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Apolipoprotein ε4 (APOE ε4) is the most significant genetic risk factor for late-onset Alzheimer’s disease (AD). Elevated blood
C-reactive protein (CRP) further increases the risk of AD for people carrying the APOE ε4 allele. We hypothesized that CRP, as a key
inflammatory element, could modulate the impact of other genetic variants on AD risk. We selected ten single nucleotide
polymorphisms (SNPs) in reported AD risk loci encoding proteins related to inflammation. We then tested the interaction effects
between these SNPs and blood CRP levels on AD incidence using the Cox proportional hazards model in UK Biobank (n= 279,176
white participants with 803 incident AD cases). The five top SNPs were tested for their interaction with different CRP cutoffs for AD
incidence in the Framingham Heart Study (FHS) Generation 2 cohort (n= 3009, incident AD= 156). We found that for higher
concentrations of serum CRP, the AD risk increased for SNP genotypes in 3 AD-associated genes (SPI1, CD33, and CLU). Using the
Cox model in stratified genotype analysis, the hazard ratios (HRs) for the association between a higher CRP level (≥10 vs. <10 mg/L)
and the risk of incident AD were 1.94 (95% CI: 1.33–2.84, p < 0.001) for the SPI1 rs1057233-AA genotype, 1.75 (95% CI: 1.20–2.55,
p= 0.004) for the CD33 rs3865444-CC genotype, and 1.76 (95% CI: 1.25–2.48, p= 0.001) for the CLU rs9331896-C genotype. In
contrast, these associations were not observed in the other genotypes of these genes. Finally, two SNPs were validated in 321
Alzheimer’s Disease Neuroimaging (ADNI) Mild Cognitive Impairment (MCI) patients. We observed that the SPI1 and CD33 genotype
effects were enhanced by elevated CRP levels for the risk of MCI to AD conversion. Furthermore, the SPI1 genotype was associated
with CSF AD biomarkers, including t-Tau and p-Tau, in the ADNI cohort when the blood CRP level was increased (p < 0.01). Our
findings suggest that elevated blood CRP, as a peripheral inflammatory biomarker, is an important moderator of the genetic effects
of SPI1 and CD33 in addition to APOE ε4 on AD risk. Monitoring peripheral CRP levels may be helpful for precise intervention and
prevention of AD for these genotype carriers.

Translational Psychiatry          (2022) 12:523 ; https://doi.org/10.1038/s41398-022-02281-6

INTRODUCTION
Alzheimer’s disease (AD) is a neurodegenerative disorder with a
long-term deteriorating process including memory decline,
problems with language, disorientation, mood swings, loss of
motivation, self-neglect, and behavioral issues [1]. It has been
reported that over 5.8 million Americans aged 65 and older had
AD dementia in 2020 [2]. Apolipoprotein ε4 (APOE ε4) is the largest
genetic risk factor for late-onset Alzheimer’s disease (AD). A total
of 40–70% of people with sporadic AD carry an APOE ε4 allele.
However, not every person carrying AD risk variants develops AD.
The AD risk potentially depends on both genetics and internal and

external environmental components, such as proinflammatory
factors, and their interactive effects on the disease [1].
Peripheral chronic inflammation has been linked to several age-

related disorders, including cardiovascular disease and type 2
diabetes, both of which are associated with AD risk [3]. C-reactive
protein (CRP) is an acute-phase protein secreted into blood and a
biomarker for chronic low-grade inflammation. CRP levels increase
in response to toxins or injuries in systemic inflammation and,
more generally, with age [4]. Additionally, direct injection of CRP
into the hippocampus of an AD mouse model enhanced the
severity of AD-like pathology in the brain [5]. Previously, we
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observed that elevated blood CRP levels increased the risk of AD
for people carrying the APOE ε4 allele [6–8]. In addition, low CSF
CRP was the biomarker most closely associated with the APOE ε4
copy number, not high CSF CRP levels [9]. We hypothesized that
CRP, as a key inflammatory element, could modulate the impact of
other genetic variants on AD risk, especially variants in gene loci
involved in proinflammation. Current genome-wide association
studies (GWAS) have identified >50 AD loci, some of which are
enriched explicitly in inflammatory pathways [10–12]. In this study,
we selected ten common single nucleotide polymorphisms (SNPs)
in reported AD risk loci encoding proteins related to inflamma-
tion/immune function, including clusterin (CLU, rs9331896) [13],
Spi-1 proto-oncogene (SPI1, rs1057233) [14] and CD33 molecule
(CD33, rs3865444) [15–17]. We then tested the interaction effects
between these SNPs and blood CRP levels on AD incidence as the
primary outcome using the Cox proportional hazards model in
two different cohorts following a meta-analysis of results from
these two cohorts. The top findings were further tested in the
ADNI cohort for the conversion of MCI to AD and AD-specific
biomarkers measured from cerebral spinal fluid (CSF).

MATERIALS AND METHODS
Participants
UK Biobank (UKBB). The UKBB contains genetic, biomarker, medical
record and self-reported demographic and clinical information obtained
from more than 500,000 persons living in the UK [18]. Included in this
study were 279,176 self-reported white participants after excluding
subjects who did not have baseline CRP measurement, lacked genetic
information, had prevalent AD/dementia at baseline, were not at AD-risk
age during the follow-up time due to a young age (i.e., age <50 years at
baseline) or were nonwhite (self-reported) (Fig. 1). In addition, we excluded
those controls who had a family history of AD or dementia because most
UKBB participants did not undergo a formal neuropsychological examina-
tion and consensus diagnosis evaluation; thus, dementia in this group of
subjects, who are considered in some studies as “proxy” AD cases [10, 19],
is likely to include mixed diagnoses. Participants included in the analysis
had an average age of 60.1 ± 5.5 years and were mostly female (53.9%)
(self-reported), British based on genetic analysis of population substructure
(94.1%), and cognitively normal (99.7% versus 0.3% diagnosed with AD

with 8.3 ± 0.9 years follow-up on average). The AD status for each subject
was determined by medical or hospital impatient record (i.e., ICD-10
diagnosis). The AD cases had ICD-10 codes of F00 (AD dementia) or G30
(AD). AD diagnosed cases were recorded until March 30, 2017, which was
used as the end date for survival analysis of incident AD. The characteristics
of the discovery sample are shown in Table 1.

Framingham heart study. The Framingham Heart Study (FHS) is a single-
site, multigeneration, community-based, prospective cohort study of
health in Framingham, Massachusetts. The current study focused on
Offspring cohort (Generation 2) white participants who have data on
GWAS and serum CRP measurement and have been rigorously evaluated
for cognitive decline and dementia since 1979. Other details of this cohort
have been previously described [20]. In brief, the cohort included 5124
white participants at the first health examination (1971–1975). The number
of participants included in this study was 3009 (mean age 60.8 ± 9.4, 53.7%
female [self-reported]) with CRP measured at examination 7, and 156 AD
incident cases were collected through the period ending in 2016 (Fig. 1,
Table S1). Participants were evaluated longitudinally for incident AD as
previously described [8] using consensus diagnostic procedures [7].

Alzheimer’s disease neuroimaging initiative. ADNI-1 is a longitudinal
multicenter study that was launched in 2003 as a public‒private
partnership and designed to test whether serial magnetic resonance
imaging (MRI), positron emission tomography (PET), other biological
markers, and clinical and neuropsychological assessment can be combined
to measure the progression of mild cognitive impairment (MCI) and early
AD [21]. Participants underwent longitudinal in-depth neuropsychological
evaluations [22], and consensus diagnoses of cognitive normal (CN), MCI,
and AD were assigned based on established research diagnostic criteria
[23]. Due to the small number of CN individuals with serum CRP
measurements, participants with an MCI diagnosis at baseline were
included with a follow-up of their MCI to AD conversion. After filtering out
nonwhite subjects and those without CRP measurement, genotype
information and CDR scores, 321 MCI patients were included in the
analysis (Fig. 1). MCI to AD conversion was determined by comparing the
baseline Clinical Dementia Rating (CDR= 0.5) with the most recent CDR
score. MCI subjects whose most recent CDR scores were ≥1.0 were
classified as ‘converters’ (n= 105); otherwise, they were classified as
‘nonconverters’ (n= 216).
Aβ42, total tau (t-Tau) and p-Tau levels in cerebrospinal fluid (CSF) were

measured using the multiplex xMAP Luminex platform (Luminex, Austin,
TX, USA) with INNOBIA AlzBio3 (Innogenetics, Ghent, Belgium)

Fig. 1 Study design and filters for UKBB, FHS and ADNI cohorts. The following three human datasets were analyzed in this study. UKBB:
279,176 participants (mean age 60.1 ± 5.5 years) of which baseline CRP was measured, and 803 incident AD cases were identified after 8.3 ± 0.9
years of follow-up. FHS: 3009 participants (mean age 60.8 ± 9.4 years) of which baseline CRP was measured (i.e., Exam 7), and 156 incident AD
cases were identified after 14.9 ± 4.0 years of follow-up. ADNI: 321 MCI patients (mean age 75.0 ± 7.0 years) of which baseline CRP was
measured, and 105 MCI-to-AD converters were identified after 31.8 ± 11.2 months of follow-up.
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immunoassay kit-based reagents [24, 25]. Further details of ADNI methods
for CSF acquisition and CSF measurement can be found at https://
adni.loni.usc.edu/methods/. These data are available for 224 ADNI-1
participants (Fig. 1, Table S1).

Selection of AD-related genes and SNPs
Among more than 30 gene loci for AD risk identified by GWAS [10–12, 15],
19 have been reported to be related to inflammation [11, 14, 15, 26–33].
Among these, we chose to study the SNPs of 10 genes based on the
following criteria: (1) minor allele frequency (MAF) greater than 5%; (2) was
the most significantly associated SNP with AD in the locus; and (3) showed
evidence of replication in independent studies (Table S2).

Genotyping, quality check and genotype imputation
Genotype calling and imputation in the UKBB dataset were performed as
previously described [34]. SNP genotype data for the FHS cohort that were
previously filtered and imputed were obtained from the Trans-Omics for
Precision Medicine (TOPMed) Imputation Server (https://
imputation.biodatacatalyst.nhlbi.nih.gov/#!). We imputed genotypes for
ADNI participants using the TOPMed reference panel. The imputation
quality r2 of all 10 SNPs was >0.95. The APOE genotype for UKBB subjects
was determined by the combination of rs7412 and rs429358 alleles that
define the ε2, ε3, and ε4 isoforms using a pipeline we developed
previously (https://github.com/jjfarrell/apoe-genotyper). APOE genotypes
for FHS and ADNI subjects were determined using TaqMan assays for these
two SNPs. Details of the SNPs included in this study are shown in Table S2.

Serum CRP measurement
CRP (high sensitivity, hs-CRP) was measured in the period 2006–2010 and a
second time in 2012–2013 in UKBB subjects by immunoturbidimetric-high
sensitivity analysis on a Beckman Coulter AU5800. Measurements obtained
during the first period were used as the baseline level for this study. Details
have been previously described (http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?
id=17518; http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=30710; https://
biobank.ctsu.ox.ac.uk/showcase/showcase/docs/biomarker_issues.pdf). CRP
levels in FHS participants were determined using a Dade Behring BN100
nephelometer [35] from fasting blood samples that were collected at
examination 7 from the antecubital vein when the participants were supine.
Plasma samples were obtained from ADNI participants as previously
described [36] and assessed using the Human DiscoveryMAP Panel and
measurement platform including CRP protein and >100 other proteins as
described [37]. Multiple CRP cutoffs (3–12 mg/L) were used to define low-
grade inflammation [8].

Statistical analysis
Analyses were performed using the R statistical environment (R 3.6.2) and
python 3.7.7 hail module (https://github.com/hail-is/hail/commit/
582b2e31b8bd). Several statistics, including the number of subjects, age,
sex, years of education, APOE ε4 status, CRP level and AD status, were
summarized as the basic characteristics of the stratified population under
different CRP cutoffs (3, 8–12mg/L). Group differences were assessed by
analysis of variance (ANOVA) for normally distributed continuous variables,
by the Kruskal–Wallis rank sum test for continuous variables with skewed
distributions, and by the χ2 test for categorical variables.
Cox proportional hazards regression analysis was initially performed by

including SNP minor allele dosage (0, 1, 2), CRP level, and a term for the
interaction between SNP and CRP level, as well as several covariates,
including age at CRP measurement (baseline), sex, years of education, and 6
principal components (PCs) of ancestry that were associated with AD status
(p < 0.05). A model including an additional term for the presence or
absence of the APOE ɛ4 allele was also tested and showed no meaningful
differences. Specifically, the APOE ɛ4 group includes APOE ɛ3ɛ4 and APOE
ɛ4ɛ4, while the non-APOE ɛ4 group includes APOE ɛ2ɛ2, APOE ɛ2ɛ3 and
APOE ɛ3ɛ3. In addition, Kaplan‒Meier survival analysis and Cox proportional
hazards regression models were applied to evaluate the association of SNPs
and high CRP status defined at different cutoffs with incident AD. Nominally
significant results (p < 0.05 in interaction tests and stratified genotypes
analysis) were further pursued by applying the same Cox proportional
hazards regression models to the FHS (incident AD) and ADNI data (MCI to
AD conversion). Biomarkers such as Aβ and tau were also analyzed as
supportive evidence in ADNI1 using linear regression models adjusted for
age at baseline, sex, years of education and APOE ε4. Stratification analyses
using different coding of genotypes and different CRP cutoffs were Ta
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performed for significant SNPs. Effect estimates of AD incidence from the
UKBB and FHS datasets were combined by inverse-variance weighted meta-
analysis using METAL [38]. Power analysis was conducted for stratified
genotype analysis, and the results are provided in Table S3.

RESULTS
Characteristics of the study population
The 279,176 UKBB participants included in this study (Table 1) had an
average follow-up period of 8.3 years, and 803 of them developed
AD (mean age at onset = 70.5 years). Subjects with CRP
concentrations ≥8mg/L (n= 17,173, 6.2%) compared to those with
a lower concentration of CRP were slightly older (p < 0.001) and more

likely to be female (59.2% vs. 53.9%, p < 0.001) and APOE ε2 carriers
(15.5% vs. 13.4%, p< 0.001) and were less likely to be APOE ε4 carriers
(17.3% vs. 24.2%, p < 0.001). The incidence of AD was slightly higher
in the group with CRP≥ 8mg/L than in the CRP < 8mg/L group
(0.4% vs. 0.3%, p= 0.10), but the difference was not significant. The
age at onset of AD was similar between these CRP groups (p= 0.14,
95% CI= [−1.75, 0.26] for CRP 8mg/L cutoff).
SNPs displaying nominal interaction with CRP for AD risk in the

UKBB cohort were further evaluated in 2,853 cognitive normal
control subjects and 156 AD incident cases in the FHS cohort
(Table S1). Compared with UKBB subjects, FHS subjects had a
similar age at baseline exam 7 (60.8 vs. 60.1) and an older AD
onset age (80.9 vs. 70.5). In addition, FHS subjects had a higher

Fig. 2 Kaplan‒Meier analysis in UKBB for AD-free probability under different CRP levels (mg/L) among genotypes in 3 SNPs. A SPI1
rs1057233-AA vs. rs1057233-GG+ GA. B CD33 rs3865444-CC vs. rs3865444-AA+ AC. C CLU rs9331896-TT vs. rs9331896-CC+ CT genotypes.
Red: CRP < 11mg/L, Green: CRP ≥ 11mg/L. Raw P values are presented.
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average CRP level (2.2 mg/L vs. 1.4 mg/L), lower APOE ε4 carrier
frequency (21.9% vs. 24.2%), and higher proportion of individuals
with AD (5% vs. 0.3%) than UKBB subjects. In addition, the follow-
up period from age at CRP measurement to censoring age was
longer for FHS than UKBB subjects (average 14.93 vs. 8.45 years).
However, the associations of CRP concentration with age, female
sex, lower APOE ε4 carrier frequency and AD risk were similar to
those observed in UKBB subjects.

Impact of peripheral CRP on the association of established AD
risk loci with AD incidence
SNPs at four of the 10 tested loci (HLA-DRB1 rs9271192, CLU
rs9331896, ADAM10 rs593742 and CD33 rs3865444) were sig-
nificantly associated with AD risk in the UKBB dataset. However,
only the SPI1 SNP rs1057233 showed nominal evidence of an
interaction with CRP concentration on AD risk (p= 0.03) (Table 2).
The results were unchanged by removing the ɛ4 carrier status
from the model (data not shown). Further examination of these
five SNPs using different CRP cutoffs to define high chronic
inflammation revealed evidence of nominally significant interac-
tions (p < 0.05) between high CRP levels (9–12mg/L) and SNPs in
CLU, SPI1 and CD33 for AD risk (p < 0.05) (Table S4). Kaplan‒Meier
analyses investigating the effect of the interaction of CRP
concentration with these three SNPs highlighted significantly
lower AD-free probability among subjects having CRP greater than
11mg/L and at least one of the following genotypes: SPI1
rs1057233-AA (p= 0.001), CD33 rs3865444-CC (p= 0.006) or CLU
rs9331896-CC/CT (p= 0.009) (Fig. 2). In contrast, AD risk was not

influenced by elevated CRP among persons with other genotypes
for these SNPs. Further stratification analysis showed that among
subjects with rs1057233-AA and rs3865444-CC genotypes, the
hazard ratio for AD was progressively larger with increasing CRP
concentration (p < 0.001, Fig. 3, Fig. S1, Fig. S2, Table S5). All CRP
cutoff (3–12mg/L) results are presented in Fig. S2. A similar but
marginally significant trend was noted for rs9331896-CC/CT
genotypes among UKBB but not FHS subjects. The significance
of the interactions involving the SPI1 and CD33 SNPs increased
slightly in the meta-analysis of UKBB and FHS results compared to
those for UKBB subjects alone (Fig. 3g, h).

Association of the interaction between SPI1 and CD33
genotypes and CRP levels with MCI to AD conversion and CSF
AD biomarkers
Next, we investigated whether the interactions of CRP levels with
SPI1 and CD33 polymorphisms, which were associated with AD risk
in the UKBB and FHS datasets, were also associated with the
conversion of MCI to AD and AD-related CSF biomarkers in ADNI
participants. At high CRP levels, the trends of association of the
interaction between CRP and the SPI1 (p= 0.03) and CD33
(p= 0.07) SNPs with MCI-to-AD conversion were in the same
direction as observed for the association of these SNPs with AD
risk in the UKBB and FHS datasets (Table S6).
Survival analysis conducted separately among subjects with

CRP levels less than 8mg/L and 8mg/L or greater revealed that
conversion from MCI to AD was impacted only among those with
the SPI1 rs1057233-AA or CD33 rs3865444-CC genotypes (Fig. 4a,

Fig. 3 Forest plots of the results from UKBB, FHS and meta-analysis for the stratified genotype analysis of 3 SNPs for the effect of CRP
levels on AD incidence. The Cox proportional hazard regression models were applied to estimate the effect of different levels of serum CRP
on the incidence of AD among different genotypes of SPI1, CD33, and CLU after adjusting for age, sex, years of education, APOE ε4 and PCs. The
results from UKBB are shown (a–c), and those from FHS are shown (d–f). The results from the meta-analyses of UKBB and FHS are shown (g–i).
Raw P values are presented. For all CRP cutoffs from 3–12mg/L, refer to Fig. S2.
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b). Similar findings were obtained from Cox proportional hazards
analyses that adjusted for age, sex, years of education, and APOE
ɛ4 (p < 0.01) (Fig. 4c, d).
Amyloid plaque represented by amyloid beta (Aβ) levels and

neurofibrillary tangles represented by tau levels are two

neuropathological hallmarks of AD. PET imaging or cerebral spinal
fluid (CSF)-measured Aβ and tau is considered the gold standard
for the in vivo diagnosis of AD, as recently proposed in the
amyloid-tau-neurodegeneration (A/T/N) framework [39]. Further
analyses of individuals with these genotypes showed that
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rs1057233-AA subjects with higher levels of CRP, particularly
above the 10mg/L cutoff, had higher levels of t-Tau (interaction
p= 0.003) and p-Tau (interaction p= 0.005), but these effects
were not observed in those with other rs1057233 genotypes
regardless of CRP concentration (Fig. 4e, Table 3). Similar patterns
were observed for rs3865444-CC subjects with higher CRP levels,
but the results were much more attenuated (Fig. 4f, Table 3, Fig.
S3). The interactions of CRP level with the SPI1 and CD33 SNPs
were not associated with Aβ42 level (Table 3).

DISCUSSION
The results of this study extend our previous finding that elevated
CRP impacts AD risk among APOE ε4 carriers [8] and the well-
established relationship between inflammation and AD [40–42].
We found evidence in three independent datasets that the
association of AD with SNPs in the neuroinflammatory AD-
associated genes SPI1 and CD33 is modulated by CRP levels.
Elevated CRP levels have a larger effect size for MCI-to-AD
conversion than AD incidence in cognitively normal individuals
among the affected genotypes. Consistent with the effect of the
interaction between APOE ε4 and CRP on CSF AD biomarkers [43],
this study also demonstrated that the combination of elevated
CRP and AD-associated genotype in SPI1 or CD33 was associated
with increased CSF t-Tau and p-Tau levels. Taken together, our
findings suggest that CRP produced during peripheral chronic
inflammation may play a key role in modulating the effects of
APOE, SPI1 and CD33 genotypes on AD risk.
One possible explanation for the association of the interactions

of CRP with these genes with AD is that the SNPs contribute to AD
risk through their influence on CRP levels. However, SPI1, CD33
and CLU were not found to be significantly associated with CRP
levels in a GWAS including more than 200,000 individuals [44].
Rather, the findings from our analyses, which considered multiple
CRP cutoffs used to evaluate inflammation severity in clinical
practice, may provide insight into mechanisms linking SPI1 and
CD33 to AD. It is possible that the effect of peripheral chronic low-
grade inflammation on AD is influenced by SPI1 and CD33
genotypes. Elderly persons more frequently suffer from bacterial
and viral infection/inflammation as well as obesity and cardiovas-
cular diseases in peripheral systems, which lead to elevated CRP
levels. The relationship between high blood CRP and AD risk is
controversial [45–47], probably due to unaccounted for interac-
tions of CRP with AD-related genes involved in inflammation,
inflammatory stage, and treatment for inflammation. It is possible
that severe and chronic peripheral inflammation caused by
persistent bacterial or viral infection may enhance certain genetic
vulnerabilities for AD, including those conferred by APOE ε4, as
well as particular SPI1 and CD33 genotypes. Given that our recent
study identified monomeric CRP as a mediating factor for APOE ε4-
related AD pathogenesis [48], this study suggests that CRP may
also be such a mediating factor in the AD pathophysiological
process related to SPI1 or CD33.
SPI1 encodes the ETS-domain transcription factor PU.1, which is

critical for myeloid cell development and is a major regulator of
microglial gene expression. AD heritability (measured by summary

statistics from IGAP GWAS [30]) was enriched within the PU.1
cistrome, implicating a myeloid PU.1 target gene network in AD
[14]. The SPI1 SNP rs1057233 was reported to affect its expression
and influence chronic autoimmune disease [49]. In the brain, PU.1
is specifically expressed in microglia, and recent evidence
suggests that reductions in PU.1 contribute to a delayed onset
of AD, possibly by limiting neuroinflammatory responses [50].
Therefore, we reasoned that SPI1 risk allele carriers have higher
expression of PU.1, leading to enhanced neuroinflammatory
responses to peripheral chronic inflammation, which may increase
their risk of AD. Alternatively, high CRP levels may disproportio-
nately increase SPI1 expression among SPI1 risk allele carriers,
resulting in PU.1 accumulation and subsequently increasing
AD risk.
As one of the key microglial receptors, CD33 is involved in the

innate immune pathway associated with anti-inflammatory
signaling and hematopoietic cell lineage [17]. CD33 also plays a
role in mediating cell‒cell interactions and maintaining immune
cells in a resting state [51–53]. CD33 is an innate immune effector
of neuroinflammation. CD33 controls the microglial activation
state, turning microglia from housekeepers that clear amyloid into
killers that destroy neurons [54–57]. Its association with AD is
supported by some [10, 16, 58–61], but not all [9, 28] genetic
studies. The CD33 rs3865444(C) risk allele was reported to be
associated with greater cell surface expression of CD33 in
monocytes, accumulation of amyloid pathology and increased
numbers of activated human microglia [62], and increased CD33
expression was also observed in microglial cells in the AD brain
[56]. Consistent with results from a study showing that deletion of
CD33 results in an inflammatory human microglial phenotype [63],
our results suggest that a high CRP level together with the
rs3865444(C) risk allele increases CD33 expression in the brain and,
by extension, neuroinflammation, leading to hallmark AD pathol-
ogy. Most recently, Griciuc et al. reported that gene therapy for AD
targeting CD33 reduces amyloid beta accumulation and neuroin-
flammation [64]. Alector has developed the mAb AL003, which
blocks CD33 function and may reduce neuroinflammation in the
AD brain and is in early-phase clinical trials for AD [54]. Our study
suggests that stratification of patients based on their peripheral
chronic inflammation severity (i.e., CRP level) and genotypes can
be very helpful to improve personalized AD intervention and
treatment.
Age is known as a risk factor for both AD development and

peripheral chronic inflammation. Neuroinflammation clearly
occurs in pathologically vulnerable regions of the AD brain.
Infections of the respiratory, gastrointestinal, and urinary tract
systems as well as cardiovascular diseases and diabetes are
common in older adults and can trigger chronic low-grade
inflammation (i.e., high CRP levels). Such an inflammatory
response may increase susceptibility to AD, especially among
those carrying genetic risk variants. As CRP activates the
complement system [65] and the activated complement system
is involved in AD pathogenesis [66], all three genes, SPI1 [67],
CD33 [68] and CLU [69], are linked with complement in
proinflammation, suggesting a common cross-shared pathway
for all of these factors in AD. Since it is currently unrealistic to

Fig. 4 Kaplan‒Meier survival plots and forest plots using the ADNI cohort for the stratified genotype analysis for the effect of CRP levels
on MCI-AD conversion in the Cox proportional hazard regression models and boxplots for CRP-SNP interaction effects on CSF biomarkers
(t-Tau and p-Tau): SPI1 rs1057233 and CD33 rs3865444. ADNI MCI participants were stratified by genotypes. Kaplan‒Meier survival plots
were generated for AD free time for SPI1 rs1057233 and CD33 rs3865444 genotypes; Red: CRP < 8mg/L, Green: CRP ≥ 8mg/L (a, b). Forest plots
with the estimated effect of different levels of serum CRP on the MCI-to-AD conversion among different genotypes after adjusting for age, sex,
education and APOE ε4 (c, d). ADNI participants with measured CSF AD biomarkers were stratified by genotype. t-Tau and p-Tau measured at
the last exam were log transformed and are shown in boxplots. p values of the interaction between CRP and SPI1 rs1057233/CD33 rs3865444
genotypes were calculated using linear regression analysis after adjusting for age, sex, education and APOE ε4. Red: CRP < 10mg/L, Green:
CRP ≥ 10mg/L (e, f). Raw P values are presented.
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change genetic risk polymorphisms, modifying or treating
mediating factors such as CRP by pharmacological and non-
pharmacological approaches for genetic risk carriers of APOE ε4,
SPI1 rs1057233(AA) and CD33 rs3865444(CC) could be an
alternative strategy to prevent or treat AD [70].
This study has several limitations. CLU (clusterin) is also known as

apolipoprotein J. It is reported that the CLU polymorphism
influences its expression, which is increased in inflammatory states
[71]. We found that elevated CRP impacted the CLU rs9331896(C)
allele on AD risk in UKBB only. In addition, the imbalanced size for
the ADNI cohort within high CRP cutoffs may have skewed the
findings. Additional large independent AD human cohorts are likely
needed to further characterize this relationship. Second, although
we obtained significant results after a stringent Bonferroni multiple-
testing correction (i.e., p < 0.0028), which is 0.05/18 independent
tests (i.e., 3 SNPs*6 CRP cutoffs) (Fig. 3), we still might not catch
those with chronic and longitudinal inflammation with one CRP
measurement without having longitudinal measurements of CRP.
Finally, UKBB had a relatively lower AD incidence rate than many
other cohorts reported. We reasoned that in UKBB, the population
evaluated had a shorter follow-up time and that more AD incident
cases would be observed when the study continued to evolve [72].
Nevertheless, our study using three different cohorts suggests a
role for the clinical biomarker CRP used under infection or
inflammation conditions in monitoring risk in those with specific
genetic factors for AD development as well as a role in precision
medicine-based drug development. Future studies in larger cohorts
with frequent longitudinal monitoring of serum CRP are needed to
validate our findings, and the use of multiethnic cohorts will be
necessary to test the generalizability of our findings.
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3mg/L cutoff Abeta −0.153 (0.181) 0.40 −0.316 (0.172) 0.07

t-Tau −0.146 (0.136) 0.28 −0.069 (0.130) 0.55

p-Tau −0.167 (0.154) 0.27 −0.046 (0.147) 0.70

8mg/L cutoff Abeta 0.211 (0.281) 0.46 −0.463 (0.265) 0.08

t-Tau −0.474 (0.213) 0.03 −0.351 (0.201) 0.07

p-Tau −0.520 (0.241) 0.04 −0.369 (0.227) 0.09

9mg/L cutoff Abeta 0.122 (0.290) 0.68 −0.465 (0.279) 0.10

t-Tau −0.481 (0.220) 0.03 −0.420 (0.213) 0.04

p-Tau −0.512 (0.249) 0.04 −0.434 (0.242) 0.06

10mg/L cutoff Abeta ‘0.038 (0.319) 0.90 −0.324 (0.301) 0.28

t-Tau −0.717 (0.238) 0.003 −0.451 (0.227) 0.04

p-Tau −0.766 (0.270) 0.005 −0.492 (0.257) 0.05

Different CRP cutoffs ≥3, 8, 9 and 10mg/L were used. General linear regression (GLM) was used to study the relationships between these blood CRP cutoffs
and two SNPs for AD biomarkers, including Abeta42, total Tau (t-Tau) and phosphorylated Tau (p-Tau), in cerebrospinal fluid (CSF). The models were adjusted
for age, sex, years of education and APOE ɛ4. Prevalent AD was removed. Biomarkers at each last exam were used. Raw P values are shown.
aDummy variable for SNPs and CRP in Model: rs1057233: GG+ GA= 1, AA= 0; rs3865444: CA+ AA= 1, CC= 0; CRP cutoff code: < cutoff=0; ≥ cutoff=1.
bRaw P values.
Bold value indicates P < 0.05.
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