. We used imputed genotype data provided by the UK
Biobank (supplementary methods).
We applied a maximum missing genotype filter of <0.02 for variants and

<0.02 for participants, Hardy–Weinberg Equilibrium threshold of
p < 1 × 10−8 and removed gender/sex mismatches. Participants’ related-
ness was estimated prior to release by the UK Biobank, using the KING
software [33]. We removed participants with a relatedness >0.044 with
others using a greedy algorithm [34].
Rare variant analysis is highly sensitive to population stratification,

therefore we restricted participants to genetically-inferred European
ancestry, using four-means clustering on the first two genetic principal
components (PCs) derived from the UK Biobank [35]. Out of 502,620 UK
Biobank participants with genotype data, 116,961 were removed during
genotype QC and 5 excluded due to missing covariates (Tables S6 and S7).
The final sample size was 134,463, 130,013, and 117,376 for the general

factors of depression, schizophrenia and bipolar disorder, respectively.
Phenotype scores were adjusted for the first 20 genetic PCs, their

collection centre and genotype batch, using linear regression. PCs were
calculated from quality-controlled genotype data using FlashPCA2 with no
MAF threshold, a window size of 1500 SNPs, a window shift of 150 SNPs,
and a linkage disequilibrium threshold of r2 > 0.02 for pruning [36].
We excluded variants with INFO < 0.7 [37], converted gene dosages to

hard-called genotypes with a threshold of >0.9, and excluded variants with
MAF < 0.05% for GWAS and burden tests, and MAF < 0.005% for heritability
estimation, following recommendations by Wright et al. [38].

Association testing
We conducted genome-wide association testing for single variants
including common variants (MAF > 0.05%), by regressing genotypes on
PC-adjusted latent traits with the fastGWA software [39] and plotted
results using qqman and ggManhattan [40, 41], using the significance
threshold of 5 × 10−9, recommended by Wu et al. for imputed genotype
data [42]. Since we processed phenotypes separately, 13,921,407,
13,933,876 and 13,911,892 single variants were tested for the general
factors of depression, schizophrenia and bipolar disorder respectively
(Tables S8 and S9).
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We conducted gene-based burden testing using only rare (MAF
0.05–1%) variants predicted to be deleterious (as described below) with
the MAGMA software [43], which uses multiple linear principal compo-
nents regression, to regress participants’ scores on latent traits and
calculate empirical p values using an F-test with 1000 fixed permutations.
We applied Bonferroni correction to adjust for the number of genes tested,
for a significance threshold of p= 4.2 × 10−5.
Using the association statistics from gene-based burden testing, we

also tested Gene Ontology pathways (all GO pathways in C5v6 using
Entrez gene definitions) [44] using MAGMA, with competitive gene-set
enrichment analysis, along with Bonferroni correction for the number of
gene sets tested.

Genes were defined from the NCBI transcription start to stop site,
for protein-coding genes; these were listed on the MAGMA repository,
updated September 2018 [45]. Variants were annotated with ANNOVAR
using ensGene [46] and dbNSFP33a [47] (to predict the functional
impact of variants with dbscSNV [48], MutationTaster [49], GERP++ [50],
FATHMM [51], and SIFT [52]) and we considered them predicted
deleterious if they passed thresholds recommended by authors
(supplementary methods).

Enrichment analysis
Using the association statistics from gene-based burden testing, we
grouped all matched genes (described below) as a gene set and performed

Fig. 1 Flowchart depicting methods used in this paper. Shaded boxes represent statistical analyses reported in the results of this paper.

Table 1. Heritability and genetic correlation estimation from using high-definition likelihood inference (HDL).

Neff h2 (SE) Genetic correlation (SE) p

Depression (Wray et al. 2018a [3]) 111,221 0.081 (0.004) 0.68 (0.05) 1.43 × 10−40

Internalising factor (Int) 74,663 0.113 (0.007)

Schizophrenia (PGC 3 SCZ, 2020) 157,013 0.291 (0.009) 0.24 (0.03) 6.34 × 10−14

General factor of schizophrenia (Sch) 74,087 0.111 (0.006)

Bipolar disorder (PGC 3 BD, 2020) 101,962 0.274 (0.010) 0.40 (0.04) 2.62 × 10−26

General factor of bipolar disorder (Bip) 65,709 0.103 (0.006)

Results of LD-derived heritability and genetic correlation analysis of latent traits in this study and case control analyses from matched GWAS studies, using the
high-definition likelihood inference software (HDL). Minimum MAF= 0.05%. Neff= effective sample size (Table S22), h2= heritability, SE= standard error. For
matched GWAS studies, we estimated heritability with HDL using summary statistics from the original papers.
aFor Wray et al. (2018 [3]), we used summary statistics from PGC (i.e. excluding UK Biobank and 23andMe data).
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competitive gene-set enrichment analysis using MAGMA to test for an
enrichment of predicted deleterious variants in these genes.

Matched Mendelian disorders. To identify loci linked to Mendelian
disorders exhibiting relevant clinical features, we conducted an advanced
search on the Online Mendelian Inheritance in Man database (OMIM) [53].
We searched for clinical features of depression (for major depression),
schizophrenia or psychosis (for schizophrenia), and bipolar disorder or
mania (for bipolar disorder) (supplementary methods). We manually
filtered search results to relevant phenotypes and restricted associated loci
to those that contained <5 genes each (Fig. S24).

Matched common variant GWAS. We used significantly associated genes
from gene-based burden testing from the three largest GWAS of matched
psychiatric illnesses: Wray et al. [3] for major depression, with UK Biobank
data excluded and the analysis restricted to variants with a MAF > 1%
(58 genes); the Mullins et al. [54] of 40,000 cases for bipolar disorder
(126 genes); and Ripke et al. [55] of 69,000 cases for schizophrenia (360
genes). These can be found in our repository: https://osf.io/w8jyu/.

Heritability and genetic correlations
In post hoc analysis, we used the HDL software [56] (v1.3.9) to estimate LD-
derived heritability, and genetic correlations between latent traits and
case-control phenotypes from matched GWAS [3, 54, 57] using genome-
wide summary statistics. We used 1,029,876 QCed UK Biobank imputed
HapMap3 SNPs as the LD reference panel [58].
We also used the openMPI parallelised version of GCTB [59] v2.0 to

estimate polygenicity and the relationship between allele frequency and
effect size (S, also an indicator of selection). We analysed only chromosome
1 for computational feasibility; the distribution of S (selection coefficient)
and pi (polygenicity) are not expected to vary between chromosomes and
are not additive. We used the nested BayesC model, which analyses non-
overlapping genomic regions as windows and skips over windows with
zero effect sizes. We specified a nested window size of 1 Mb, with starting
values pi= 0.05, h2= 0.05 and S= 0, and a MCMC chain length of 10,000
and burn-in of 2000, as recommended by Zeng et al. [59].

RESULTS
Phenotype creation
One hundred and fifty-seven thousand three hundred and sixty-
sixparticipants who responded to the Mental Health Questionnaire
of the UK Biobank (accessed in November 2020) were used to
construct latent factor phenotypes for subsequent analyses. Data
processing was conducted separately for each disorder. After
imputation of missing values and outlier removal, we performed
exploratory factor analysis, with 153,693 participants retained for
the phenotype of major depression, 134,249 for bipolar disorder
and 148,681 for schizophrenia.

Latent factor models. For depression, the model matching that
constructed in Jermy et al. [27] was used. Five factors were
identified and labelled anxiety, psychomotor, neurovegetative,
mood and reflective symptoms. A general hierarchical factor
(called the internalising factor) was fitted, which loaded highly
onto each of the five lower factors (>0.7). In the hierarchical model
constructed with depression-related items, measures indicated an
acceptable model fit (omega Total=0.9, ECV= 0.46, CFI= 0.992,
TLI= 0.990, RMSEA= 0.039 and SRMR= 0.031).
For schizophrenia, three factors were identified, labelled

psychotic, negative and disorganised symptoms. A general
hierarchical factor was fit, which had moderate to high loadings
on each of the three lower factors (>0.6). In the hierarchical model
constructed with schizophrenia-related items, measures indicated
an acceptable model fit (omega Total=0.88, ECV= 0.41, CFI=
0.996, TLI= 0.995, RMSEA= 0.018 and SRMR= 0.048).
For bipolar disorder, three factors were identified, labelled

depressive, manic and disorganised symptoms. A general hierarch-
ical factor was fit, which loaded moderately onto each of the three
lower factors (>0.5). In the hierarchical model constructed with
bipolar disorder-related items, measures indicated an acceptable

model fit (omega total= 0.93, ECV= 0.73, CFI= 0.999, TLI= 0.999,
RMSEA= 0.023 and SRMR= 0.044). The final model solutions are
shown in Figs. S18–S20.

Association testing
Single variant association tests. Single variant association tests
were conducted with a MAF > 0.05% using linear regression
adjusted for the first 20 principal components, with the fastGWA
software. The genome-wide significance threshold of p < 5 × 10−9

was used to identify single variants associated with latent traits.
For the internalising general factor of depression and the

general factor of bipolar disorder, no single variants passed the
significance threshold. One common SNP was associated with a
general factor of schizophrenia above the genome-wide sig-
nificance level: rs72657988, located on chromosome 1 (MAF=
0.0823, p= 1.01 × 10−9). This SNP was in linkage disequilibrium
with two other SNPs that were nominally significant rs78201023
(MAF= 0.0393, p= 4.01 × 10−8, D’= 0.897) and rs77512118
(MAF= 0.0372, p= 1.37 × 10−6, D’= 0.908). In a recent meta-
analysis, rs72657988 was identified to be associated with post-
traumatic stress disorder (p= 1.2 × 10−10) [60]. Figure 2a–c
display the results of the single variant association tests as
Manhattan plots.
We calculated that the genomic inflation factor was 1.09 for the

general factors of depression and schizophrenia and 1.08 for
the general factor of bipolar disorder. We also calculated that the
LDSC intercept was 1.0045, 1.0074 and 1.0073 for the three
factors respectively (Table S13) which suggests the inflation arises
from polygenicity rather than population stratification. QQ-plots
are provided in Supplementary Figs. S26–S28 and indicate that
genomic inflation predominately occurs for common variants
(MAF > 0.05). Summary statistics from these analyses are available
in supplementary materials (Tables S10–S12) and available in full
online at https://osf.io/w8jyu/.

Functional prediction
Twenty-one thousand two hundred and forty-four autosomal
variants were considered predicted deleterious variants, either
by being annotated as protein-truncating (N= 3 774) deleter-
ious missense or indel (N= 14 099), deleterious splicing (N= 3
341), or deleterious non-coding (N= 30) variants (Tables
S14–S16 and Fig. S29).

Gene-based burden tests. A median of three rare (MAF 0.05–1%)
predicted deleterious variants were found per gene tested in gene-
burden analyses (Fig. S30). Since we processed samples for each
trait separately, 9964, 9912 and 9954 genes were tested for the
general factors of depression, bipolar disorder and schizophrenia
respectively (Table S8). No gene met the significance threshold of
p= 4.2 × 10−5 (using Bonferroni correction for the number of tests
performed) for any of the three latent traits (Fig. 3a–c). Summary
statistics for this analysis are available in Tables S17–S19 and
available in full online at https://osf.io/w8jyu/.
We estimated the genomic inflation factor from results of the

burden analyses: 1.01 for the internalising factor of depression, 1.04
for the general factor of schizophrenia and 1.02 for the general
factor of bipolar disorder. QQ-plots are provided in Fig. S31a–c.

Enrichment analyses
Matched common variant genes. There was no enrichment for
rare (MAF 0.05–1%) predicted deleterious variants in genes
implicated by common variants previously associated with
matched disorders [3, 54, 55] in any of the latent psychiatric
traits in our study (internalising factor with GWAS of major
depression, 58 genes, p= 0.59; general factor of schizophrenia
with GWAS of schizophrenia, 360 genes, p= 0.33; general factor of
bipolar disorder with GWAS of bipolar disorder, 126 genes,
p= 0.16), see Table 2.
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Fig. 2 Manhattan plot for single variants. Panels depict the –log10(p-value) of association test statistics for single variants with a the
internalising factor of depression (Int), b general factor of schizophrenia (Sch), and c general factor of bipolar disorder (Bip). Points on this plot
represent individual genetic variants. The horizontal axis depicts the genomic coordinate of variants tested for an association with the
internalising factor of depression. Minimum MAF = 0.05%. The solid horizontal line (at p= 5 x10–9) depicts the threshold for genome-wide
statistically significant associations, while the light horizontal line (at p= 1 x 10–5) depicts a more lenient threshold above which variant rsID
numbers are labelled.
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Matched Mendelian disorders. We identified loci associated with
matched clinical features from Mendelian disorders on OMIM
(26 loci for depression, 54 loci for schizophrenia and 169 loci for
bipolar disorder), as shown in Table 2. Focusing on rare (MAF
0.05–1%) predicted deleterious variants, there was no enrich-
ment for any of the three sets of common variants previously

associated with matched disorders (internalising factor with
Mendelian disorders with depressive phenotypes, p= 0.81;
general factor of schizophrenia with Mendelian disorders with
schizophrenia phenotypes, p= 0.08; general factor of bipolar
disorder with Mendelian disorders with bipolar disorder
phenotypes, p= 0.28).

Fig. 3 Manhattan plot for genes. Panels depict the –log10(p-value) of association test statistics for genes using gene burden testing with
a the internalising factor of depression (Int), b the general factor of schizophrenia (Sch), c the general factor of bipolar disorder (Bip). Points on
this plot represent individual genes with predicted deleterious variants. The horizontal axis depicts the genomic coordinate of genes tested
for an association with the general factor of schizophrenia. Predicted deleterious variants within the MAF range between 0.05% and 1% were
retained for gene burden testing. The solid horizontal line (at p= 4.2 x 10–5) depicts the threshold for genome-wide statistically significant
associations after Bonferroni correction for number of tests performed. The dashed line (at p< 1 x 10–3) depicts a more lenient threshold above
which genes have been annotated.
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Gene Ontology pathways. Five thousand nine hundred and
sixteen GO pathways were tested, resulting in a Bonferroni-
corrected significance threshold of 8.45 × 10−6. No GO pathways
passed significance thresholds after Bonferroni correction. Full
summary statistics are available in Tables S19–21.

Heritability and genetic correlations
We used the HDL software [56] in post-hoc analysis to estimate
LD-derived heritability for each latent trait and to estimate genetic
correlations between these traits and the phenotypes measured in
case-control analyses from the common variant GWAS studies
used for enrichment analysis.
Heritability was estimated using HDL at 0.113 for the internalis-

ing factor of depression, 0.111 for the general factor of
schizophrenia and 0.103 for the general factor of bipolar disorder.
For case–control phenotypes from common variant GWAS studies,
heritabilities were estimated at 0.081 for depression in Wray et al.
[3], 0.291 for schizophrenia in Ripke et al. [61] and 0.274 for bipolar
disorder in Mullins et al. [54].
Genetic correlations between each pair of traits were moderate

in magnitude and were all highly significant (p < 9.14 × 10−14 for
Levene’s test for variance heterogeneity; Tables 1 and S22),
indicating that the continua of latent traits estimated from the
population in this study shared genetic contribution with
phenotypes used in case-control analyses.
We estimated the polygenicity to be 0.045 and 0.051, and the

selection coefficient to be 7.8 × 10−5 and 6.8 × 10−5 for the general
factor of bipolar disorder and of schizophrenia respectively, using
data from chromosome 1 and a MAF threshold of >0.005%, while
the MCMC model for the internalising factor did not converge.
Figure S33 and Table S24 illustrates the estimates and distributions
of heritability, polygenicity and selection coefficient across 10 000
iterations of the MCMC model.

DISCUSSION
This study explored the contribution of common and rare variants
to latent factors derived from symptoms of major depression,
schizophrenia and bipolar disorder in the UK Biobank. The Mental
Health Questionnaire contains self-report questions from the CIDI-
SF questionnaire which asks sufficient questions for a clinical
diagnosis according to the ICD-10 and DSM-5, which makes it a
particularly valuable source of data regarding the distribution of
psychiatric traits in the wider population and their relation to
clinical phenotypes.
We found moderate genetic correlations between the latent

traits we derived from reported symptoms and case-control

phenotypes from previous studies. We noted that, for schizo-
phrenia, the genetic correlation between the latent trait and the
case-control phenotype was low, while it was moderate for
bipolar disorder and much higher for depression (Table 1). We
found high genetic correlations between all three latent traits and
the case-control phenotype of depression (Table S23). Previous
studies [62, 63] have also found higher genetic correlations
between psychotic experiences and depression than schizophre-
nia, although the mechanisms are unclear.
Additionally, heritability estimates were lower in latent traits in

the UK Biobank compared to case-control phenotypes from
previous GWAS (Table 1). This may be partly due to the
characteristics of the sample, as participants in the UK Biobank
and Mental Health Questionnaire demonstrate ‘healthy volunteer
bias’—where participants tend to be healthier and more
educated than the wider population—and may have lower
liability to psychiatric illness, which may result in lower estimates
of heritability and genetic correlations [64]. The prevalence of
self-reported diagnoses of mental illness including depression
has been reported to be similar in the Mental Health
Questionnaire and representative surveys of the general popula-
tion of the same age group [26, 65]. However, these comparisons
have more uncertainty for bipolar disorder and psychotic
disorders due to their low prevalence rates and small numbers
in the survey data, and it is likely that those with concurrent
severe symptoms were less likely to participate [26]. The
challenges associated with voluntary recruitment for cohort
studies including the UK Biobank imply that our findings may be
more informative about milder symptoms in the wider popula-
tion than those with severe mental illness.
In genome-wide association analysis, we identified one

common SNP associated with a general factor of schizophrenia:
rs72657988 (MAF= 0.0823, p= 1.01 × 10−9). This SNP was in
linkage disequilibrium with two other SNPs that were nominally
significant, none of which had previously been associated with
schizophrenia, and had been identified as a statistically significant
association in a recent meta-analysis of post-traumatic stress
disorder [60]. It will be important to validate the consequences of
this SNP in functional studies. No SNPs were associated with the
general factor of bipolar disorder or the general internalising
factor of major depression.
No genes were associated with the three latent factors in

gene-based burden testing of rare predicted deleterious
variants. Similarly, no GO pathways were associated with the
three latent factors.
Although power calculations indicated this study had sufficient

power (95% power to detect SNP associations with a QTL variance

Table 2. Gene set enrichment analysis for GWAS results and Mendelian genes from OMIM.

Set tested for enrichment N genes Beta SE p

GWAS

General factor of bipolar disorder (Bip) Mullins et al. (PGC) 126 0.09 0.093 0.16

General factor of schizophrenia (Sch) Ripke et al. (PGC) 360 0.02 0.055 0.33

Internalising factor of depression (Int) Wray et al. (only PGC & 23andMe data) 58 −0.03 0.150 0.59

OMIM

General factor of bipolar disorder (Bip) Depress* OR mania OR manic 169 −0.07 0.078 0.81

General factor of schizophrenia (Sch) Schiz* OR psychotic OR psychosis 54 0.20 0.137 0.08

Internalising factor of depression (Int) Depress* 26 0.11 0.198 0.28

Summary statistics to show results of gene set enrichment analysis of predicted deleterious variants in genes previously associated with matched disorders in
GWAS and in genes previously associated with matched phenotypes of Mendelian disorders on OMIM. Minimum MAF= 0.05%, maximum MAF= 1%. N
genes= number of genes included in the gene set that was tested for enrichment, Beta= regression coefficient, SE= standard error of the regression
coefficient.
The asterisk represents the wildcard used for searching for alternative endings of the word, such as “depressive” and “depression”, or “schizophrenia” and
“schizophrenic”.
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of >0.00038 and genes with >0.1% explained variance (Tables S1
and S2), the lack of findings suggests that rare variants remain
challenging to capture using large, imputed genotype data sets
and their effect sizes may be smaller than anticipated.

Enrichment in Mendelian genes
Gene-based burden testing was used to examine enrichment of
predicted deleterious variants in genes previously associated with
Mendelian disorders where patients developed matched clinical
features. For example, are predicted deleterious variants asso-
ciated with the latent factor of schizophrenia more likely to be
found in genes associated with Mendelian disorders where
patients developed schizophrenia?
Enrichment may occur in patients at distribution extremes for

psychiatric symptoms who develop those traits due to single fully
penetrant Mendelian variants. However, research has failed to
identify fully penetrant single variants for psychiatric disorders
[66, 67]. Several rare copy number variants that confer substantial
risk to schizophrenia and to bipolar disorder have been identified,
but they are not fully penetrant [68, 69]. Previous research has also
found an increased burden of missense and loss-of-function de
novo variants in schizophrenia and bipolar disorder [70, 71],
suggesting that their genetic component includes both rare
variants with large effects and common variants with small effects.
Genes associated with Mendelian traits may also contain

common variants associated with the broader phenotype of a
trait. This would indicate that complex phenotypes and Mendelian
traits with matched phenotypes have a common aetiology,
resulting from the functions of genes containing such variants.
For example, Freund et al. [16] found an enrichment of genes
associated with Mendelian traits in GWAS of various matched
complex disorders. Similarly, Blair et al. [72] also found comorbid
associations between Mendelian disorders and complex traits,
including between Marfan syndrome and psychiatric illnesses, and
between psychiatric illnesses and four genes associated with
Mendelian disorders (SYNE1, PRPF3, CACNA1C and PPP2R2B).
Since Mendelian variants are often associated with syndromes

that cause a variety of symptoms and phenotypes, it is believed
that complex traits may result from variation in genes that have
pleiotropic effects [73]. However, we found no enrichment of
Mendelian genes of matched phenotypes for any of the three
latent psychiatric traits in this study.
There are several potential reasons for not observing enrich-

ment. Firstly, the genes we identified through OMIM may have
been coincidentally associated with matched phenotypes. For
example, we searched for keywords related to psychiatric
disorders in the clinical features section of entries of Mendelian
disorders. However, in some cases, patients who developed
those Mendelian disorders may have also developed depression
and mania from unrelated causes but would still lead to an
inclusion of associated Mendelian genes into our gene sets.
Secondly, the study may lack the statistical power necessary to
detect an enrichment in these genes for a large population with
symptom-level data. Thirdly, rare variants of large effects may be
missed in imputed genotype data due to limited haplotypes in
reference panels.

Enrichment of genes identified by GWAS
We examined the shared genetic aetiology between common and
rare variants associated with psychiatric illnesses, by testing for
the enrichment of rare predicted deleterious variants in genes
previously associated in GWAS of common variants for matched
psychiatric disorders as the latent traits in this study. However, we
found no evidence for enrichment.
Previous research has identified an enrichment of rare

variants in genes associated with psychiatric disorders. For
schizophrenia, several studies [11, 74] have found enrichment of
ultra-rare variants in genes implicated by schizophrenia GWAS

of common variants, with some research focusing on disruptive
variants in particular [75].
Research examining enrichment in bipolar disorder have been

more mixed, with some research finding enrichment of rare
variants in genes previously implicated by bipolar disorder GWAS,
while other studies have not found evidence for enrichment
[76, 77]. Few studies have examined rare variant associations with
major depression [10] or their relationship with genes implicated
by common variant GWAS.
Unlike other literature, this study did not use sequence or

exome array data due to a lack of availability for large symptom-
level data, but the UK Biobank Axiom array also covers variation in
exonic regions and areas of rare coding variation including
protein-truncating variants [78]. The lower coverage of these
genomic regions means the results of this study are not
informative about the contribution of ultra-rare, de novo and
private mutations, which have been implicated in previous studies
of psychiatric illness [11, 15, 79].

Relationship between allele frequency and effect size
This study also investigated the relationship between allele
frequency and effect size for latent traits and found a very weak
relationship (sigma of 7.8 × 10−5 and 6.8 × 10−5 for the general
factors of bipolar disorder and schizophrenia, respectively).
In contrast, Zeng et al. [59] found that many complex traits were

under significant negative selection as measured by the selection
coefficient (relationship between allele frequency and effect size)
using the software GCTB. Our finding of a virtually zero relation-
ship between SNP allele frequency and effect size for these latent
traits may indicate they are not under selection or that, as many
rare variants will be recent, there has been insufficient time for
selection to reduce their frequency in the population.
While much of the literature reports larger effect sizes from rare

variants than common variants, the focus has primarily been on
structural variants and single nucleotide variants predicted to be
highly damaging [11, 66]. Singh et al. [11] found that common
SNPs have smaller effect sizes than rare CNVs and protein-
truncating variants for schizophrenia using exome sequence data.
This may in part be because CNV and protein-truncating variants
are expected to affect gene function more considerably than SNPs.

Limitations
There are several limitations when analysing rare variants, which
we sought to minimise. Firstly, imputation accuracy is lower for
rare variants due to the limited number of reference haplotypes
containing those rare variants. We followed recommendations by
Pistis et al. [37] and restricted variants to those with an INFO score
above 0.7 and additionally restricted the minimum MAF of
variants in this study according to recommendations from Wright
et al. [38], to reduce type 1 errors.
Secondly, it is challenging to adjust rare variants for confound-

ing by geographical stratification than common variants, because
their spatial distributions are more complex and segmented in
populations [80], although this limitation is less severe in gene-
burden analyses as the averaging of multiple variants within
genes more closely resembles the spatial distribution of common
variants [81]. To address this, we adjusted factor scores for latent
traits for the first 20 principal components generated from
genotype data (excluding imputed variants) across the allele
frequency spectrum, including rare variants. However, additional
analyses using exome- or genome-sequence data may shed
further light on these findings.
Thirdly, it is important to externally validate the results of this

study, particularly the significant hit of rs72657988 for the general
factor of schizophrenia, using functional studies that may
illuminate the direct impact of this variant on the phenotype.
Finally, our study focused on participants who completed the

Mental Health Questionnaire in the UK Biobank, a cohort study in
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which participants tend to be older, more educated and healthy
than the general population [25, 26], and our analysis was
restricted to participants of European ancestry, meaning that the
findings may not be generalisable to the wider global population.
Aside from these limitations, this study has important contribu-

tions to the literature on genetic psychiatry. To our knowledge,
this is the first study that jointly investigates the contribution of
rare and common variants associated with a depression pheno-
type or that tests for enrichment of predicted deleterious variants
in genes implicated by GWAS of depression. It is also the first to
investigate the enrichment of Mendelian disease genes with
matched clinical symptoms for depression—previous research
had tested for enrichment in Mendelian disease genes that were
associated with neurological disorders, rather than depressive
symptoms specifically [16]. Finally, it is also one of few genetic
studies that focuses on the continua of psychiatric traits in the
wider population, rather than case-control status.

DATA AVAILABILITY
We piloted the analysis using genotype data to test the method focusing on
depression, and pre-registered the same analyses for imputed genotype data to test
the methods for depression, schizophrenia and bipolar disorder. Summary data is
available at https://osf.io/w8jyu/.

CODE AVAILABILITY
Code is available at https://osf.io/w8jyu/.
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