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Pharmacological targeting of cognitive impairment in
depression: recent developments and challenges in human
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Impaired cognition is often overlooked in the clinical management of depression, despite its association with poor psychosocial
functioning and reduced clinical engagement. There is an outstanding need for new treatments to address this unmet clinical need,
highlighted by our consultations with individuals with lived experience of depression. Here we consider the evidence to support
different pharmacological approaches for the treatment of impaired cognition in individuals with depression, including treatments
that influence primary neurotransmission directly as well as novel targets such as neurosteroid modulation. We also consider
potential methodological challenges in establishing a strong evidence base in this area, including the need to disentangle direct
effects of treatment on cognition from more generalised symptomatic improvement and the identification of sensitive, reliable and
objective measures of cognition.
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INTRODUCTION
Cognitive impairment is a core feature of major depressive
disorder (MDD), broadly characterised by heterogeneous reduc-
tions in executive functioning, learning and memory [1–3].
Although cognitive impairment occurs in most clinical cases of
depression (approximately 85–94%) [4], it is rarely a primary focus
of routine clinical management compared with other core features
of MDD (e.g. mood disturbances) [5–7]. Cognitive impairment
presents inimical challenges to quality of life, is associated with
poor functional outcomes [8–10], and is a key mediator of
perceived disability in MDD [11, 12]. Consistent with this, our
consultations with individuals with lived experience of depression
highlight the impact of impaired cognition on daily living and
service engagement (Box 1). Few treatment options for cognitive
impairment in depression are available, with no recommended
strategies in current clinical practice guidelines for MDD for the
United Kingdom, United States or Germany [6, 13–16]. However,
there are several promising novel pharmacological targets, with
an increasing evidence base in humans.
In this review, we consider existing evidence from human

clinical studies and evaluate potential new directions for
pharmacological treatment development for cognitive impair-
ment in MDD. We consider conventional agents which target
primary neurotransmission, such as antidepressants, as well as
novel pathophysiological targets. In addition, we highlight some
methodological challenges of research in this area. The scope of
the current review is limited to pharmacological approaches,
although psychotherapeutic and transcranial electrotherapy

stimulation approaches for cognitive impairment in psychiatric
disorders are also being investigated [17–20].
The body of evidence in this narrative review was identified

using a literature search to determine relevant human experi-
mental studies, meta-analyses and systematic reviews (further
details of the search strategy are described within these databases
are described within Supplementary Material 2). Findings from the
scientific literature were interpreted in the context of information
gathered through consultations with individuals with lived
experience of depression.

PHARMACOLOGICAL AGENTS TARGETING PRIMARY
NEUROTRANSMISSION
SSRIs and SNRIs
Systematic reviews and meta-analyses of the effects of conven-
tional antidepressant treatment (compared with placebo) on
cognitive function in MDD have reported modest positive effect
sizes, including improvements across domains of psychomotor
speed and delayed recall [21–23]. However, these analyses pool
data from a broad range of pharmacological agents, including the
multimodal agent vortioxetine and the cholinergic agent done-
pezil [24, 25], which may have inflated the effects seen. Indeed, in
one meta-analysis, the effect of antidepressant treatment on
cognition became non-significant when vortioxetine studies were
excluded [26]. Further, these meta-analyses included heteroge-
nous clinical populations (e.g. depression in Parkinson’s disease),
and many studies did not use standardised cognitive assessment
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batteries, instead making use of highly variable cognitive tasks
which lack specificity for cognitive domain measured.
More direct evidence from a parallel-cohort randomised clinical

trial (RCT) showed 8-weeks of standard antidepressant mono-
therapy with sertraline, venlafaxine, or escitalopram had no effect
on cognitive performance in MDD across standardised assess-
ments [27]. This evidence is particularly compelling given the large
sample size (n= 1008), prospective design (with both pre- and
post-treatment assessments) and healthy volunteer control group
(to control for non-specific effects of repeated testing and
symptomatic changes). These findings are consistent with
accounts from our consultations with individuals with lived
experience of depression, who often reported that antidepres-
sants did not improve their cognitive impairment (Box 2).
Measuring the direct cognitive effects of drugs which primarily

affect mood symptoms of depression is challenging. As depres-
sion remits, self-report (subjective) and objective cognitive
impairments may not improve in parallel [28, 29]. Further, as
subjective cognitive impairment is a symptom of depression
within ICD-10 [30] and DSM-V [31] diagnostic classifications, and is
measured on most standardised outcome measures for MDD
[32–34], its improvement may contribute to indices of treatment
response/remission. Antidepressants may also change non-
specific factors such as motivation, which may increase effortful
performance in cognitive tasks leading to improvements in task
performance that do not reflect genuine gains in cognitive
functioning – a methodological limitation known as pseudo-
specificity [35, 36]. Such effects are infrequently controlled for in
investigations of the cognitive effects of antidepressants.

5-HTR modulators
Selective targeting of serotonin receptor subtypes may hold
potential to more directly modify cognitive functioning [37].
Vortioxetine, a multimodal SSRI with significant affinity for various
5-HT receptor subtypes is the only agent recognised by the FDA as
indicated for cognitive impairment in MDD [38]. In particular,

vortioxetine is a potent antagonist of the 5-HT3A receptor where it
has a 10–38-fold greater affinity compared to the other 5-HT
receptor subtypes at which it is active (5-HT1A, 5-HT1D, and 5-HT7)
[39]; these broad serotonergic effects are thought to result in
downstream modulation of glutamatergic signalling [24, 31, 40]. In
multiple placebo-controlled RCTs, eight-weeks of vortioxetine
monotherapy in MDD improved domains of executive functioning,
learning and memory, with particularly well-replicated improve-
ments on the Digit Symbol Substitution Test (DSST) [41–43]; the
DSST is a highly sensitive measure of cognitive impairment with low
cognitive domain specificity [44]. In a study of healthy volunteers
(n= 48) and remitted MDD (n= 48) [45], vortioxetine but not
placebo improved executive functioning performance; in addition,
greater prefrontal and hippocampal activation was observed during
a working memory task following vortioxetine administration,
although no effect on objective memory performance was found.
In contrast, a healthy volunteer study (n= 24) found no increase in
cognitive functioning following vortioxetine administration [46].
Although the beneficial effects of vortioxetine on cognition in MDD
are well-replicated, further work is needed to further understand
the inconsistent cognitive effects observed in healthy volunteers.
Through path analysis of three clinical studies, McIntyre et al.

[47] found DSST improvements following vortioxetine were
independent of overall symptomatic improvement on the
Montgomery-Asberg Depression Rating Scale (MADRS) [48].
However, it is important to note that these analyses of overall
MADRS score do not exclude the possibility that specific
symptoms mediated the effects on cognition [49]. For example,
anhedonia may decrease motivation and effortful performance in
executive functioning tasks [50, 51], and vortioxetine may be
efficacious in remediating anhedonic dimensions of MDD [52]; by
comparison, other symptom dimensions within the MADRS, such
as reduced appetite, are less likely to mediate improved cognition.
Beyond vortioxetine, there is emerging evidence that selective

agonists of serotonin receptor subtypes may hold promise as pro-
cognitive treatments. For example, an open-label RCT (N= 89), the
partial 5-HT1A agonist buspirone, administered as an adjunct to
escitalopram for eight weeks, demonstrated improved working
memory in MDD compared with escitalopram monotherapy [53]. In
contrast, a single dose of buspirone did not affect cognition in
healthy volunteers [54]. Tandospirone, a structural analog of
buspirone which selectively targets 5-HT1A receptors with high
agonist efficacy [55], similarly improved cognitive functioning in
older adults with vascular dementia and anxiety (N= 89) [56], when
given as an adjunct to escitalopram for eight weeks, compared with
escitalopram monotherapy. In contrast, a single dose of tandospir-
one has been found to dose dependently impair explicit verbal
memory in a small sample (N= 9, crossover design) of healthy male
volunteers [57]. These limited studies show promise for 5-HT1A as a
target for cognitive impairment in depression, although its
paradoxical effects in healthy volunteers require further elucidation.
In summary, there is a body of support for the idea that

selective 5-HT receptor agonism may be a useful target for

Box 1. Quality of life and clinical engagement – barriers arising from
cognitive impairment identified by individuals with lived experience
of depression

During the development of the present review, we consulted with individuals with
lived experience of depression to understand the impact of cognitive impairment
on clinical recovery. Consultations were held with 13 individuals with lived
experience of depression (ages 20–55; 12 females, 1 male; mixed ethnic
backgrounds), in group meetings and one-to-one sessions with research team
members. Consultations followed a semi-structured format (see online Supple-
mentary Material 1), with questions related to experiences of cognitive difficulties
associated with depression.
Group members shared experiences of diminished quality of life related to

cognitive difficulties experienced during depression. Cognitive symptoms were
associated with difficulties in engagement with a range of day-to-day activities, as
well as clinical support:

● “I dropped out of college because I couldn’t concentrate. At that point, my
depression was at its worst, [I] dropped out, and couldn’t function.”

● “When I started to become depressed, I noticed I wasn’t able to concentrate
on what people were saying. I found it very difficult to cope.”

● “It impacted my ability to organise appointments and meetings – because
I’ve missed many of these, there have been a lot of times I’ve missed out on
support.”

● “It was hard to remember the strategies and exercises learned.”

Group members also shared difficulties with communication during depressive
episodes, for example when interacting with clinicians:

● “It was really difficult to describe what had happened [in the last week] and
how things had built up when you just don’t have the words.”

● “Often talking to people felt overwhelming, and communicating with
doctors felt impossible, meaning often it wasn’t possible to get any help.”

Note: quotations are transcribed ad verbatim from consultations.

Box 2. Experience with services and lack of effectiveness of standard
treatment on cognitive impairment – accounts from individuals with
lived experience of depression

According to our lived experience consulatations, cognitive impairment was not
discussed or considered by clinicians such as psychiatrists or clinical psychologists
during engagement with services. Group members frequently highlighted that
their treatment (e.g. SSRIs and psychotherapy) did not help with the cognitive
difficulties they experienced.

● “My psychiatrist didn’t mention cognitive impairment; I wish they had as I
would have been able to put coping strategies in place and know that I’m
not failing, I’m just not functioning properly.”

● “SSRIs didn’t help with memory and concentration.”
● “It would have been useful if my issues with concentration could have been

addressed with standard treatment.”

M.J. Colwell et al.

2

Translational Psychiatry          (2022) 12:484 



cognitive impairment in depression. However, it is important to
note that many current 5-HTR modulator agents, such as
buspirone and vortioxetine have complex neuropharmacological
actions and may also impact cognition via other mechanisms,
such as direct pro-dopaminergic [58] or indirect glutaminergic
modulation. Further investigation of more selective agonists of
5-HTR subtypes, such as the 5-HT4 receptor agonist prucalopride
[59], will further elucidate potential serotonergic targets for
cognitive amelioration in MDD. Additionally, many novel 5-HT
agonists have recently, or are currently, crossing the clinical
threshold, including 5-HT6 receptor agonists and 5-HT7 receptor
antagonists [60, 61]. These agents appear to improve cognition in
both healthy and neurological rodent models (including Alzhei-
mer’s disease and schizophrenia) [62–71], and serve as promising
novel targets for ameliorating cognitive impairment in MDD.

Dopaminergic modulators
A large body of evidence supports the regulatory role of
dopaminergic signalling in cognitive functioning [72–74]. Con-
sistent with this, pharmacological manipulation of dopaminergic
signalling function with piribedil (D2 and D3 receptor agonist) and
methylphenidate (inhibitor of dopamine transporters [DAT])
results in well-replicated improvements in cognitive performance
in healthy individuals [75–77]. It is therefore interesting to
consider whether dopaminergic antidepressant agents, such as
bupropion, might have the potential as treatments for cognitive
impairment in MDD.
Bupropion (which inhibits the reuptake of dopamine and

noradrenaline) has been shown to improve cognitive function in
MDD when taken as an adjunct to other antidepressants or as
monotherapy [78, 79]. For example, improved visual and verbal
memory and executive functioning was observed in patients with
MDD after 8-week administration (N= 36) [79], although this effect
was not apparent in a separate study of healthy volunteers [80].
Modafinil (which has a complex mechanism of action, including

weak inhibition of dopamine reuptake) has also been shown to have
pro-cognitive effects in patients with depression. In currently
depressed patients 4-weeks administration of modafinil improved
executive function (N= 31) [81]. In patients who have recovered
from depression, modafinil was shown to improve episodic memory
but not executive functioning after one week in remitted depression
(N= 60) [82]. This evidence is consistent with multiple studies in
healthy adults demonstrating broad improvements in verbal and
visuospatial working memory, learning, attention and executive
functioning following modafinil administration [81, 83–86].
Although modafinil and bupropion overlap mechanistically as

inhibitors of DAT, bupropion acts on ≤22% of DAT binding sites
[87], while modafinil produces weak atypical inhibition of DAT
[88, 89]. Bupropion also blocks the reuptake of noradrenaline, with
downstream modulation of tumour necrosis factor alpha and
upregulation of brain-derived neurotrophic factor (BDNF) in MDD,
which may be an alternative intra- and extracellular mechanism by
which it exerts its antidepressant and cognitive effects [90, 91].
Similarly, the cognitive effects of modafinil may be explained by
intracellular actions, including decreased neuronal free radicals,
adenosine 5′-triphosphate production, and promotion of cellular
metabolism [89]. Further, given the role of the mesolimbic-
dopamine circuitry in reward processing and motivation, it is
important to consider the extent to which the cognitive effects of
bupropion and modafinil are related to non-specific changes in
motivation and affect [35, 36].

NMDA antagonists, AMPAkines, and metabotropic glutamate
receptor inhibitors
Glutamatergic neurotransmission accounts for most excitatory
activity in cortical structures, and is a predominant regulator of
cognitive and sensory functioning [92, 93]. Glutamatergic
transmission has gained much attention within the context of

depression following the discovery of the potent antidepressant
effects of the N-methyl-d-aspartate (NMDA) antagonist ketamine
[94]. A single subanaesthetic infusion of ketamine has rapid,
transient antidepressant effects in treatment-resistant depression
(TRD) [95, 96]. Interestingly, several TRD studies have reported
improved cognitive function postinfusion, including improved
executive function, visual memory and complex working memory
[97–99]. Ketamine is also associated with a reduction in suicidal
ideation and planning, which it has been suggested could result
from improved inhibitory control [100, 101]. The cognitive effects
of ketamine may be attributable to the rapid promotion of
neuronal plasticity via intracellular protein modulation, including
rapamycin complex 1 and BDNF [102, 103], and inhibition of
excitotoxicity through modulation of ionotropic and metabotropic
glutamate receptors (mGluRs) [104].
It is unclear if ketamine has a direct effect on cognitive function,

or if its cognitive effects are an indirect result of its rapid
antidepressant properties. In two active placebo-controlled RCTs
by Shiroma et al. [105] (N= 43) and Murrough et al. [106] (N= 62),
postketamine-infusion improvements in speed of processing and
working memory were independent of antidepressant response;
however, the cognitive change reported in Murrough et al. [106]
was associated with a significant main effect of time only and
there were no differences in cognition between the ketamine and
active placebo, suggesting the cognitive improvement may have
been driven by a non-specific learning effect. An RCT of similar
design by Liu et al. [107] (N= 50) found that change in speed of
processing post-ketamine was associated with improved anxiety
symptoms comorbid to TRD, and improved visual learning and
memory performance were associated with improved depressive
symptoms in TRD without comorbid anxiety. Two further studies
investigating the cognitive effects of ketamine found a moderat-
ing effect of depressive symptom improvement on DSST
performance and self-reported cognitive deficits, but not visual
attention and task-switching performance [108], and a relationship
between depressive symptomatic improvement and response
inhibition performance [109].
Paradoxically, acute ketamine may induce cognitive impairment

in some circumstances: an RCT of non-refractory MDD showed a
single subanaesthetic dose reduced performance in executive
function, attention and verbal memory [110]. Healthy volunteer
studies have demonstrated similar reductions in episodic and
working memory, attention and long-term memory both during
and 1-hr post-infusion [111–114], with a return to baseline
functioning 3 days post-infusion [115]. Interestingly, fronto-
striatal functional connectivity increases in individuals with TRD
and decreases in healthy individuals 2-days postinfusion [116],
mirroring the opposing effects of ketamine on cognitive ability
across these populations. Taken together, the apparent beneficial
effects of ketamine on cognition may be specific to TRD, although
further work is required. Additionally, the cognitive effects of
ketamine may vary depending on dose frequency (single dose vs.
repeat dose) and length of treatment [97].
Beyond ketamine, other glutamatergic agents have been

investigated for potential cognition improving effects in MDD,
including other NMDA antagonists, glutamatergic inhibitors,
positive allosteric modulators of AMPAR (AMPAkines) and
modulators of mGluRs. The NMDA antagonist riluzole has well-
replicated antidepressant effects [117, 118], but did not improve
self-reported cognitive impairment when administered as an
adjunct to antidepressants [118]. Another NMDA receptor
antagonist, memantine, has been shown to have antidepressant
effects when administered as an adjunct to escitalopram
[119–121]. Compared with escitalopram monotherapy, meman-
tine and escitalopram combination therapy improved verbal
memory and executive functioning in older adults with MDD
[119] (N= 62), although not in younger adults with MDD (N= 80)
[122]. The AMPAkine, Org 26576, improved executive functioning
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and working memory at high doses (n= 10) compared with low
dose (n= 10) and placebo (n= 10) in MDD [123]; however,
replication in a large cohort study is required [124]. In healthy
older adults, an acute dose of a similar AMPAkine (Org 24448)
improved short-term memory and executive functioning, but
impaired episodic memory [125].
Excitotoxicity and consequential oxidative stress via NMDA

hyperactivity is posited as a pathophysiological basis of cognitive
impairment in MDD [126, 127], with group I and II mGluRs
potentially inhibiting these effects [128, 129]. Although a
developing research area, the first mGlu2/3R modulator (decoglur-
ant) to advance to clinical study did not affect objective cognition
nor depressive symptoms in an RCT of partial-refractory MDD
(N= 357) [129, 130].

Cholinesterase inhibitors
Cholinergic signalling plays a key role in memory processing and
cognitive decline [131, 132]. Meta-analyses have demonstrated
that cholinergic agents such as citicoline (cholinergic donor for
acetylcholine synthesis [133]) administered in neurological popu-
lations (e.g. ischemic stroke) facilitate functional and cognitive
recovery [134, 135], although these effects are not always
replicated [136, 137].
Of the cholinesterase inhibitors investigated within the context of

depression [138], donepezil is among the most promising and
frequently studied [139]. A two-year placebo-controlled RCT
investigating donepezil administered as an adjunct to antidepres-
sants (escitalopram or duloxetine) reported improved global
cognition (visuospatial functioning, language processing, executive
functioning, delayed memory and processing speed) after one year
in older adults with remitted MDD (N= 130); however, these effects
did not persist at year two [140]. Similarly, in a pilot placebo-
controlled RCT, donepezil administered as an adjunct to open-label
antidepressant therapy improved verbal episodic memory in older
adults with MDD (N= 12), although there was no effect on
executive functioning or attention [141]. In contrast, another
placebo-controlled RCT [142] showed that 16-weeks of donepezil
administered as an adjunct to citalopram or venlafaxine did not
improve cognitive function. These conflicting results may possibly
be explained by the measures of cognition used in each study;
cognitive improvements were observed following donepezil
pharmacotherapy (i.e. [140, 141]) in studies in which batteries of
standardised neuropsychological tests not specific to neurological
disease were employed (e.g. WAIS-R). In contrast, studies in which
no effects were observed (i.e. [142]) used the Alzheimer’s Disease
Assessment Scale-Cognitive Subscale [143], which may not be
sufficiently sensitive to changes in cognitive function in depressed
patients and healthy volunteers [144].
Although donepezil appears promising as a potential cognitive

ameliorating agent for MDD, it is important to note that no studies
have yet investigated the effects of donepezil on cognitive
functioning in younger adults with MDD. Moreover, the cognitive
profile of donepezil in healthy volunteer studies is inconclusive;
when acutely administered in healthy adults, donepezil improved
cognitive function in two studies [145, 146], while it impaired
cognition in two further studies [147, 148].
Administration of galantamine, another cholinesterase inhibitor,

as an adjunct to antidepressants was shown to have no effect on
cognitive function or mood symptoms in older adults with MDD
(N= 38) in a placebo-controlled RCT [149]. Consistent with this,
galantamine monotherapy did not change cognitive function or
mood symptoms in adults with partially remitted MDD in another
placebo-controlled RCT [143], although this study had a small
sample size (N= 19).
Although galantamine and donepezil are both cholinesterase

inhibitors [150], they have divergent secondary mechanisms of
action which may explain differences in their cognitive profiles; in
particular, donepezil but not galantamine is a potent agonist of

sigma-1 receptors (σ1R) [151]. σ1R agonism is associated with
promotion of neuroplastic and neuroprotective processes
[152, 153], in addition to amplifying signal transduction across
glutaminergic and dopaminergic pathways [143, 154, 155].

BEYOND PRIMARY NEUROTRANSMISSION – NOVEL CLINICAL
TARGETS
Recently, novel approaches to the pharmacological targeting of
cognitive impairment have emerged. The proposition that
cognitive impairment in MDD may be the result of progressive
neurotoxic and neuroinflammatory processes, as well as volu-
metric reductions in neuroanatomical areas such as the hippo-
campus, striatum, and fronto-cingulate cortices [126, 156–161],
suggests the modulation of neurosteroid, neurotrophin and pro-
inflammatory cytokine activity might be useful targets for
treatment development [126, 162–165].
Neurosteroid dysregulation is suggested to play a role in the

pathophysiology of stress, neuroinflammation, and depression
[165–170]; thus pharmacologically targeting neurosteroid dysre-
gulation may be a useful approach for the treatment of depression
and cognitive impairment. In particular, excitatory neurosteroids
such as dehydroepiandrosterone and pregnenolone sulphate
modulate the function of glutamatergic signalling pathways, thus
promoting long-term potentiation [171–173]. Consistent with this
idea, dehydroepiandrosterone administration was shown to
improve verbal memory function in older adults with MDD in a
small (N= 6) proof-of-concept study [174, 175]. Two Cochrane
systematic reviews concluded there is inadequate evidence
supporting a positive effect of dehydroepiandrosterone on
cognitive function in healthy older adults and those presenting
with age-related cognitive decline [176, 177]. However, a more
recent small-scale placebo-controlled study in healthy young
males (N= 24) showed dehydroepiandrosterone administration
improved verbal episodic memory via cortisol inhibition [178].
Modulation of the σ1R ligands is another potential target for the

treatment of cognitive impairment in MDD [179]. Fluvoxamine, an
SSRI with high-affinity σ1R agonist properties [180], has been
shown to be associated with improvements in the Wechsler Adult
Intelligence Scale (WAIS-R) and DSST. However, the effects of
fluvoxamine on cognition have not yet been tested against a
placebo control; in a double-blind RCT [182], the effects of
fluvoxamine were compared with the tetracyclic antidepressant
mianserin which is known to have cognition-impairing effects
[183]. In another, [184], cognitive improvements were observed
only in treatment responders, suggesting a potential confounding
effect of symptomatic improvement.
The cognitive effects of σ1R agonists such as fluvoxamine and

donepezil are difficult to separate from their serotonergic and
cholinergic properties, respectively. Studies using comparator
agents such as sertraline and galantamine may further elucidate
these effects [179], controlling for potential affective changes
associated with neurosteroid modulation [185].
Stimulation of mineralocorticoid receptors via fludrocortisone may

indirectly influence cognition [186]. In healthy volunteers (n= 24)
and depressed adults (n= 24), verbal memory and executive
functioning improved after fludrocortisone administration, with
improved verbal memory associated with cortisol inhibition [187].
However, in older adults with MDD (N= 23), a similar experimental
paradigm resulted in impairments of psychomotor speed, verbal
learning and memory, and executive functioning [188].
Melatonin, when administered as an adjunct to buspirone, was

associated with decreased self-reported cognitive impairment in
antidepressant non-responders, indicating a potential pro-
cognitive effect that is independent of pseudo-specific effects
(N= 113) [189]. In multiple studies of healthy individuals,
melatonin improved cognitive ability [190], although it is unclear
if these cognitive gains might be due to improved sleep.
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Erythropoietin improved verbal memory compared with placebo
in individuals with TRD following 8 weeks administration (N= 40)
[191]. In an additional study, individuals with MDD (n= 36) showed
broad improvements in cognitive functioning (including memory,
learning and executive functioning) and self-reports of cognitive
function following 8 weeks of erythropoietin versus placebo [192].
In healthy volunteers, erythropoietin produced broad enhance-
ments in executive function, memory and hippocampal long-term
potentiation [193–195]. While promising, the exact mechanisms for
cognitive change remain unclear; it has been posited these findings
are a result of upregulated stromal cell-derived factor 1 and BDNF
[126, 196], however, down-regulation of plasma BDNF following
8 weeks of erythropoietin administration in TRD has been reported
independently [197].
The methyl donor, S-Adenosylmethionine, given as monother-

apy for MDD resulted in similar depressive symptom reductions to
escitalopram in two double-blind RCTs (N= 130; N= 189)
[198, 199]. Antidepressant non-responders (N= 46) showed
improved self-report of cognitive function following 6 weeks of
adjunct S-Adenosylmethionine treatment [200, 201]. Recent
metabolomic investigations highlighted the potential of exogen-
ous S-Adenosylmethionine to upregulate toxic metabolite ade-
nine, hindering the clinical practicality of this agent [202].
Taken together, although many of the novel pharmacother-

apeutic targets of cognitive impairment in MDD reviewed here
appear promising, vigorous independent replication is required to
fully elucidate their clinical potential.

METHODOLOGICAL CHALLENGES
In reviewing this literature, numerous methodological challenges
are apparent in establishing a strong evidence base to support
pharmacological targets for the treatment of cognitive impair-
ment in depression.

Pseudo-specificity
A fundamental challenge in establishing evidence of therapeutic
validity for drugs which target cognitive function is to identify
effects that are primarily mediated by changes in affect (pseudo-
specificity). McIntyre et al. [203] posits this can be achieved where
depressive symptomatology is appropriately adjusted for, using
path analysis and subgroup analysis. Many RCTs have since
employed this approach (e.g., [47, 105, 106, 204]), although much
of the literature reviewed here has not adopted this methodology.
It is also important to consider the influence of other affective
domains beyond core depression symptoms, such as motivation,
alertness/fatigue, and anxiety, as these may all have an indirect
effect on cognitive task performance [205–209].

Inconsistency of cognitive effects across clinical and non-
clinical populations
A phenomenon commonly emerging in the reviewed literature is
that pharmacological agents often lack shared and domain-specific

cognitive effects between individuals with MDD and healthy
controls. For example, buspirone and bupropion have both been
shown to have cognitive-enhancing effects in patients with MDD
[53, 78] but not in healthy volunteers [54, 79, 80]. In contrast,
modafinil and citicoline broadly improved cognition in neurological
and nonclinical populations, but showed limited or no change in
MDD [81, 89, 210]. Furthermore, fludrocortisone resulted in
cognitive improvement young adults with MDD but impaired
cognitive function in older adults with MDD [187, 188].
One explanation for these differences between patient and

healthy control studies is that pharmacologically-induced improve-
ments in cognition may only be seen in those with cognition-related
pathophysiological abnormalities, such as progressive neurotoxicity
and reduced neurogenesis [126, 211]. For example, reduced grey and
white matter integrity in frontal-limbic networks are both associated
with cognitive impairment in MDD [212–215] and reduced
neurotrophin and proinflammatory cytokine activity in MDD
[216–219]. Indeed, baseline BDNF, including mature BDNF, and
pro-inflammatory cytokine levels in individuals with MDD predicts
cognitive improvement and antidepressant effects across a range of
agents, including sertraline and vortioxetine [220–223], although it is
important to note that peripheral measures of BDNF may not reflect
central BDNF concentration [224]. Further, age and adjunctive
therapy may influence antidepressant pharmacodynamics, where
the former might explain the inefficacy of cholinergic agents for
cognitive impairment in young adults compared with older adults
[225]. To better understand pharmacologically-induced cognitive
effects across specific populations, the identification of shared and
independent treatment-response biomarkers would be beneficial
[226, 227]. In particular, if early treatment-induced changes in such
biomarkers (e.g. changes in the function of relevant neurocircuitry)
were predictive of subsequent efficacy in treating cognitive
symptoms, they would lend valuable support to drug development
decision-making in this field.
An alternative explanation for inconsistent effects across

healthy volunteer and patient samples is that the cognitive tasks
used in many studies have insufficient sensitivity to detect
pharmacologically-induced cognitive changes in healthy volun-
teers. Healthy volunteer studies often include high-functioning
individuals who perform at ceiling on many standard neuropsy-
chological tasks, thus limiting the detection of pharmacologically
induced changes [228, 229]. The use of implicit, automatic
measures of cognition may be potentially useful for increasing
the sensitivity of pharmacologically-induced cognitive effects in
healthy volunteers [77, 228].

Heterogeneity of cognitive impairment in MDD
Cognitive impairment in depression is heterogeneous in pre-
sentation, due to the pathophysiology of depression itself and
external factors such as effects of medication [230]; impairments
in specific domains of cognitive function such as memory,
executive function and learning differ case-by-case [231, 232]. In
future, a better understanding of the specific effects of

Tx2

Tx1

Cog1

Selection of compatible cognitive amelioration agent(s)
                                                   (e.g. modafinil)

Cog2

Selection of compatible first-line intervention(s) 
                                                                        (e.g. SSRIs)

Cognitive
presentation

Psychiatric
presentation

Evaluation of outcome

Selection of compatible interventions

Fig. 1 Modular considerations for managing depressive symptoms and cognitive impairment. Through assessment of both cognitive and
psychiatric presentation, future research may provide scope for the identification of appropriate polypharmacy for the individual case.
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pharmacological agents on different cognitive domains, when
given alone or as an adjunct to antidepressant treatment, may
facilitate the more targeted and personalised treatment of
cognitive impairment in depression (Fig. 1). It will also be
important to define the conditions necessary for successful clinical
use of these agents, and where their clinical practicality lies; in
particular, whether these agents are best used as preventative
therapy, or as treatment for impaired cognitive function during
active MDD episodes, or for residual cognitive impairments in
remitted MDD.
Efforts to account for the heterogeneity of premorbid

intelligence quotients between intervention groups have been
made (e.g. [106]), making use of reliable [233] measures of reading
and vocabulary, including the National Adult Reading Test;
however, as Douglas et al. [234] note, these measures may not
generalise to broad metrics of memory, learning and executive
function used within studies. A potential solution is subgroup
analysis of patient clusters based on cognitive presentations (e.g.
working memory impaired vs. intact), although this requires large

samples for sufficient power; alternatively, future studies could
restrict study inclusion to participants with particular cognitive
presentations that align with a priori hypotheses about the
cognitive effects of the drug within MDD.

Discrepancies in cognitive outcome measurement
There is considerable heterogeneity in how cognition is measured
within the reviewed literature, with both objective neuropsycholo-
gical measures and subjective self-report of the cognitive function
used as outcome measures. Importantly, objective and self-report
measures are not reliably correlated [235, 236]. While self-report
measures may highlight cognitive deficits which are more mean-
ingful to the individual with depression, they may be confounded by
emotional state. Lower self-reported cognitive ability is known to be
associated with higher depressive symptomatology [237], which may
be the result of negative biases in appraisals of cognitive ability. Our
consultations with individuals with lived experience of MDD high-
lighted the need for person-centred neuropsychological assessments,
which focus on the specific cognitive impairments the individual
describes affecting their lives. Given the benefits objective and
subjective measures of cognition independently offer, both
approaches should be used in future research investigating pro-
cognitive efficacy of candidate compounds.

CONCLUSIONS
Developing better treatments for cognitive impairment is an area
of clinical priority in depression, underscored by accounts from
individuals with lived experience of depression (Box 3). Through-
out this review, we highlight pharmacological agents which hold
promise (Table 1), including vortioxetine, modafinil and donepezil.
These agents have complex mechanisms of action, and it is
unclear whether cognitive change is mediated through primary
neurotransmission or through indirect and/or intracellular pro-
cesses. Better characterisation and consolidation of shared
mechanisms between these agents may facilitate future drug
discovery and development in this area [238]. There are novel
agents such as fludrocortisone and erythropoietin which act on
promising mechanistic targets beyond primary neurotransmission;
the evidence is however preliminary, requiring further replication.

Box 3. Openness to pharmacological approaches to improving
cognitive impairment– accounts from individuals with lived
experience of depression

Throughout consultations, lived experience group members agreed they would be
open to these interventions, both separately and in tandem, as appropriate.

● “I would be open to a drug that enhances my cognitive ability, but I would
want something with minimal side effects.”

● “I’m open to medication […], as long as it was specifically targeted and
individualised for me.”

● “Targeting concentration would be a really good first step, because it would
clear the way to targeting other things.”

Finally, the lived experience group expressed a preference for treatments to be
personalised, designed to consider the different ways in which depression and
cognitive impairment may present in the individual.

● “It needs to be patient-centred; you need to take them seriously, as they are
the only one who knows what’s going through their brain.”

● “I felt that the team who had worked with me hadn’t treated me as an
individual.”

Table 2. Key considerations for investigations of pharmacological interventions which target cognitive impairment in depression.

Pseudo-specificity Description: Indirect gains in cognitive performance due to changes in affective processing or motivation.

Considerations: • Statistical factor analysis to determine that cognitive change is independent of
affective gain.
• Use of relevant measures of affect and motivation, not only symptom-based outcome
measures (e.g. BDI, MADRS).

Consistency of translation Description: Translation of cognitive effect between healthy and depressed populations is not always
observed.

Considerations: • Establishing translational biomarker models of cognitive treatment response.
• Use of cognitive outcome measures which have greater sensitivity to cognitive change in
healthy populations.

Heterogeneity of cognitive
impairment

Description: Cognitive impairment manifests differently for every individual with MDD, which has
implications for the therapeutic utility of drugs which target specific domains of cognition.

Considerations: • Consider subgroup analysis of patient clusters based on cognitive presentation if samples
provide adequate power.
• Consider recruitment of samples with specific cognitive presentation.

Discrepancies in cognitive
measurement

Description: Non-uniform approach to cognitive domains assessed across research studies, particularly
regarding the differential use of objective and subjective measures of cognition.

Considerations: • Adopt a uniform approach to measurement; standardised battery of tasks appropriate for
the heterogeneous profile and functional consequences of cognitive impairment in MDD.
• Consider a combination of both objective and subjective cognitive outcome measures.

Therapeutic specificity Description: Conditions necessary for successful clinical use of agents which target cognition. In particular,
whether efficacy is only seen in individuals who are currently depressed, or also in those at
risk of depression and/or with remitted depression.

Considerations: • Identify whether agents should be used as prevention or treatment.
• Identify whether treatment should be given during active episodes or to treat residual
impairments during remission.
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Beyond this, the present review has highlighted multiple
methodological challenges of human clinical research in this area
(see Table 2), including pseudo-specificity and the selection of
sensitive outcome measures.
While the present review is limited in scope to MDD, cognitive

deficits in neuropsychiatric populations may be considered
transdiagnostically [239], and as such it is worth considering the
generalisability of clinical pharmacological evidence beyond MDD.
In addition, this review has focussed on non-affective cognitive
function, although there are many aspects of affective cognition
that are known to play a core role role in depression, such as
rumination and emotion regulation [240]. Given the association
between impaired executive functioning and increased rumination
[241] and reduced cognitive reappraisals [242], future research may
consider if these aspects of psychopathology are influenced by
drugs which improve cognitive function in depression.
Beyond those reviewed here, there are many further novel

promising targets for improving cognitive impairment in MDD
where placebo-controlled RCTs have yet to demonstrate cognitive
improvement in MDD, or the agents have not yet crossed the
preclinical threshold, including creatine, α2-adrenergic receptor
antagonists, glucagon-like peptide-1 agonists, GABAB receptor
agonists, 5-HT1A biased agonists, and histamine H3 receptor
antagonists. With continued efforts in this space, and by adopting
robust and consistent methodological approaches across the
translational pipeline, there is real promise that the treatment of
cognitive impairment in depression may be improved in the future.
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