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Contrary to intuition, most individuals are resilient to psychological trauma and only a minority is vulnerable. Men and women are
known to respond differently to trauma exposure, however, mechanisms underlying the relationship between sex differences and
trauma resilience and vulnerability are not yet fully understood. Taking advantage of the Behavioral Profiling approach, which
enables differentiating between ‘affected’ and ‘unaffected’ individuals, we examined sex-associated differences in stress exposure
effects on hippocampal expression of selected stress-related GABA-A receptor targeting miRNAs. Levels of the miRNA-144 and
miRNA-33 were measured in male and female affected (vulnerable, e.g., higher freezing time) and unaffected (resilient) rats. In male
rats, increased levels of miRNA-144 and miRNA-33 were observed in the dorsal dentate gyrus (dDG) and ventral dentate gyrus (vDG)
respectively, of stress-exposed but unaffected animals. In females, we observed an increased expression of miRNA-144 and miRNA-
33 in the ventral cornu ammonis 1 (vCA1) of affected animals. Accordingly, we inhibited miRNAs expression selectively in
hippocampal subregions using oligonucleotides containing locked nucleic acid bases, to examine the miRNAs’ causal contribution
to either vulnerability or resilience to stress in each sex. Inhibition of miRNA-144 in dDG and miRNA-33 in vDG in males resulted in
an increased prevalence of vulnerable animals, while inhibition of miRNA-144 and miRNA-33 in vCA1 in females increased the
proportion of resilient animals. The current findings reveal a critical sex-associated difference in the role of miRNAs in stress
vulnerability and resilience. This novel understanding of sex-associated epigenetic involvement in the mechanism of stress-related
psychopathologies may help improve gender-specific diagnosis and effective treatment.
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INTRODUCTION
Sex differences in stress responses have been consistently
demonstrated in human and animal models [1–4]. For instance,
men are more likely to turn to substance abuse following a
stressful event [5], while women are more likely to suffer from
anxiety and trauma-related disorders [6–8]. Furthermore, there are
non-sex related individual differences. Studies have shown that
the majority of people are resilient to stress, and a relatively small
proportion is vulnerable and may develop long-term stress-related
psychopathologies [9, 10]. The underlying mechanisms by which
individual and sex differences influence stress resilience and
vulnerability are still largely unknown and are of fundamental
importance to improving treatment of stress-related psycho-
pathologies. It is possible that these mechanisms involve
epigenetics, and specifically alterations in microRNAs (miRNAs)
expression [11–14]. Accumulating evidence shows that dysregula-
tion of miRNAs in body fluids and brain tissues may be associated
with stress-related conditions in both patients and animal models
[15–20].
Several in vivo studies indicate that miRNAs could be involved

in vulnerability and resilience to stress-related mental disorders
[21–23], as well as in stress-related sex differences [24, 25].
However, the contribution of miRNA to the mechanism of sex-

related individual patterns of trauma response, was not yet
systematically studied. Some miRNAs were demonstrated to
contribute to the post-transcriptional regulation of gene expres-
sion of GABA-A receptors, following stress exposure [26]. For
instance, exposure of mice to acute adult stress led to differential
expressions of several GABA-A receptor targeting miRNAs in the
hippocampus. Among them are miRNA-144 and miRNA-33 which
target four or more mRNAs encoding GABA-A receptors [27]. A
pilot study showed that similar changes to these miRNAs occurred
in rats’ hippocampus following juvenile stress exposure (Fig. S2).
Changes in miRNAs following stress exposure were not yet, to the
best of our knowledge, studied in different subregions of the
hippocampus.
Different hippocampal subregions are suggested to have

distinct functions. While the dorsal hippocampus was found to
be involved in cognition and spatial mapping, the ventral
hippocampus is regarded as playing a role in stress responses,
emotional memory formation and anxiety [28, 29]. Additionally,
differences were found between the involvement of the dentate
gyrus (DG) and cornu ammonis 1 (CA1), with regards to sensitivity
and impact of exposure to stress [30, 31]. Having found
hippocampal alterations in miRNA-144 and miRNA-33 following
stress exposure, it would be interesting to pin down site-specific
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GABA-A related miRNA expression in the aforementioned
subregions of the hippocampus and the extent to which sex
influences the vulnerable or resilient response patterns.
Therefore, the first aim of the current study was to explore whether

there is a difference in the expression pattern of the GABA-A receptor
targeting miRNA-144 and miRNA-33 transcripts in the dorsal and
ventral dentate gyrus (dDG, vDG, receptively) and dorsal and ventral
CA1 (dCA1, vCA1, receptively) hippocampal areas, in the stress
exposed affected rats compared to that of the stress exposed but
unaffected, male and female rats. In the second part, aiming to
directly examine the contribution of miRNA-144 and miRNA-33 to
trauma vulnerability and resilience in males and females, we inhibited
their functioning in the relevant subregions of the hippocampus.

MATERIAL AND METHODS
Animals
For experiment 1, male and female Sprague–Dawley rats (postnatal day
(PND) 22 on arrival, weight 30–50 g, Harlan Laboratories, Jerusalem, Israel),
were group housed (22 ± 2 °C; light–dark cycle: 12/12 h), with water and food
ad libitum. For experiment 2, male rats arrived on PND 45 (weight 175–199 g)
and female rats arrived on PND 22 (weight 30–50 g) and were kept in the
same conditions. Animals were randomly allocated to experimental groups.
Sample size for each section was based on extensive previous experience
[3, 4, 32–39]. Experimenters were blind to the group allocation during
behavioral test performance. Animal care and experiments were performed
in accordance with the NIH Guide for care and use of laboratory animals and
approved by the University of Haifa ethical committee (610/19).

Experimental procedure
The experimental design is depicted in Fig. 1. Rats were assigned to two
experimental paradigms:

Experiment 1. Following arrival and acclimation all rats were randomly
assigned to one of four cohorts: Control (male: n= 20, female: n= 17);
juvenile stress (JS, male: n= 23, female: n= 20); adult stress (AS, male: n= 23,
female: n= 20); and combined JS+ AS (male: n= 23, female: n= 20). JS and
JS+ AS rats were subjected to JS protocol. In adulthood, all rats were
habituated to the water-associated zero maze (WAZM), and following this,
only groups AS and JS+AS were immediately subjected to underwater
trauma (UWT) stress. 14 days later, all rats were re-exposed to the elevated
plus maze (EPM) and WAZM for the purpose of behavioral profiling. 24 h
later, tissue samples were extracted and assessment of miRNA-144 and
miRNA-33 levels in the different subregions of the hippocamps was
conducted. In total, this experiment was replicated four times.

Experiment 2. miRNA inhibition. Since, based on results in experiment 1, we
hypothesized that knocking down miRNA-144 and miRNA-33 would
compromise resilience in males, we used a protocol with a relatively low

baseline prevalence of affected animals, to more effectively detect a potential
increase in the proportion of affected animals by our manipulation [32].
Locked nucleic acid (LNA) inhibition was performed for miRNA-144 in the
dDG and for miRNA-33 in the vDG following exposure to UWT (see Fig. S6 for
cannula placement, and additional supporting data in table S1 and Figs. S4
and S5). Male rats were randomly assigned to one of four cohorts: exposure
to adult stress and LNA inhibition (AS-LNA: n= 7); exposure to adult stress
without inhibition (AS-SCR: n= 10); LNA inhibition without stress exposure
(CTR-LNA: n= 8); and no stress exposure/no inhibition (CTR-SCR: n= 7).
In females, since, based on results from experiment 1, we hypothesized

that blocking the functioning of the miRNAS will support stress resilience, we
employed the combined exposure to JS and UWT, a stress protocol with an
observed initial high baseline prevalence of affected animals, in order to
more effectively be able to detect an increase in the proportion of unaffected
animals. Rats were randomly assigned to one of four cohorts: exposure to
juvenile and adult stress and LNA inhibition (JS+AS-LNA: n= 8); exposure to
juvenile and adult stress without inhibition (JS+ AS-SCR: n= 10); LNA
inhibition without stress exposure (CTR-LNA: n= 13); and no stress exposer
and no inhibition (CTR-SCR: n= 10). LNA inhibition was performed for
miRNA-144 and miRNA-33 in the vCA1 following exposure to the UWT.
Fourteen days later all rats were re-exposed to the EPM and WAZM and

were subjected to behavioral profiling. In total, this experiment was
replicated four times.

Juvenile stress (JS) exposure
JS rats were exposed to 3 different stressors on 3 consecutive days under
full light condition (as described before [3, 33]): PND 27–15min of forced
swim stress (water temperature 22 ± 2 °C); PND 28 - elevated platform
(12 × 12 cm, 70 cm above floor level) exposure for 3 × 30min (1 h ITI in the
home cage); PND 29—2 h restraint.

Water-associated zero maze (WAZM)
The WAZM is an integrated wet and dry context maze that enables an
association of the maze with an UWT [34]. On PND 60, following 5min
habituation to the room, rats were habituated to the WAZM for additional
5 min, on the dry arena, facing the closed part of the WAZM, in one of its
open arms. Then rates were removed from the dry platform and placed in
the aquatic center of the apparatus, where they were subjected to UWT
stress for 45 s, using a special metal net (AS). Following the procedure, the
rats were dried and returned to their home cages. For the test, following
2min habituation to the room, rats were placed on the dry arena at the
same location. Rats were given 5min to explore the arena, during which
their behavior was recorded and analyzed by EthoVision XT10 video
tracking system (Noldus, Wageningen, Netherlands) (For an elaborate
description of this procedure see [35]).

Elevated plus maze (EPM)
For a different context measurement of emotional behavior not directly
associated with the trauma, elevated plus maze (EPM) test was carried out

Fig. 1 Timeline of experiment 1 and experiment 2 experimental procedure.
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on PND 74, 24 h before the WAZM test, as described before [40]. After
2 min habituation to the room, rats were placed in the center of the maze
(110 × 110 cm, 70 cm above the floor; two opposing open arms/closed
arms), facing an open arm and were allowed to freely explore the arena
maze for 5 min. Behavior was recorded and analyzed by EthoVision XT10
video tracking system (Noldus, Wageningen, Netherlands).

Behavioral profiling
Analysis of individual behavior, indicating resilience or vulnerability, was
used to establish the different effects of JS and AS conditions, as well as
miRNA-144 and miRNA-33 LNA inhibition on rats’ behavioral phenotype. In
this analysis the classification of animals’ behavioral profiles was based on
the upper or lower 20th percentiles of anxiety-like behaviors (WAZM and
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EPM tests) of the control group distribution. Classification criteria were
based on the lower 20th percentiles of control’s distribution, for time spent
in open arms (WAZM and EPM), distance traveled in open arms (WAZM)
and total distance traveled (WAZM) and on the upper 80th percentiles for
freezing time (WAZM and EPM). All rats were individually discerned for
each criterion. For the final classification, every rat that demonstrated a
behavioral profile that fell within a minimum of 4 out of 6 criteria was
classified as affected [36].

Surgery and cannulation
The procedures were performed under Ketamine anesthesia (10%
Ketamine 100mg/kg, and 2% dormitor, 10 mg/kg (Vetmarket, Petah-Tikva,
Israel), both i.p.). Rats were restrained in a stereotaxic apparatus (Stoelting
instruments) and implanted with a stainless-steel guide cannula (23 gauge,
thin walled). Double guided cannulas were bilaterally implanted in the
dDG (−3.7 mm posterior, ±2.3 mm lateral and −3.8 mm ventral to bregma)
and vDG (−5.8 mm posterior, ±4.5 mm lateral and −7.1 mm ventral to
bregma) in male, and in the vCA1 (−6mm posterior, ±5.6 mm lateral and
−7.6 mm ventral to bregma) in female. The cannulas were set in place
using acrylic dental cement and secured by three skull screws. A stylus was
placed in the guide cannula to prevent clogging. For the following first
3 days, rats were treated with analgesics (Dipyrone, 0.3 ml/kg, s.c.;
Vetmarket) and antibiotics (15% Amoxycillin, 0.2 ml/kg, s.c.; Vetmarket,
Petah Tikva, Israel) and were allowed to recover in their home cage for a
total of one week before behavioral testing began. For microinjection, the
stylus was removed, and a 14-gauge (for the dDG) or 16-gauge (for the
vDG and vCA1) injection cannulae, extending 1.0 mm from the tip of the
guide cannula, were inserted. The injection cannula was connected via
polyethylene PE20 tubing to a Hamilton microsyringe driven by a
microinfusion pump (PHD1000, Harvard Apparatus, USA). Bilateral micro-
injections of a 0.5 µl volume were delivered over 1 min. The injection
cannula was left in each position for an additional 1 min before withdrawal
to minimize dragging of the injected liquid along the injection tract [41].

Quantitative real-time PCR (qRT-PCR) for assessment miRNA
expression
Total RNA was extracted using miRNeasy RNA Isolation Mini Kit (Qiagen,
Hilden, Germany, Cat. No. 217004). Reverse transcription was carried out
using qScript cDNA Synthesis Kit (Quanta Biosciences, Gaithersburg, USA,
Cat. No. 95047) following the manufacturer’s protocol. miRNA-144-3p
(Quanta Biosciences, Cat. No. MIR SET), miRNA-33-5p (Quanta Biosciences,
Cat. No. MIR SET) and miRNA-381-5P (Quanta Biosciences, Cat. No. MIR SET)
expression were assessed using SYBR Green qRT-PCR amplification (5 ng
total RNA in 20 μl total reaction volume, Cat. No. 95074) using specific
primers (0.4 μl each, Quanta Biosciences, Gaithersburg, USA) according to
manufacturer’s instructions. Real-time PCR analysis was performed on a
QuantStudio 3 real-time PCR system (Thermo Fisher Scientific Inc.,
Waltham, MA, USA), using the following PCR conditions: (95 °C for 3 min
Holding stage, followed by 40 cycles (95 °C for 15 s, 60 °C for 45 s) [42].
For data analysis, the mean cycle threshold (CT) was determined for

each triplicate assay and relative quantification of each target gene was
conducted with the ddCT method [43], normalizing each sample to the
overall content of cDNA using RNU6 as an internal control {dCT; dCT= [CT
(target gene)]− [CT (RNU6)]}. Normalization of all ddCT values was done
relative to Control group with ddCT= dCT(sample)−mean dCT (Control
group). Transformation to RQ values for a specific target gene and area was
done according to RQ= 2−ddCT with RQ(Control)= 1.

miRNA inhibition
miRCURY LNA miRNA144-3P inhibitors (sequence 3′-5′: AGTACATCATCTA-
TACTGT, Qiagen, Hilden, Germany) and miRCURY LNA miRNA33-5p

inhibitors (sequence 5′-3′: GCAATGCAACTACAATGCA, Qiagen, Hilden,
Germany) were dissolved in water to 400 μM, heated at 65 °C for 10min,
cooled on ice, and diluted in artificial cerebrospinal fluid (ACSF) to a final
working concentration of 40 μM. The inhibitors have a full phosphor-
othioate backbone modification (PS) (added for enhanced stability and
potency). Scrambled LNA, which does not bind to any cellular miRNA, were
used as a negative control (sequence 5′-3′: TAACACGTCTATACGCCA,
Qiagen, Hilden, Germany) [27].

Statistical analysis
The sample sizes of each experiment were determined based on our
previous studies of stress-emulating paradigms [32, 33, 35, 36]. Data were
analyzed using the IBM SPSS Statistics Software (IBM, Armonk, NY, USA).
For comparing anxiety like behavior (e.g., freezing time in the WAZM)
following different stress exposures, a one-way ANOVA followed by Fisher’s
LSD post hoc test was applied. The prevalence of affected vs. unaffected
populations between the groups in experiment 1 and experiment 2 was
compared using Pearson’s chi squared test. For miRNA level differences
between type of stress exposures or behavioral profiles, and their
interactions, a two-way ANOVA, followed by Fisher’s LSD post hoc test
was applied when data was normally distributed. For non-normally
distributed data were analyzed by Kruskal-Wallis test followed by pairwise
two-sided comparisons. Homogeneity of variance was confirmed with
Levene’s test for equality of variances. Significance was accepted when
p < 0.05. Outliers were defined as two or more standard deviations from
the mean and removed from the analysis. GraphPad Prism 7.0 (GraphPad
Software, San Diego, CA), and BioRender (https://biorender.com/) were
used to create figures.

RESULTS
Group and individual differences in response to stress
exposure in males and females
Freezing behavior as expressed in total freezing time in the WAZM
was measured in males and females. In males, freezing time of the
JS+ AS group was significantly longer (Fig. 2A; F(3,85)= 6.19,
p < 0.001) compared to all other groups (Control: P < 0.001, JS:
p < 0.001, AS: p < 0.01). In females, both AS and JS+ AS groups
showed more freezing behavior (Fig. 2B; H(3)= 19.94, p < 0.001)
compared to control (AS: P < 0.01, JS+ AS: P < 0.001) and JS
groups (AS: P < 0.05, JS+ AS: P < 0.01), demonstrating an overall
increase in anxiety-like behaviors after exposure to combined
stress in males and to AS and combined stress in females.
Sex differences in response to trauma exposure between

groups of males and females have been established in the past
[44–46], however, due to the fact that some individuals are more
susceptible to stress than others, a comparison of the different
groups’ means does not expose differences in stress induced
changes at the individual level between males and females.
Hence, we used behavioral profiling in order to identify vulnerable
and resilient individuals among the male and female groups
following exposure to the various stressors.
Behavioral profiling revealed sex-related differences. In males,

increased prevalence of affected animals was found in the JS+ AS
group compared to all other groups (Fig. 2C; Control: χ2
(1)= 11.85, p < 0.01; JS: χ2(1)= 9.13, p < 0.01; AS: χ2 (1)= 4.29,
p < 0.05).
In females, increased prevalence of affected rats was found in

both the AS and JS+ AS groups compared to the control group

Fig. 2 Averaged freezing time group effects and individual behavior profiles following different stress exposures in males and females.
A In males, the JS+AS group spent more time freezing in the WAZM compared to all other groups. Number of animals: Control: n= 20, JS:
n= 23, AS: n= 23, JS+AS= 23. B In females, both AS and JS+AS groups showed increased freezing behavior in the WAZM compared to
control and JS rats. Number of animals: Control: n= 17, JS: n= 20, AS: n= 20, JS+ AS= 20. C Behavioral profiling according to anxiety-like
behaviors in male rats, revealed an increase in the prevalence of affected animals in the JS+AS group compared to that of all other groups. D In
females, behavioral profiling analysis uncovered a significantly higher prevalence of affected animals among JS+AS and AS groups equally,
compared to that of the control group. A significantly higher proportion of affected animals, though less pronounced, was detected in the JS
group compared to that of the control group. A, B Data presented as individual values, with bars and whiskers representing means and standard
errors, respectively. C, D Values are the % and number of affected and unaffected animals in each group. *P < 0.05, **P < 0.01, ***P < 0.001.
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Fig. 3 miRNA levels in affected and unaffected male rats. A Increase in miRNA-144 levels occurred exclusively in the dorsal dentate gyrus
(dDG) of unaffected rats with a history of JS, AS or combined JS+ AS, whereas no main effects for stress exposure group or behavioral profile
were observed in the ventral dentate gyrus (vDG) (B), dorsal Cornu Ammonis 1 (dCA1). C or ventral CA1 (vCA1) (D). Within the vDG, an
increase in miRNA-33 expression was evident in stress-exposed, but unaffected rats (F). No main effects for group or profile were observed for
miRNA-33 expression in the dDG (E) dCA1 (G) and vCA1 (H). Data presented as means and standard errors of fold-change, relative to control.
*Significant difference between profiles, p < 0.05, **p < 0.01.
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Fig. 4 miRNA levels in affected and unaffected female rats. A–C No main effects or interactions were observed in miRNA-144 levels in the
dDG, vDG and dCA1. D Increased miRNA-144 levels occurred specifically in the vCA1 of affected compared to unaffected rats. E–G No main
effects or interactions were observed in miRNA-33 levels in the dDG, vDG and dCA1. HWithin the vCA1 increased miRNA-33 levels occurred in
stress affected compared to those in unaffected rats. Data presented as means and standard errors of fold-change relative to control.
*Significant difference between profiles, p < 0.05.
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Fig. 5 Behavioral profiles following miRNA-144 and miRNA-33 LNA inhibition in males and females. A Schematic of cannula implantations
in males. B In male rats, behavioral profiling revealed an increased prevalence of affected rats in the AS-LNA group compared to that in the
AS-CTR group. Number of animals: CTR-SCR: n= 7, CTR-LNA: n= 8, AS-SCR: n= 10, AS-LNA= 7. All values are mean ± SEM. C Schematic of
cannula implantations in females. D In female rats, behavioral profiling revealed an increased prevalence of unaffected rats in the JS+ AS-LNA
group compared to that of the JS+ AS-SCR rats. Number of animals: CTR-SCR: n= 10, CTR-LNA: n= 13, JS+ AS-SCR: n= 10, JS+ AS-LNA= 8.
Values are the % and number of affected and unaffected animals in each group. *Different from JS+ AS-SCR, p < 0.005.
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(Fig. 2D; AS: χ2 (1)= 15.1, p < 0.001, JS+ AS: χ2 (1)= 15.1,
p < 0.001, receptively). In addition, though less pronounced,
increased prevalence of affected animals was found also in the
JS groups compared to the control group (Fig. 2D; JS: χ2 (1)= 6.09,
p < 0.05).

miRNA levels in affected and unaffected male rats
For miRNA-144, a significant main effect was demonstrated for
behavioral profile that was restricted to the dDG (Fig. 3A;
H(2)= 7.84, P < 0.05). Post hoc comparisons revealed increased
miRNA-144 levels specifically in unaffected rats compared to those
in affected rats (p < 0.05) and unexposed control rats (p < 0.05). A
similar trend, not statistically significant, was observed in the vDG
(Fig. 3B; H(2)= 4.43, P= 0.11). No significant main effects for
behavioral profile or type of stress exposure were observed in
either the dCA1 or vCA1 (Fig. 3C, D).
For miRNA-33, a significant main effect for behavioral profile

was observed in the vDG (Fig. 3F; F(1,81)= 5.78, p < 0.05). Post hoc
comparisons revealed a significant increase of miRNA-33 transcript
level in stress exposed, unaffected rats compared to that of
affected and control rats (p < 0.01, p < 0.01, receptively). No
significant main effects of type of stress exposure or behavioral
profile were observed in the dDG (Fig. 3E), dCA1 (Fig. 3G) or vCA1
(Fig. 3H).
For miRNA-381, no significant main effects for behavioral profile

or type of stress exposure were observed in either the dDG, vDG
or dCA1 (Fig. S3A–C). (Fig. SD) In the vCA1 a significant main effect
for type of stress exposure was observed (F(2,74)= 3.65, p < 0.05).
Post hoc comparisons revealed lower levels of miRNA-381
expression in JS+ AS exposed animals compared to the AS group
(p < 0.05).

miRNA levels in affected and unaffected female rats
For miRNA-144, a significant main effect for behavioral profile was
observed in the vCA1 (Fig. 4D; F(1,66)= 7.66, P < 0.01), Post hoc
comparisons revealed increased miRNA-144 levels specifically in
affected compared to unaffected rats (P < 0.01) and unexposed
control rats (p < 0.05). No significant main effects for behavioral
profile, type of stress exposure or interactions were observed in
the dDG, vDG or in the dCA1 (Fig. A–C).
For miRNA-33, a significant main effect for behavioral profile

was observed in the vCA1 (Fig. 4H; F(1,68)= 4.13, P < 0.05), post hoc
comparisons showing increased transcript levels in stress affected
compared to those in unaffected rats (P < 0.05). No significant
differences were observed in the dDG, vDG or in the dCA1 (Fig.
4E–G).
For miRNA-381, no significant main effects for behavioral profile

or type of stress exposure were observed in either the dDG, vDG
or dCA1 (Fig. S3E–G). (Fig. S3H) In the vCA1 a significant main
effect for type of stress exposure was observed (F(2,67)= 5.10,
p < 0.001). Post hoc comparisons revealed lower levels of miRNA-
381 expression in JS+ AS exposed animals compared to that in
the other groups (control: p < 0.01, JS: p < 0.001, AS: p < 0.001).

The proportions of affected/unaffected following LNA
inhibition
Next, following the initial findings in males (experiment 1), which
demonstrated an association between increased levels of miRNA-
144 (dDG) and miRNA-33 (vDG) and resilience, we inhibited these
miRNAs following adult stress using LNA inhibition. A causal
relation should lead to reduced resilience, and thus to increased
proportion of affected subjects. To increase the likelihood of
identifying effects of the manipulation, inhibition was conducted
following AS exposure, which is expected, without manipulation,
to lead to low proportion of affected animals. The results showed
that indeed, inhibition of miRNA-144 in the dDG and of miRNA-33
in the vDG in male rats (for cannula location see Fig. 5A),
significantly increased the prevalence of affected animals in the

AS-LNA group (Fig. 5B; χ2(1)= 4.41, P < 0.05) compared to CTR-
SCR (Fig. 5B; χ2(1)= 5.6, P < 0.01) (Fig. 2C).
In contrast, in females, higher levels of miRNA-144 and miRNA-

33 in the vCA1 were found to be associated with increased
vulnerability to stress. Inhibiting these miRNAs in females could be
thus expected to enhance resilience. Therefore, we examined the
impact of inhibition of those miRNAs in vCA1 in animals exposed
to JS+ AS, a condition which is, by itself, associated with an initial
high proportion of affected animals. Indeed, inhibition of
miRNA144 and miRNA33 in the vCA1 in female rats (for cannula
location see Fig. 5C), significantly increased the proportion of
‘unaffected’ rats in the AS-LNA group compared to that of AS-SCR
(Fig. 5D; χ2(1)= 2.81, P < 0.05) and that of the control group (Fig.
5D; χ2(1)= 5.6, P < 0.05).

DISCUSSION
The current results are a continuation of studies emphasizing the
importance of shifting away from working with group averages
and towards analyzing responses to stress and trauma at the
individual level [3, 32, 33, 35, 36, 47–49]. The current results
demonstrate significant differences in alterations in miRNAs in
exposed animals between ‘affected’ and ‘unaffected’ individuals.
Such differences would have been completely masked by
averaging the results of the exposed groups.
The alterations found in miRNA expression were region-specific.

These results join previous findings, emphasizing that the role of
expression alterations of specific proteins should be discussed in
the context of the specific region, in which they were identified
[32, 36, 37]. This, of course, represents a significant challenge for
planning translational targeted interventions. However, the first
step in any such consideration is to identify region-specific
alterations, interventions in which would be sufficient to induce a
phenotypic effect at the behavioral level. Here, we could
demonstrate that the region-specific alterations in expression of
miRNAs identified following trauma exposure were indeed
sufficiently involved in vulnerability or resilience, to the level that
manipulating the functionality of these alterations was sufficient
to alter the outcome of trauma exposure. Differential expression of
neuromodulators such as serotonin, norepinephrine or dopamine,
or the interneuron-localized neuropeptide Y (NPY), were found to
mediate stress resilience and vulnerability in a trauma-exposed
population, at the individual level [50–52], and epigenetic
mechanisms were suggested to mediate such stress-related
individual differences [53, 54].
But results did not only indicate individual differences and

region specificity, but also sex-associated differences. Trauma-
related psychopathologies, including post-traumatic stress dis-
order (PTSD) and post-traumatic depression, are more prevalent in
women than in men [55–58]. Gonadal hormones such as
testosterone and estrogen as well as interacting genetic factors,
have long been believed to differentially affect the hypothalamic-
pituitary-adrenal (HPA) axis or modulate hippocampal functioning
both in humans and in animal models [59–61], potentially
affecting the risk of developing pathology directly, or through
epigenetic mechanisms [62]. Even though some reports could not
demonstrate such association (see, e.g., refs. [63–65]), the majority
of studies have demonstrated differences in stress responses
between males and females following exposure to traumatic
events, and have documented this difference in animal models
and experimental tests of stress and trauma [3, 38, 39, 66–69]. In
accordance with that, here, we found no difference between
males and females in the prevalence of ‘affected’ individuals
following exposure to JS+ AS, but only in females there was a
significant increase in the prevalence of ‘affected’ individuals
following exposure to AS alone.
An important focus of the current study was the identification

of sex-associated differences in miRNAs expression alterations.
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Specifically, in males, up-regulation of miRNA-144 in the dDG and
miRNA-33 in the vDG, was related to resilience while in females,
these miRNAs increased expression in the vCA1 was associated
with greater vulnerability (Fig. 3A, F, D). In accordance with that,
down-regulation of those miRNAs was sufficient to induce
increased vulnerability in males and increased resilience in
females. The population of rats profiled as ‘unaffected’ was
reduced in males and increased in females following LNA
inhibition in the relevant regions (Fig. 5B, D). To the best of our
knowledge this is the first study demonstrating enhanced
resilience in females following specific miRNA inhibition. Further-
more, alterations in two different miRNAs (males and females),
and in two brain regions (males) have led us to employ a dual
intervention, handling two miRNAs simultaneously. The success of
this approach, as revealed by significant effects on stress
vulnerability and resilience, encourages its employment in future
studies. Identification of the downstream, possibly also sex-
specific targets of miRNA-33 and miRNA-144 will further clarify
the mechanisms of their differential effects as they relate to both
gender and subregions. However, clearly, these are not the only
molecules and the only regions involved. Future studies may
investigate the specific target genes associated with these
miRNAs. It may also be beneficial to examine hormonal
involvement (e.g., corticosterone, estradiol, or progesterone) in
sex-related resilience/vulnerability mechanisms.
In summary, the current results reveal critical sex-associated

differences in hippocampal epigenetic responses to trauma
exposure, which contribute to stress vulnerability in females,
and to stress resilience in males. The results emphasize the
significant value of dissociating neural mechanisms underlying
coping with stress from those mechanisms underlying failure to
cope, which could lead to the development of trauma-related
psychopathologies. Towards that goal, it is critical to differentiate
between ‘affected’ and ‘unaffected’ individuals. The findings here,
that resilience is associated with significant alterations in
expression of specific miRNAs in specific hippocampal regions,
add to a body of findings indicating that stress resilience is not a
passive quality but rather an active response which enables
coping with the experience. Better understanding of the
mechanisms at the basis of such active resilience, may eventually
be translated to ways of enhancing stress resilience.
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