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Inhibitory control dysfunctions play an important role in psychiatric disorders but the precise nature of these dysfunctions is still not
well understood. Advances in computational modeling of real-time motor control using a proportion–integral–derivative (PID)
control framework have parsed continuous motor inhibition into a preemptive drive component (signified by the Kp parameter)
and a reactive damping component (signified by the Kd parameter). This investigation examined the relationship between
inhibitory control processing during a stop signal task and continuous motor control during a simulated one-dimensional driving
task in a transdiagnostic sample of participants. A transdiagnostic psychiatric sample of 492 individuals completed a stop signal task
during functional magnetic resonance imaging and a simple behavioral motor control task, which was modeled using the PID
framework. We examined associations between the Kp and Kd parameters and behavioral indices as well as neural activation on the
stop signal task. Individuals with higher damping, controlling for a drive, on the driving task exhibited relatively less strategic
adjustment after a stop trial (indexed by the difference in go trial reaction time and by stop trial accuracy) on the stop signal task.
Individuals with higher damping, controlling for a drive, additionally exhibited increased activity in the frontal and parietal regions
as well as the insula and caudate during response inhibition on the stop signal task. The results suggest that computational indices
of motor control performance may serve as behavioral markers of the functioning of neural systems involved in inhibitory control.
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INTRODUCTION
Inhibitory control dysfunctions are implicated in a range of
psychiatric problems including anxiety [1], mood disorders [2],
substance use disorders [3], and attention deficit hyperactivity
disorder (ADHD) [4]. The neural substrates underlying inhibitory
control comprise prefrontal regions, dorsal anterior cingulate cortex
(dACC), inferior frontal gyrus (IFG), and presupplementary motor area
(pre-SMA) and subcortical regions including the subthalamic nucleus
(STN) [5]. Despite progress, individual markers of inhibitory control
function have had limited utility in clinical contexts, likely in part
because of the poor reliability of measures of inhibitory control
across a range of behavioral paradigms [6].
Limited reliability of measurement has also likely hampered

advances in theoretical understanding of the subcomponents of
inhibition and inhibitory control and their interrelationships,
contributing to inconsistent findings of the relationship between
inhibition and clinical disorders. For example, anxiety has historically
been associated with both an excess of behavioral inhibition [7] as
well as a deficit in inhibitory control [1]. While excessive response
inhibition has been proposed as a promising marker of clinical
anxiety, the overall literature remains inconsistent [8]. The incon-
sistent relationship between inhibition and anxiety may be related to
the observation that individuals dynamically make strategic adjust-
ments to inhibitory demands based on their performance and
context [9, 10]. For example, when the expectation of the need to
inhibit is high, individuals will preemptively slow responses even
before an explicit signal that response inhibition is needed [11]. This
preemptive process has been termed proactive inhibitory control, in

contrast to reactive inhibitory control occurring after a stop signal
[12, 13]. Anxious individuals may exhibit exaggerated proactive
inhibitory control coupled with decreased ability to quickly inhibit in
response to specific perceptual signals. Beyond anxiety, reliable
measures of subcomponents of inhibitory processing may be useful
as markers of core processing dysfunctions across multiple
psychiatric diagnoses, which could lead to more mechanistically
informed approaches toward assessment and treatment.
In parallel to the literature on the inhibition of discrete motor

responses, recent research has examined motor control in
continuous-time settings. Far from being a simple, mechanical
process, human motor control represents a dynamic, computation-
ally rich real-time decision process that incorporates high-level
reward and threat information in a nuanced, nearly optimal manner
[14, 15]. We have applied a proportion–integral–derivative (PID)
control modeling approach to measure deficits in anxious individuals
on a simple, simulated driving task [16]. This approach enabled
highly reliable estimation of two individual parameters: Kp, a
proportion or drive parameter that increases acceleration in
proportion to the current distance from a goal state, and Kd, a
derivative or damping parameter that reduces acceleration in
proportion to velocity toward the goal, preventing overshoot. Kp
reflects the processing of the current error, while Kd reflects the
processing of the anticipated error. High Kp coupled with high Kd
enables a rapid goal approach with minimal overshoot. Because
velocity changes more quickly than position, derivative control
requires rapid motor inhibition in response to incoming perceptual
information to reduce anticipated error, similar to reactive inhibitory
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control on a stop signal task. Individuals with deficient derivative
control may compensate by reducing Kp, preemptively slowing to
prevent overshoot, as in proactive inhibitory control. We found that
low Kp and low Kd were associated with fear and with a low volume
of the dACC, a region implicated in affective influence on motor
control [17], inhibitory control [5], and fear expression [18]. These
findings suggest that anxiety involves general proactive motor
inhibition coupled with a deficit in rapid inhibition in response to
perceptual information. Critically, split-half comparisons revealed that
PID model parameters were estimated with extremely high reliability,
unlike for traditional inhibitory control paradigms (r= 0.98 for Kp and
r= 0.95 for Kd).
The similarities between traditional inhibitory control paradigms

and the sensorimotor driving paradigm, and the common role of the
dACC, suggest that a sensorimotor paradigm may usefully probe
neural deficits in inhibitory control, but with much more reliable
indices potentially more useful in individualized clinical assessments.
To test the relationship between real-time motor control and discrete
motor inhibition, we compared behavioral and neural indices from a
stop signal paradigm performed in an fMRI scanner with PID model
parameters from a sensorimotor paradigm in a sample that included
healthy volunteers and a transdiagnostic group of individuals with
mood and anxiety complaints, substance use disorders, or eating
disorders. We hypothesized that low Kp and low Kd would be
associated with impaired recruitment of inhibitory control in
response to a stop signal as well as with increased preemptive
slowing when the expectation of the need to stop was high.

MATERIALS AND METHODS
Participants
The experiment was part of the Tulsa-1000 (T-1000; ClinicalTrials.gov
NCT02450240) study, a naturalistic longitudinal study of individuals with
mood, anxiety, substance use, and/or eating disorders, along with healthy
volunteers (with sample size being based on power analyses to detect
effects based on conservative assumptions) [19]. The target population
was comprised of a Mood/Anxiety group including individuals with Patient
Health Questionnaire (PHQ-9) [20] ≥10 and/or Overall Anxiety Severity and
Impairment Scale (OASIS) [21] ≥8, a Substance Use group including
individuals with Drug Abuse Screening Test (DAST-10) [22] score ≥3, an
Eating Disorders group with Eating Disorder Screen (SCOFF) [23] score ≥2,
and a Healthy Control group with individuals who did not screen positive
for any of the above inclusion criteria. 492 individuals (age: 34.20 ± 10.55

years; gender: 176 male and 316 female) participated in the experiment, of
whom 255 were in the Mood/Anxiety group, 153 were in the Substance
Use group, 27 were in the Eating Disorders group, and 57 were in the
Healthy Control group (see Table 1). 3 subjects were excluded for
incomplete behavioral data on the stop signal task and 2 were excluded
for incomplete sensorimotor task data. As part of the T-1000 study,
participants completed self-report measures including the behavioral
inhibition system (BIS) scale [24] and neuropsychological testing which
included color-word inhibition. All study procedures were approved by the
Western Institutional Review Board, and all participants provided written
informed consent prior to participation.

Sensorimotor task
Participants performed a simulated one-dimensional driving task (16).
Behavioral and computational modeling results from this task have
previously been reported for the Mood/Anxiety and Healthy Control
groups from the T1000 study [16]. Participants completed 30 trials of the
task, with each trial having a fixed duration of 10 s. Participants were
instructed to drive a virtual car, controlled using a gaming joystick, as
quickly as possible and stop as close as possible to a stop sign without
crossing the stop-line. The car was controlled according to a linear
dynamical system, in which car velocity was proportional to joystick
displacement at each time point. Throughout each trial, joystick
displacement was recorded with a sampling window of 1/60 s.

Stop signal task
Participants were instructed to make a response (go trials) or to cancel the
response (stop trials) following a task cue in the stop signal task (SST) (22).
The SST consisted of 6 blocks of 48 trials, each of which contained 36 go
trials (75%) and 12 stop trials (25%) in pseudo-random order, for a total of
288 trials. Each block was separated by 12 s, and each trial lasted 1300ms
with a 200ms intertrial interval. At the beginning of each trial, a black cue
(‘X’ or ‘O’) appeared on a white background. On ‘go’ trials, participants
were instructed to press, as quickly as possible, the left button for an ‘X’
cue and the right button for an ‘O’ cue. On ‘stop’ trials, in which a tone was
presented and the task cue color changed to red, participants were
instructed not to press either button. Prior to scanning, participants
completed a practice run of the task to determine their mean response
times (RTs) from the onset of the cue. The mean RT was used to determine
the delivery time of the tone for the stop signal. Stop signals were
delivered 500, 400, 300, 200, 100, or 0 ms less than the mean RT. Due to the
difficulty of making a response in a short time, the stop trials with 0, 100,
and 200ms delays were counted as the short stop signal delay (SSSD) or
difficult condition whereas the stop trials with 300, 400, and 500ms delays
were counted as the long stop signal delay (LSSD) or easy condition.

Table 1. Demographic and clinical characteristics of the study sample.

Healthy volunteers (N= 57) Clinical population (N= 435) p-value

Age, M (SD) 32.2 (11.2) 34.6 (10.5) 0.11

Male, N (%) 28 (49%) 148 (34%) 0.04

Race/Ethnicity, N (%) 0.09

White 41 (72%) 285 (69%)

American Indian or
Alaska Native

5 (9%) 83 (19%)

Black or African American 2 (4%) 28 (7%)

Hispanic 4 (7%) 16 (4%)

Asian or Pacific Islander 2 (4%) 3 (1%)

“Other”, unspecified 3 (5%) 18 (4%)

Years Education, M (SD) 6.7 (1.6) 5.8 (1.9) 0.001

Income, M (SD) $57,047 ($47,508) $45,422 ($72,524) 0.24

PHQ-9, M (SD) 0.82 (1.20) 10.34 (6.17) <0.001

OASIS, M (SD) 1.12 (1.39) 8.32 (4.40) <0.001

DAST, M (SD) 0.12 (0.38) 3.18 (3.72) <0.001

SCOFF, M (SD) 0.09 (0.29) 1.00 (1.26) <0.001

PHQ-9 Patient Health Questionnaire, OASIS Overall Anxiety Severity and Impairment Scale, DAST Drug Abuse Screening Test, SCOFF eating disorders screening
questionnaire.
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PD control model
For each participant, we estimated the parameters of a PD control model.
We fit a PD rather than a full PID model due to our previous findings that
this simpler model results in a superior fit, because the task design does
not include a constant disturbance, making the integral control
component unnecessary [16]. PD model parameters were estimated using
R [25]. At each time point within a trial, acceleration was modeled as a
linear combination of the current error (goal position minus current car
position) and derivative of the error, with coefficients Kp and Kd,
respectively. Kp and Kd were estimated using linear regression for each
trial, with each time point as a data point with acceleration as the
dependent variable and error and derivative as predictors. See the
supplement for details of model validation procedures (simulations and
parameter recovery and split-half reliability).

Behavioral analysis
Statistical analyses were performed in R [25]. Data were inspected to
ensure assumptions of statistical tests were met. Given the high correlation
between Kp and Kd, we first computed the residualized Kd after controlling
for Kp for each participant. We previously found that residualized Kd
displayed high split-half reliability (r= 0.89) [16].
To assess the relationship between PD model parameters and strategic

adjustments on go trials, we first computed the difference in response
times on go trials occurring immediately after a stop trial and those
occurring immediately after a go trial for each participant. This difference
in reaction times was then used as a dependent variable in linear
regressions with predictors including either Kp or residualized Kd along
with age, gender, and years of education.
To assess the relationship between PD model parameters and strategic

adjustments on stop trials, we computed the difference in the proportion
of successful stops (stop accuracy) on stop trials occurring immediately
after another stop trial and those occurring immediately after a go trial for
each participant. This difference was used as a dependent variable in linear
regressions with predictors including either Kp or residualized Kd along
with age, gender, and years of education.
To examine the relationship between PD model parameters and other

measures of inhibition, we performed four linear regressions with either
the BIS scale or color-word inhibition score from neuropsychological
testing as dependent variables and predictors including either Kp or
residualized Kd along with age, gender, and years of education.

fMRI data preprocessing and analysis
Imaging data were collected with two identical GE MR750 3 T scanners
equipped with 8 RF channel phased array coils, at the same site. T1-
weighted anatomical images were acquired in the 3D high-resolution, MP-
RAGE pulse sequence (TR/TE= 5/2.012ms, 0.9 mm-thick 186 axial slices,
FOV 240 × 192mm). Two hundred fifty-six volumes (2.9 mm thick, 39 slices,
1.875 × 1.875mm voxels) of T2*-weighted echo-planar images (TR/TE=
2000/27ms, axial plane, flip angle 78°, FOV 240 × 240mm) were collected
during the stop signal task. The Analysis of Functional NeuroImages
software suite (AFNI, http://afni.nimh.nih.gov) was used for preprocessing
and statistical analyses of imaging data.
The first three EPI volumes were discarded for signal stabilization. Then,

images were subjected to despiking, slice-time correction (first slice), co-
registration (T1-weighted image), motion-correction (ENORM> 0.3), nor-
malization (MNI space, 2 mm3 voxels), and smoothing (4mm3 FWHM) for
preprocessing.
For analysis, a mixed-effects model was used to examine the association

between Kd, the damping parameter, and neural activity for response
control on the stop signal task. Three events were constructed on a
participant to model response control: ‘Go’ (go trials), ‘SSSD’ (short stop
signal delay or difficult trials), and LSSD (long stop signal delay or easy
trials). To avoid the influence of differential error rates by trial type, only
correct responses were taken for analysis. Incorrect responses were
modeled as no-interest events with motion parameters. The hemodynamic
response for a trial was convolved with a gamma function from the onset
of the task cue, in the whole brain.
The main contrast was constructed by comparing the “Stop” trials

(SSSD+ LSSD) versus the “Go” trials to model the neural response for
control on the stop signal task. Then, the association between the model
parameter, Kd, and neural response for control (Stop > Go) was examined
in a multivariate model with covariates of the individual’s diagnostic
category (see Table 1), age, and sex, after controlling Kp. The FDR of
p < 0.05 was set for multiple testing corrections with a voxel-wise threshold

of p < 0.001. Significant cluster effects (k > 60) were subjected to follow-up
tests to probe the association between Kd and the difficulty level of control.
Beta coefficients extracted from clusters were standardized (M= 0, SD= 1).
To determine whether Kd was associated with inhibitory control in

depression and anxiety as well as in the broader transdiagnostic group, we
also performed a separate analysis for individuals with major depression
disorder, anxiety, and comorbid depression and anxiety.
To examine the specificity of the association between neural markers of

inhibitory control and Kd vs. other measures of inhibition, whole-brain
analyses were also performed as above with BIS score and with color-word
inhibition substituted for Kd.

RESULTS
Behavioral results
Kp was not associated with the difference in go trial response
times occurring after a stop trial or after a go trial (controlling for
age, gender, and education), i.e., Kp was not associated with the
behavioral index of strategic adjustments on go trials (β=−0.06,
p= 0.19). Residualized Kd was negatively associated with the
difference in go trial response times occurring after a stop trial or
after a go trial. That is, those individuals with greater residualized
Kd showed relatively less strategic adjustment in terms of
response times during go trials (β=−0.14, p < 0.01).
Kp was not associated with the difference in stop trial accuracy

occurring after a stop trial or after a go trial, showing no
association with the behavioral index of strategic adjustments on
stop trials (β=−0.05, p= 0.25). Residualized Kd was negatively
associated with the difference in stop-trial accuracy occurring after
a stop trial or after a go trial (controlling for age, gender, and
education). Thus, similar to go trials, those individuals with greater
residualized Kd showed relatively less strategic adjustment in
terms of accuracy during stop trials (β=−0.12, p < 0.01).
Kp was not associated with the BIS scale (β=−0.06, p= 0.19),

while residualized Kd was negatively associated with the BIS scale
(β=−0.11, p < 0.01). Kp was positively associated with the color-
word inhibition score (β= 0.16, p < 0.01), while residualized Kd was
not associated with the color-word inhibition score (β= 0.07,
p= 0.13).

fMRI results
Imaging analyses were performed for 450 subjects with complete
fMRI data. First, we examined the association between Kd and overall
response control (Stop >Go) in the brain. Table 2 displays the brain
regions showing significant associations between Kd and neural
activity for control responses upon the stop signal. There was a
positive association between Kd and several frontal cluster activities
during response control. That is, those individuals with greater Kd
showed greater activation in frontal regions for canceling responses.
For instance, activation in the inferior frontal gyrus extending to the
ventromedial part of the left frontal cortex exhibited a positive
relationship between Kd and successful stopping responses
(β1= 0.94, 95% CI [0.43,1.45], β2= 0.96, 95% CI [0.43,1.49]). In the
right brain, both the inferior frontal gyrus and middle/medial parts of
the frontal gyrus revealed the same pattern of a positive relationship
between Kd and response control (β1= 0.94, 95% CI [0.42,1.46],
β2= 0.84, 95% CI [0.36,1.31], β3= 0.98, 95% CI [0.48,1.48]). At the
subcortical level, the bilateral anterior insula and right caudate also
showed positive correlations between the damping parameter and
neural activity for stopping the default Go response (β1= 1.06, 95%
CI [0.52,1.60], β2= 0.85, 95% CI [0.33,1.37], β3= 0.78, 95% CI
[0.25,1.30]). Further, bilateral parietal regions extended from superior
to inferior parts revealed the direct relationship between neural
control for inhibiting responses and the damping parameter, Kd
(β1= 1.13, 95% CI [0.59,1.66], β2= 0.89, 95% CI [0.36,1.42]). Figure 1
displays the relationship between Kd and response control (Stop >
Go), with individual events (Go, SSSD, and LSSD).
To query the relationship between Kd and control difficulty, we

compared LSSD versus Go trials (easy control) and SSSD versus Go
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trials (difficult control) and examined the relationship between Kd
and easy or difficult level of controlling responses in the above
Stop > Go clusters (Supplemental Fig. 1). Difficult control (SSSD >
Go) was positively associated with Kd in all clusters showing the
Stop > Go differences in a very similar way (Table 3). However, we
did not find the relationship between Kd and easy control

(LSSD > Go) in the Stop > Go clusters even at the uncorrected
p < 0.001 threshold. Similarly, at the whole brain level, no
suprathreshold cluster showed a relation between easy control
and Kd, while several clusters revealed an association between
difficult control and Kd (Supplemental Table 1). Most of the
clusters from the difficult control contrast at the whole brain level

Fig. 1 Brain regions showing associations between Kd and response control (Stop vs. Go). A R inferior frontal gyrus, B L Inferior parietal
sulcus, C L aInsula, and D R Caudate. SSSD short stop signal delay or difficult control, LSSD long stop signal delay or easy control.

Table 2. Brain regions showing the relationship between Kd and control activity during Stop-Signal Task.

Peaks (x,y,z) # of voxels Region t-statistic

Stop > Go 3 23 47 237 R ventromedial frontal cortex 5.26

−53 −45 49 234 L inferior parietal gyrus 5.29

9 5 11 147 R caudate 4.56

−55 5 31 145 L inferior frontal gyrus 4.98

59 −39 43 139 R inferior parietal gyrus 5.07

−31 21 −11 112 L anterior insula 5.21

39 3 31 105 R inferior frontal gyrus 4.76

31 7 59 100 R middle frontal gyrus 5.17

57 11 17 88 R medial frontal gyrus 5.11

39 21 −11 66 R anterior insula 4.72
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overlapped with the regions found for the association of Kd in
overall response control (Stop vs. Go). The comparison between
SSSD versus LSSD did not yield any significant cluster.
To examine the association between Kd and inhibitory

processing in depression and anxiety, we performed an analysis
with individuals with major depression disorder, anxiety, and
comorbid depression and anxiety (n= 236). Neural activity for
inhibitory control (Stop > Go) associated with Kd was shown in
fronto-parietal regions and bilateral insula (Table 4). All of these
clusters showed positive relationships between Kd and neural
activity in the clusters (Supplemental Fig. 2).
Whole-brain analyses performed as above but with BIS score

and with color-word naming inhibition score substituted for Kd
yielded no significant clusters.

DISCUSSION
This investigation examined the relationship between inhibitory
control processing during a stop signal task and continuous motor
control during a simulated one-dimensional driving task in a
transdiagnostic sample of participants. Behaviorally, individuals
with higher levels of Kd controlling for Kp (i.e., higher levels of
damping controlling for drive) on a continuous motor task were
less likely to slow down preemptively after a stop trial on a stop
signal task. Similarly, these individuals were less influenced by a
previous stop trial in their performance on a current stop trial.
These findings suggest that individuals with higher levels of
damping on a continuous motor task rely less on proactive
inhibitory control on a discrete motor inhibition task. Kd

controlling for Kp was negatively associated with BIS score (a
measure of behavioral inhibition rather than response inhibition),
while Kp was positively associated with color-word inhibition
score. On imaging, individuals with higher Kd controlling for Kp
showed increased activity in frontal and parietal cortical regions,
known for the fronto-parietal network for executive control and
attention, as well as subcortical activity in insula and caudate for
response control and selective inhibition [26, 27] during response
inhibition. Similar findings emerged when the analysis was
restricted to individuals with clinical depression or anxiety, while
parallel analyses found no association between BIS or color-word
inhibition and neural activation. Taken together, these associa-
tions between a computational parameter quantifying damping
during continuous motor control and trial-based response time as
well as brain activation during inhibitory control support the idea
that a simple virtual driving task together with a well-developed
computational framework is suitable to probe proactive or
reactive inhibitory control and adds important information
beyond traditional self-report and neuropsychological measures
such as BIS and color-word inhibition.
The fronto-parietal network is well known for the cognitive

control of both internal plans and the external environment with
proactive and reactive processing (see ref. [28] for review) in
addition to its well-established role in attention and executive
control for goal-driven behavior [29, 30]. Top-down modulation of
other brain areas for efficient processing of information and
adjusting behavior flexibly is the critical contribution of the fronto-
parietal control network. The present finding of the positive
association between the damping parameter and the regions in
the fronto-parietal network demonstrates that the damping
parameter may represent cognitive control beyond inhibitory
control of motor responses. In fact, it has been suggested that the
fronto-parietal network plays a critical role in cognitive control as a
flexible hub for both resting state and task states and that
dysfunction of this network is implicated in many different
psychopathological diseases [29].
The involvement of the insula and caudate in successful

response control and the association with the damping parameter
complements the possibility that the damping parameter serves
as a computational marker for cognitive control. Activity in the
insula and caudate have been observed in various tasks requiring
cognitive control such as monitoring/processing conflicts, asso-
ciating information, and selecting responses [31, 32]. Insula and
caudate have also been functionally implicated in successful stop
trials in SST as well as general task performance, with the
involvement of the anterior insula in stopping efficiency [26]. We
previously found that damping performance was positively
related to caudal anterior cingulate cortex volumes [16]. Given

Table 4. Clusters showing the relationship between Kd and overall control (Stop vs. Go) in individuals with mood disorders.

Peaks (x,y,z) Voxels Region β (95% CI) t-statistic

41 −63 −23 375 R inferior/temporal occipital cortex 2.29 (1.42, 3.15) 5.23

1 23 47 368 L/R superior medial cortex 1.68 (0.91, 2.46) 4.30

−29 21 −11 205 L anterior insula 2.39 (1.57, 3.21) 5.76

−19 21 53 165 L middle/superior frontal cortex 2.13 (1.31, 2.95) 5.11

−51 −45 51 128 L inferior parietal lobe 1.94 (1.13, 275) 4.71

25 23 −3 123 R anterior insula 1.77 (0.92, 2.62) 4.09

−9 −83 −11 112 L lingual gyrus 1.20 (0.50, 1.90) 3.39

−27 −51 41 95 L inferior parietal lobe 1.47 (0.69, 2.24) 3.74

−5 −65 65 89 R precuneus 1.36 (1.42, 3.15) 3.79

−51 37 −9 86 L pars orbitalis 1.96 (1.17, 2.75) 4.87

−3 −17 −17 71 midbrain 2.26 (1.37, 3.16) 5.00

41 55 −1 63 R middle fronto-orbital gyrus 1.64 (0.87, 2.41) 4.20

Table 3. The association of Kd and difficult control (SSSD > Go) in the
clusters for Stop control (Stop > Go).

Region Beta (CI) t-statistic

R ventromedial frontal cortex 0.66 (0.35,0.97) 5.30

L inferior parietal gyrus 0.68 (0.36,0.99) 4.82

R caudate 0.53 (0.20,0.86) 4.38

L inferior frontal gyrus 0.59 (0.28,0.91) 4.64

R inferior parietal gyrus 0.57 (0.26,0.88) 4.88

L anterior insula 0.75 (0.40,1.09) 5.21

R inferior frontal gyrus 0.55 (0.24,0.85) 4.29

R middle frontal gyrus 0.47 (0.18,0.76) 4.29

R medial frontal gyrus 0.61 (0.30,0.92) 4.61

R anterior insula 0.67 (0.34,1.01) 5.03
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that inhibitory control at least is hardly the function of a single
brain region or structure but is more likely to be dependent on the
interactions of multiple brain regions/structures, the association of
Kd with neural activity in the fronto-parietal network as well as the
anterior insula and caudate suggests that damping may include
complex processing of cognitive control for contextually inap-
propriate behaviors. While future studies are warranted to test this
interpretation, the present results shed further light on the neural
underpinnings of damping by demonstrating an association
between the damping parameter and neural activity in control-
related regions during response inhibition.
PD control parameters may provide robust behavioral measures of

facets of inhibition that have been obscured due to the limited
reliability of measurements. For example, behavioral inhibition and
inhibitory control are two separate constructs that are both relevant
to understanding psychiatric disorders, but their relationship is poorly
understood. Behavioral inhibition is a temperament typically
manifesting in childhood in which individuals are slow to approach
novel objects or unfamiliar people and may interact with inhibitory
control to predict the development of disorders such as social
anxiety disorder [33], but there is little research investigating the
relationship between behavioral inhibition and subcomponents of
inhibitory control. We found that BIS score is negatively associated
with residualized Kd, suggesting that excessive behavioral inhibition is
related to a deficit in one subcomponent of inhibitory control
(involving adjusting for anticipated error). This result could help
clarify previous contradictory findings regarding the relationship
between anxiety and inhibition. By contrast, the color-word inhibition
score was positively related to Kp, suggesting that individuals with
greater reactive inhibitory capacity were able to exhibit greater drive
on the motor control task. Taken together, our results suggest that
parsing inhibition into separate components related to the proces-
sing of current error vs. anticipated future error may clarify patterns
of inhibition in psychiatric disorders.
Recognition of the involvement of both Kp and Kd (drive and

damping) enables a more nuanced, process-oriented view of the
nature of inhibition in real-time control. While fully separable
conceptually and in simulations, the two parameters are positively
correlated empirically because higher levels of drive require
higher levels of damping to prevent overshoot past the goal state
[16]. Drive involves adjusting acceleration on the basis of the
current position, while damping involves adjusting acceleration on
the basis of current velocity. Because velocity changes more
quickly than position, damping may present a greater challenge
for the nervous system and represent a more fundamental
capacity limitation (which may be influenced by both trait- and
state-related factors) that determines what level of drive is
possible without overshoot. Importantly, we previously found
that damping, controlling for a drive, was negatively associated
with self-reported fear [16]. Our present findings demonstrate a
similar pattern in which damping, controlling for a drive, was
positively associated with neural activations in the stop signal task.
This suggests that damping may be a more fundamental process
underlying inhibitory control deficits related to psychiatric
disorders. Future research can continue to disentangle the roles
of these two related components of real-time inhibitory control.
The present finding of the relationship between damping and

response inhibition in a transdiagnostic sample suggests that the
damping parameter could be useful for representing the capacity
of inhibitory processing in clinical populations who tend to show
inhibitory deficits, such as substance use disorders, ADHD, OCD,
and others. The possibility of measuring core mechanistic
processing dysfunctions across diagnoses is consistent with the
National Institute of Mental Health (NIMH) Research Domain
Criteria (RDoC) framework aiming to develop a dimensional
psychiatric classification system [34].
The PD control model is an extension of computational

psychiatry, which is often focused on learning and decision-

making, to motor control. Motor control requires rapid, real-time
decisions that balance competing objectives while accounting for
uncertainty [15]. Furthermore, the neural systems underlying
motivational and affective influences on decision-making play a
similar role in motor control. For example, serotonin and striatal
dopamine modulate movement vigor in accordance with reward
and effort expectations [35], while the insula [36] and dACC [17]
also mediate the planning of movements. NIMH has recognized
the importance of sensorimotor processes in understanding
psychiatric disorders by adding a sensorimotor RDoC domain
[37]. Our results suggest that real-time sensorimotor tasks can
serve as data-rich and ecologically valid paradigms for reliable
computational assessments of core dysfunctions in inhibitory
control across psychiatric disorders.
In this study, our focus was on individual measurement of

inhibitory control capacity in individuals with a range of mental
health complaints as well as healthy individuals. Given the potential
role of inhibitory control deficits across multiple diagnostic
categories, as well as variance in the general population, our
approach is in line with the dimensional, transdiagnostic RDoC
framework [34]. Our research design was not well-powered to detect
differences between different diagnostic groups, which would
represent a statistical interaction given our focus on the relationship
between PD model parameters and neural activations. However, the
clinical relevance of the PD model parameters is supported by our
previous finding that PD model parameters are related to self-
reported fear [16]. Future work can build on the present validation of
the PD control framework by applying it to important clinical
questions. In particular, future studies can use the PD control
framework to examine the effects of interventions designed to
improve inhibitory control capacity, thus contributing to improved
assessments of treatments for a range of psychiatric disorders.
Limitations of the present study include that the motor task was

not performed in an fMRI scanner, although the same participants
performed the stop signal task in the scanner. Future studies will
use an fMRI version of the motor task to examine the functional
neural underpinnings of motor drive and damping more directly.
A second limitation is a cross-sectional design. Longitudinal
studies can more clearly disentangle trait and state variability in
damping capacity and determine whether the PD model can serve
as a reliable marker of cognitive control within individuals. Finally,
future work can apply more complex paradigms and modeling
approaches to more fully explore the connections between motor
control, reinforcement learning, and Bayesian decision theory in
psychiatric populations.
In conclusion, we found behavioral and imaging evidence for a

relationship between motor control (measured with a PD control
model) and discrete inhibitory control on a stop signal task. The
results suggest that motor control performance, and particularly
damping capacity, can serve as a marker for inhibitory control and
for the functioning of a number of brain regions involved in
cognitive control including the fronto-parietal network. The
statistically reliable nature of the PD model parameters suggests
that this approach may be pragmatically useful for individualized
clinical assessments. Computational motor control paradigms
should be further explored as a promising avenue to investigate
core domains of dysfunction across a range of psychiatric disorders.
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