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Structural MRI studies in first-episode psychosis and the clinical high-risk state have consistently shown volumetric abnormalities.
Aim of the present study was to introduce radiomics texture features in identification of psychosis. Radiomics texture features
describe the interrelationship between voxel intensities across multiple spatial scales capturing the hidden information of
underlying disease dynamics in addition to volumetric changes. Structural MR images were acquired from 77 first-episode
psychosis (FEP) patients, 58 clinical high-risk subjects with no later transition to psychosis (CHR_NT), 15 clinical high-risk subjects
with later transition (CHR_T), and 44 healthy controls (HC). Radiomics texture features were extracted from non-segmented images,
and two-classification schemas were performed for the identification of FEP vs. HC and FEP vs. CHR_NT. The group of CHR_T was
used as external validation in both schemas. The classification of a subject’s clinical status was predicted by importing separately (a)
the difference of entropy feature map and (b) the contrast feature map, resulting in classification balanced accuracy above 72% in
both analyses. The proposed framework enhances the classification decision for FEP, CHR_NT, and HC subjects, verifies diagnosis-
relevant features and may potentially contribute to identification of structural biomarkers for psychosis, beyond and above
volumetric brain changes.
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INTRODUCTION
Structural brain abnormalities have been associated with schizo-
phrenia and volume deficits progress across the trajectory of the
illness [1–3]. These changes have been observed in early stages of
psychosis as in first-episode psychosis patients (FEP) [4–6], have a
wide distribution, affecting not only frontal, temporal, parietal
cortical regions, but also subcortical, cerebellar, and callosal
regions [7–9], and have a progressive course [10]. Several studies
have identified similar volumetric disturbances in populations at
high risk for psychosis [11, 12].
Psychosis risk definitions based on clinical criteria (clinical high

risk, CHR) have low specificity for prediction of a future transition
to overt psychosis, with only about a quarter of subjects
developing a psychotic episode 3 years after diagnosis [13, 14].
Consequently, there has been major interest in brain structural
changes as biomarkers useful for predicting the future emergence
of psychosis in CHR with higher accuracy than clinical criteria
alone. Several studies and meta-analyses investigated gray and
white matter alterations in CHR have confirmed their potential as
predictive indices, identifying a number of differences between
CHR with later transition compared to those without in relation
not only to total gray matter volume [15, 16], specific regions such
as the anterior cingulate [17, 18], frontal cortex [19, 20], temporal

cortex [21], parietal cortex [22], cerebellum [23], and insular cortex
[24], but also white matter volume and structure [25–27].
The majority of the above studies have focused on regional

volume or intensity measures and have not fully exploited the rich
information contained in brain MRI, e.g., subtle differences
between brain tissues or in the microstructure of the biological
tissue [28], complex interrelations between different regions or
gray, white matter and CSF [29]. Radiomics texture features are
able to quantify the hidden patterns between voxel intensities
and the spatial distribution of these patterns across brain regions.
Meaningful comparison of texture feature results between
different subjects is possible, when sMR images of the brain with
similar resolution and noise levels are used, a common quantiza-
tion method and the same number of gray levels in all quantized
images [30, 31]. Radiomics texture features with their potential as
image-based biomarkers have been widely used across several
studies, like for cancer identification [32], Alzheimer’s [33] and
Parkinson’s disease [34] as neurodegenerative diseases, major
depression [35], and schizophrenia [36, 37]. In the field of
schizophrenia research, texture features such as homogeneity
and entropy have been shown to differentiate patients from
healthy controls (HC) [38]. The main advantage of applying
radiomics texture features is their potential to capture microscopic
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alterations in tissue characteristics of the brain [39], even though
authors have stressed the significance of repeatability and
reproducibility in applying texture radiomics features [40, 41].
In the current study, we applied radiomics texture features on

FEP and CHR brain images for the first time. We examined
potential differences between FEP, CHR with later transition to
psychosis (CHR_T), CHR with no transition to psychosis
(CHR_NT), and HC, by employing six texture feature maps
extracted from non-segmented MR images and feeding into a
deep neural network binary classification schema. Instead of
applying conventional methods which show greater perfor-
mance than deep neural networks [42], we employed an
innovative approach that addresses a frequent concern about
artificial intelligence methods, i.e., the explainability of results.
Our goal is to gain insights into the examined disorders using
radiomics texture features and explainable AI which achieve
better performance in outcome modeling instead of statistical
analysis of the radiomics texture features or the deep neural
networks solely [31]. Our proposed algorithm integrates the
complexity of the deep neural networks with the explainability
of these networks as introduced by Bach et al. [43]. The
algorithm, which is applied on non-segmented brain MRI for the
investigation of the inter-relation between white matter (WM),
GM and cerebrospinal fluid (CSF) has been previously reported
for the identification of schizophrenia and major depression in
Korda et al. [35]. Based on previous findings [44, 45], we
hypothesize that radiomics texture feature models capture
brain changes at microscale level which enable to (a)
discriminate FEP patients from healthy controls and CHR
subjects without a later transition to psychosis, and (b) predict
later transition in CHR subjects based on the FEP pattern.

METHODS
Study participants
The current analyses are based on data from the early detection of
psychosis project (FePsy) at the Department of Psychiatry, University of
Basel, Switzerland [46]. FePsy was a prospective clinical study of all
consecutive referrals to the specialized early detection center of the two
cantons Basel-Stadt and Basel-Landschaft (FePsy). FEP, CHR subjects, and
healthy controls (HC) were recruited from November 2008 to April 2014.
CHR subjects were followed up until transition (CHR-T) or, if no transition
occurred (CHR-NT) for a maximum of 5 years. The Basel Screening
Instrument for Psychosis (BSIP) was used for assessment of CHR and FEP
status. The BSIP is a 46-item instrument based on variables that have been
shown to be risk factors for early symptoms of psychosis such as DSM-III-R
—“prodromal symptoms,” social decline, drug abuse, previous psychiatric
disorders, or genetic liability for psychosis [47]. CHR status was defined
either based on the presence of attenuated psychotic symptoms, brief
limited intermittent psychotic symptoms, or having a first- or second-
degree relative with a psychotic disorder and at least 2 additional risk
factors for psychosis. FEP status and transition to psychosis were defined
according to criteria by Yung et al. [48]: scores of 4 or higher on the BPRS’s
hallucination item or scores of 5 on the BPRS’s strange thinking content,
suspiciousness, or conceptual disarray items were necessary for inclusion.
The symptoms must have lasted longer than a week and occured at least a
couple of times a week. Patients with first-episode psychosis are those who
on admission already fulfill the criteria for transition to psychosis as
defined by the Yung et al. [48]. The Yung et al. (1998) criteria for the
definition of psychosis represent a cutoff across the staging continuum
and do not necessarily mean that these patients transitioned from a CHR
state. CHR-T subjects were subjects classified as CHR at baseline (i.e., they
had never achieved the psychosis cutoff according to Yung et al.), who
transitioned to psychosis during follow-up. Thus, MRI was recorded at
different stages across the psychosis continuum in CHR-T (before
transition) and in FEP (after the emergence of overt psychosis). All
participants for whom an MRI at baseline was available were included in
the study.
Exclusion criteria for participants were age under 18 years old, a poor

command of German, an IQ score below 70, prior psychotic episodes
treated with antipsychotics for longer than 3 weeks, a clearly diagnosed

brain disorder or substance dependency (other than cannabis depen-
dence), or secondary psychotic symptoms within a depressive episode,
bipolar disorder or borderline personality disorder. One of the 16 CHR-T
participants took low-dose antipsychotic medication before having the
MRI, the patient had received modest doses of atypical antipsychotic
medication for behavioral control from the referring psychiatrist or general
practitioner.
HC were recruited from the same geographical area as the CHR group

through local advertisements and were matched to the CHR sample
groupwise for age, gender, handedness, and education level. These
individuals had no current psychiatric disorder, no history of psychiatric
illness, head trauma, neurological illness, serious medical or surgical illness,
substance dependency (except for cannabis and nicotine), and no family
history of any psychiatric disorder as assessed by an experienced
psychiatrist in a detailed clinical interview. The study was approved by
the local ethics of northwestern and central Switzerland, and written
informed consent was obtained from each participant. The study was
conducted in accordance with the Declaration of Helsinki.
Structural MRI scans of 194 subjects were used for analysis: 77 FEP, 58

CHR_NT, 15 CHR_T, and 44 HC. Subjects were scanned using a SIEMENS
(Erlangen, Germany) MAGNETOM VISION 1.5 T scanner at the University
Hospital, Basel. A three-dimensional volumetric spoiled gradient recalled
echo sequence generated 176 contiguous, 1 mm-thick sagittal slices.
Imaging parameters were time-to-echo, 4 ms; time-to-repetition, 9.7 ms;
flip angle, 12°; matrix size, 200 × 256; field of view, 25.6 × 25.6 cm matrix;
voxel dimensions, 1.28 × 1 × 1mm. Inclusion and exclusion criteria are
described in detail in ref. [4].

MRI data acquisition and data preprocessing
After inspection for artifacts and gross abnormalities, MRI scans were
segmented into GM, WM, and CSF tissue maps in native space by means of
the CAT12 toolbox (http://dbm.neuro.uni-jena.de), an extension of the
SPM12 software package (Wellcome Department of Cognitive Neurology,
London, England). All scans were reviewed by a neuroradiologist to rule
out clinically significant abnormalities. The process was automated and has
been described in Koutsouleris et al. [49] and Koutsouleris et al. [50].
Computation time of the preprocess was less than 30min per subject.
It is critical to keep potential variances in image pose variance

entering texture feature maps calculations to a minimum as these have
been noted to affect texture estimates. In detail, the CAT12 toolbox
extends the unified segmentation model consisting of MRI field
intensity inhomogeneity correction, spatial normalization, and tissue
segmentation in several preprocessing steps to further improve the
quality of data preprocessing. Initially, the Optimized Blockwise
Nonlocal-Means filter proposed by Coupe at al. [51] was applied to
the MRI scans using the Rician noise adaption introduced in Wiest-
Daesslé et al. [52] to increase the signal-to-noise ratio in the data. The
usual strip artifacts in modulated images are greatly reduced by the
default internal interpolation setting “Fixed 1 mm” in CAT12. Subse-
quently, an adaptive maximum a posteriori segmentation approach [53]
extended by partial volume estimation [54] was employed to separate
the MRI scans into GM, WM, CSF tissue. The segmentation step was
finished by applying a spatial constraint to the segmented tissue
probability maps based on a hidden Markov Random Field model [55]
that removed isolated voxels which were unlikely to be a member of a
certain tissue class and closed gaps in clusters of connected voxels of a
certain class, resulting in a higher signal-to-noise ratio of the final tissue
probability maps. The strength of the filters is automatically determined
by estimating the residual noise in the image. The original voxels are
projected into their new location in the warped images preserving the
volume of a particular tissue within a voxel, i.e., produced by affine
transformation (global scaling) and non-linear warping (local volume
change), but this has the effect of introducing aliasing artifacts [56]. This
latter effect was eliminated by applying discretization of the intensities
in the mwp0* images (see section Adjust intensity values using
histogram equalization), which is similar to applying a smoothing filter
on the data distribution [57]. All scans were reviewed by a
neuroradiologist to rule out clinically relevant abnormalities, data did
not present any artifacts.

Feature extraction
Adjust intensity values using histogram equalization. We used histo-
gram equalization to adjust the contrast of a grayscale image. The
original image has low contrast, with most pixel values in the middle of
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the intensity range. The histeq function in Matlab produces an output
image with pixel values evenly distributed throughout the range and
return a 1-by-256 vector that shows, for each possible input value, the
resulting output value (see Fig. 1a). The number of bins normalizes
images and forces the reproducibility of the texture features in new
samples [57]. The brain sMRI used have similar resolution and noise
levels, a common quantization method and the same number of gray
levels in all quantized images was applied [58, 59]. In this study, we used
the histeq function with a range of 2–256 bins (expresses the number of
discrete gray levels), with a step of 2. The optimal number of the bins/
bin-width (size) was selected in two stages. First, the images were
inspected visually, and subsequently selected images were fed into the
deep learning pipeline. Very large or small numbers of bins resulted in
losing the brain boundaries between GM, WM, and CSF, while extremely
noisy images returned. Finally, we exhaustively searched for the optimal
number/width of bins by extracting the texture features across all
images and feeding them one by one into the deep learning schema.
The images with 16 bins returned the higher balanced accuracy. In Fig.
1, we have plotted the transformation curve for histogram equalization,
the initial intensities, the adjusted intensities and the difference in the
intensity between the initial and the transformed image is presented.

The texture feature maps were extracted from the transformed mwp0*
image (see Fig. 2 for workflow).

Radiomics texture feature maps
We extracted textural parameters from non-segmented images using gray-
level co-occurrence matrix (GLCM). Six texture features were calculated on
the mwp0* images of the 194 subjects;1,164 individual feature maps in
total. We extracted the texture features Entropy, Sum of Entropy,
Difference of Entropy, Energy, Contrast and Homogeneity [60]. We a priori
selected the examined features based on their connection to the
morphological brain changes in FEP and CHR [30]. We selected the
features that express opposite properties at microscale level (Entropy vs
Energy and Homogeneity vs Contrast). Second order statistics of Entropy
measure the arrangement of voxel gray-level intensities, depend on spatial
relationship between gray-level intensities of the voxels [31], and have
shown significant results in previous study [29]. The definitions of these
features were as follows: GLCM-contrast reflects local variations in the
GLCM; GLCM-energy reflects uniformity of gray-level voxel pairs; GLCM-
entropy reflects randomness of gray-level voxel pairs; and GLCM-
homogeneity reflects homogeneity of gray-level voxel pairs [61, 62]; finally
GLCM-sum of entropy and difference of entropy reflect second order

Fig. 1 Histogram equalization to adjust the intensity values. Representation of a the discretization function and b the initial intensities and
the adjusted intensities using histogram equalization. The brain MRI in SPM12 for the c initial MR image and d transformed MR image using
the histogram equalization.

Fig. 2 Workflow chart. Workflow for the calculation of the texture feature maps.
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statistics of differentiation of gray-level distribution GLCM. We used voxel-
by-voxel sliding 3D cube of 7 × 7 × 7 dimension as presented in a previous
paper [35]. The GLCM matrix was normalized by dividing the values with
the total sum of the values in the matrix. The normalization was performed
for each GLCM extracted in each 3D cube independently. The texture
features were extracted by a 3D 7 × 7 × 7 cube. Where the boundary of the
cube touches non-zero brain gray levels, the algorithm maps the value to
the center of the cube. For this reason, a 7 × 7 × 7 Gaussian kernel was
used to smooth the voxel’s relevance for better localization of the results.
All the feature maps calculated from the 2d GLCM were basically a

function of the probability of each GLCM entry and the difference of the

gray levels, g1 and g2 [63]. We calculated feature maps only for cubes
including non-zero values, as presented in Appendix A. The registered
texture feature maps on the MNI space were fed one by one into a 10 × 10
nested cross-validation deep learning schema for group classification (see
Supplemental Fig. 2).
We investigated the prediction accuracy of every single feature

independently. This gives a physical meaning in the interpretation of the
results. The first step was to select the features with the higher balanced
accuracy and then to interpret the results in grouped fashion. We focus the
description of results on the difference of entropy feature, which measures
the randomness of intensity distribution in a second level, inherits the
characteristics of entropy, and typically is less sensitive to outliers in a
region [28]. The contrast gives a low weight to elements with similar gray-
level values,but a high weight to elements with dissimilar gray levels,
indicating large differences between neighboring voxels [58]. Texture
feature map extraction from non-segmented brain images provides insight
into voxel interrelationships of different modalities. To our knowledge,
non-segmented images have never been used to detect the examined
disorders due to the lack of interaction between these modalities as an
indicator of diagnosis, suggesting a novel biomarker.

Deep learning
The deep learning technique utilized the registered radiomics texture
feature maps as input. We implemented two cycles of 10 times repeated
nested cross-validation with 10 folds in the inner cycle and 10 folds in the
outer cycle, resulting in 10,000 models. Feature selection (two-sample t-
test) in the inner cycle, was cross-validated by selecting a number of
features appropriate to the dimension of the database, namely, the top
200 ranked features that best discriminated the 2 classes in each
classification schema (see section Classification results and visualization)
[64]. The classifier implemented was a neural network-based classifier
implemented in MATLAB (MathWorks Inc., Natick, Massachusetts, USA).
The network used the hyperbolic tangent sigmoid transfer function and
was batch-trained using the Levenberg-Marquardt training algorithm [65].
L2-regularization was applied to access possible types of uncertainty. We
selected parameters after experimentation; 5 hidden layers (tested 2–5),
each hidden layer consists of 2 nodes (tested 2–20) and 1000 epochs. The
average balanced accuracy, sensitivity and specificity was calculated across
all hold-out datasets of the 10 × 10 nested cross-validation, repeated
10 times.

Visualization and evaluation of heatmaps
In order to perform localization, we calculated the relevance of the voxels
in each class using the LRP algorithm for multilayer neural networks, as
described in Bach et al. [43]. The explanation given by LRP would be a map
showing which voxels of the original texture feature map contribute to the
diagnosis and to what extent.
For the specific deep learning schema with 5 hidden layers and size 2,

the calculation of the LRP algorithm is presented in Appendix B. The

Fig. 3 Visualization of the relevance of the voxels in each class for the classification schema (a).We demonstrated the smoothed PR with a
7 × 7 × 7 Gaussian kernel of the correct classified subjects of each group against the other in classification schema (a), FEP vs. HC for the
registered texture feature map: a difference of entropy and b contrast. The red (cluster 1), blue (cluster 2), and green (cluster 3) color
corresponds to the sorted clusters according to the number of subjects belong to each cluster.

Table 1. Group comparison was investigated using one-way ANOVA
for continuous and χ2 test for categorical data.

One-way ANOVA (Welch’s)

F p

FEP vs HC

Age 1.63 0.204

Education (years) 19.26 <0.001

Smoking (cigarettes per day) 28.18 <0.001

FEP vs CHR

Age 3.118 0.056

Education (years) 0.165 0.849

Global Assessment of Functioning (GAF) 46.875 <0.001

BPRS_Positive_Symptoms 19.498 <0.001

BPRS_Negative_Symptoms 22.494 <0.001

BPRS_total 462.930 <0.001

SANS_total 128.957 <0.001

Smoking (cigarettes per day) 2.418 0.102

χ² tests
FEP vs HC

Sex 13.6 <0.001

Alcohol 9.60 0.008

FEP vs CHR

Sex 0.431 0.511

Alcohol 2.80 0.246

BPRS Brief Psychiatric Rating Scale, GAF Global Assessment of Functioning,
SANS Scale for the Assessment of Negative Symptoms.
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output of the LRP algorithm is a heatmap for each subject representing
change in brain structures for FEP, CHR_NT, and CHR_T subjects. The final
images were smoothed with a Gaussian filter of 10 mm and visualized
using the MRIcron toolbox (https://people.cas.sc.edu/rorden/mricron/
install.html). Similarities of the heatmaps for subjects in the same group
were identified by clustering the heatmaps. Evaluation of the clustered
heatmaps gives an estimation to the importance of each brain region to
the diagnostic group membership (Figs. 3–5). Visualizations of the
classification results on the hold-out dataset are presented in Figs. 3–5.
The regions of interest were extracted using the AAL-VOIs atlas (https://
neurovault.org/images/14257/). Additionally, we investigated cortical
biomarkers for psychosis in GM, WM, and CSF. We used the JHU WM
tractography atlas [66] to identify the WM tractography identified by the
LRP.

Clustering of subjects
Our intention was to display the heatmap of each correctly classified
subject in the hold-out testing set produced by the LRP algorithm in a
grouped fashion [67]. The affinity propagation (AP) algorithm [68] was
selected to cluster the subject’s positive relevance, which uses the concept
of message passing between the samples. The main advantage of the AP
algorithm is that the number of clusters is not predefined. The input in the
clustering algorithm is a matrix M × N, where N is the number of subjects
and M is the relevance of each voxel. The output of the AP algorithm is a
scalar for every subject that expresses in which cluster the subject belongs
to. The average of the heatmaps from the subjects belonging to each
cluster are represented.

For each classification process, the relevancies were classified using the
AP algorithm. The clusters are presented in Figs. 3–5 for each texture
feature map under the two-classification schema. The red color
corresponds to the most intense cluster, the second one is in blue color
and the green is the third one, where it exists (see Figs. 3–5).

RESULTS
Sociodemographic characteristics
There were no significant differences between FEP and HC with
respect to age and alcohol consumption. For the comparison
between FEP and CHR, there were no significant differences with
respect to age, years of education, smoking, alcohol consumption,
and gender. There were significant differences between FEP and

CHR with respect to BPRS total, BPRS Negative and Positives
Symptoms, and SANS total (see Table 1).

Classification results and visualization
Two classifiers were developed in this study: (a) FEP vs. HC and (b)
FEP vs. CHR_NT. The average balanced accuracy, sensitivity and
specificity in the outer cycle were calculated for 10 folds in 10
repetitions. We tested the texture feature maps one-by-one in the
deep learning classifier (see Tables 2–3). The specificity for FEP
compared to HC (classifier a) was above 75% across features
(Tables 2 and 3). The sensitivity in the classification schema (b) was
above 70% across features, indicating adequately correct classi-
fication of FEP against CHR_NT.
In external validation using CHR-T, the most discriminative

features were the difference of entropy and contrast resulting in a
balanced accuracy above 72%; these features are presented in
further detail for the interpretation of the results below; for
completeness, analysis of the remaining texture features is
presented in Supplement. Applying the classification schema (a),
the feature difference of entropy classified 10 out of 15 CHR_T as
FEP, while with the classification schema (b), the feature difference
of entropy classified 11 out of 15 CHR_T as FEP patients.
In addition, both classification schemas were investigated using

the non-segmented brain MR images, mwp0* images. The
classification results were for the schema (a) 73.20% and (b)
68.98% balanced accuracy. The classification balanced accuracy is
increased by applying the texture features and the explainability
of the classification results are more informative. For comparison,
voxel-based morphometry (VBM) analyses were performed in
SPM12 toolbox on mwp1* images to identify volumetric brain
differences between groups (a) FEP vs. HC, (b) CHR vs. HC and (c)
FEP vs. CHR. There were no significant differences for corrected p-
values (FWE < 0.05) in (a) and (b). Though, there were significant
differences for corrected p-values (FWE < 0.05) in the between-
group comparison of FEP vs. CHR in the left occipital lobe, see
Supplemental Fig. 1. Demographic variables, Education (years),
years of Smoking (Cigarettes per Day), alcohol, age, and sex were
used as covariates. BPRS_total, BPRS_positive, BPRS_negative, GAF
and SANS scores were used as additional covariates in comparison

Table 2. Presents the balanced accuracy, sensitivity, and specificity of the hold-out testing set, for the classification between FEP and HC.

Registered texture feature map Balanced accuracy (%) Sensitivity (%) Specificity (%)

Entropy 66.55 56.93 75.08

Sum of entropy 72.02 68.22 81.92

Difference of entropy 74.56 69.58 88.02

Contrast 75.24 76.48 83.63

Homogeneity 70.43 63.87 77.23

Energy 70.29 60.71 80.08

The highest values are indicated in bold.

Table 3. Presents balanced accuracy, sensitivity, and specificity the hold-out testing set, for the classification between FEP and CHR_NT.

Registered texture feature map Balanced accuracy (%) Sensitivity (%) Specificity (%)

Entropy 64.52 70.01 62.90

Sum of entropy 68.48 71.49 73.20

Difference of entropy 72.01 79.29 71.00

Contrast 73.21 78.95 71.92

Homogeneity 70.52 78.59 68.06

Energy 70.24 75.59 72.30

The highest values are indicated in bold.
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(b). There were no significant differences for corrected p-values
(FWE < 0.05) in (a) and b) comparisons.

Clustering of subjects
Across texture feature maps, regions with the highest contribution
to the difference between FEP and HC (i.e., those with highest
positive relevance PR) were in cerebellum and frontal gyrus
(contrast), lenticular fasciclus (difference of entropy), see Fig. 3. In
addition, regions most contributing to the difference between FEP
and CHR_NT subjects were in parahippocampal, amygdala,
precuneus, caudate, putamen, thalamus, hippocampus, insula,
cerebellum, vermis, pallidum lingual, and motor area (difference of
entropy and contrast), see Fig. 4. By explaining the classification
decision using the LRP algorithm for the four models performed

using the difference of entropy map and contrast map in
classification schemas (a) and (b), the cerebellum was observed
to be the key region for psychosis. Furthermore, key regions for
psychosis were observed that are in line with previous studies,
e.g., amygdala, caudate, insula, and hippocampus.
Regions contributing most to the CHR_T classification as FEP

using the difference of entropy texture feature map (Fig. 5) were
in parahippocampal areas, amygdala, precuneus, caudate, puta-
men, thalamus, hippocampus, insula, cerebellum, vermis, palli-
dum, lingual, and motor area. Furthermore, for the classification
schema (a), two clusters of regions could be identified using the
difference of entropy map. Cluster 1 included brain regions that
were not part of the cluster 2 (Table 4), indicating a distinct
neurobiological profile for subjects grouped in cluster 1.
We identified no consistent correlations of the PR with the

volume of the regions indicated by the LRP when analyzed in the
hold-out datasets that concluded to the highest balanced
accuracy. The PR was negatively correlated with the volume of
the regions indicated by the LRP for FEP subjects in classification
schema (a) (Supplemental Fig. 5), such as optic tract left,
corticospinal tract right, hypothalamus right (difference of
entropy). Volumetric changes of regions such as calcarine left,
fusiform right and cuneus left (contrast) were correlated positively
with PR. In classification schema (b) (Supplemental Fig. 6), the PR
for the FEP subjects was positively correlated with temporal and
vermis (difference of entropy), frontal and precentral left (contrast)
and uncorrelated with insula left, parahippocampal left, caudate
left, calcarine left, Heschl left, cuneus left, putamen and thalamus
left, lingual right (difference of entropy), frontal, temporal and
parietal cortex, and supplementary motor area left (contrast). PR
was uncorrelated with volumetric changes across CHR_NT that
classified correctly against FEP such as thalamus, insula, putamen,
hippocampus and parahippocampal, caudate, and amygdala

Fig. 4 Visualization of the relevance of the voxels in each class for the classification schema (b).We demonstrated the smoothed PR with a
7 × 7 × 7 Gaussian kernel of the correct classified subjects of each group against the other in classification schema (b), FEP vs. CHR_NT for the
registered texture feature map: a difference of entropy and b contrast. The red (cluster 1), blue (cluster 2), and green (cluster 3) color
corresponds to the sorted clusters according to the number of subjects belong to each cluster.

Fig. 5 Visualization of the relevance of the voxels for CHR_T.
Classification of CHR_T as FEP using the difference of entropy in
classification schema (b). The red (cluster 1) and blue (cluster 2) color
corresponds to the sorted clusters according to the number of
subjects. The smoothed PR with a 7 × 7 × 7 Gaussian kernel is
presented.

Table 4. Presents the regions revealed in one of the cluster in FEP vs
HC grouped fashion visualization.

FEP vs HC difference of entropy map

Anterior corona radiata left Cluster 1

Insular left Cluster 1

Lateral fronto-orbital gyrus left Cluster 1

Middle fronto-orbital gyrus left Cluster 1

Gyrus rectus left Cluster 1
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(difference of entropy). CHR subjects who made a transition to
psychosis and were classified as FEP with high balanced accuracy
using the difference of entropy map in classification schema (b),
presented uncorrelated volumetric changes with PR in many
regions, i.e., thalamus, amygdala left, putamen, insula, and others
shown in Fig. 7 in Supplement. These regions were the dominant
regions for the prediction of psychosis based on baseline MRI.
For classification schema (a) (Fig. 3) LRP revealed PR in regions

such as anterior corona radiata and genu of CC (contrast),
posterior limb of internal capsule right, superior corona radiata
right, superior fronto occipital fasciculus (difference of entropy).
Regions such as cerebral peduncle right, posterior limb of internal
capsule right and external capsule right (difference of entropy),
body of CC, superior corona radiata right, and superior long-
itudinal fasciculus right (contrast) contribute more to the
identification of the FEP subjects in classification schema (b)
(Fig. 4) and the CHR_T subjects that classified as FEP subjects (Fig.
5). Across classification schemas, the WM volumetric changes did
not impact the values of the PR indicating that texture features
capture the dynamic inter-relation between GM, WM and CSF with
predictive power for psychosis. Changes in the CSF captured by
the difference of entropy for the FEP against CHR_NT (Fig. 4) and
CHR_T classified as FEP (Fig. 5).

DISCUSSION
In this study, we used radiomic texture feature maps and the
explainable AI method suggested by Bach et al. [43] to train and
explain a classifier for psychosis. The model showed high balanced
accuracy in classifying CHR subjects with a later transition as FEP
rather than healthy subjects, thus indicating a potential use for
predictive purposes. Importantly, texture features were not
correlated with volumetric changes in a consistent manner,
suggesting that this measure can reveal hidden neurobiological
patterns expanding beyond volumetric changes of single regions
to include the interrelations and borders between GM, WM, and
CSF. Previous studies revealed subtle brain morphological
changes in FEP and CHR subjects. Additionally, texture features
measure at microscale level while brain regions are considered at
macroscale level. Although, our understanding of the interactions
between these various organizational scales is very limited [69].
Our findings are in line with a previous study applying texture

analysis on MR data in patients with schizophrenia, which
reported altered entropy in the hippocampus and the amygdala
[38]. The regions contributing mostly to the decision of our
classifier included key regions implicated in psychotic disorders in
studies that have assessed gray and white matter changes in
patients.

● Gray matter: Brain alterations with a decrease of intracranial
and total brain volume have been reported in patients with
chronic schizophrenia [70], particularly affecting cortical gray
matter (and here predominantly in the prefrontal cortex (PFC))
[71]. Some of these changes such as volume decrease in the
thalamus have been also observed in FEP [72], which
emphasizes the presence of brain alterations already in early
stages of the disease. These alterations might be pertinent to
the transition to psychosis in CHR subjects: For example, CHR-
T showed more deterioration over time in frontal and
temporal regions than CHR_NT in early studies [73, 74]. In
other regions such as the insular or cingulate cortex, gray
matter loss in CHR-T has also been reported to exceed that of
CHR_NT [75]. The structural alterations reported in previous
studies are in line with the identified regions in the current
analysis, such as temporal regions [76]; frontal cortex [77–79];
thalamus [72]; insula [80]; hippocampus and caudate nucleus
[81, 82]; pallidum, putamen [83]; parahippocampus [83, 84];
and lingual cortex [85].

● White matter: There is accumulating evidence of compro-
mised white matter function leading to abnormalities in
synchronization and connectivity in patients with schizophre-
nia [86], the most widely used measure being fractional
anisotropy (FA) assessed with diffusion tensor imaging (DTI).
Neural changes, especially changes in the white matter
connectivity could be observed throughout the different
stages and progress of psychosis [87]. There are consistent
findings of decreased FA, particularly in the inferior fronto-
occipital fasciculus (IFOF) [88, 89]. Other studies have reported
reduced white matter volume [90] and decreased FA in
superior longitudinal fasciculus (SLF) [91] as well as in inferior
fronto-orbital fasciculus (IFOF) [92–94], in CHR compared
to FEP.

Multiple texture maps reveal significant contribution in diagnostic
group membership for FA and IFOF, for both FEP and CHR_NT who
classified as FEP. The above findings are in line with our results
regarding the superior longitudinal fasciculus and inferior fronto-
orbital fasciculus using contrast maps, and the thalamus, insula,
hippocampus, pallidus, putamen, and parahippocampus using the
difference of entropy maps. The contrast of the gray-level pairs
reflects intracortical myelin as has been investigated for patients
with schizophrenia in low-sensory and motor areas [95]. The
difference of entropy in these regions potentially expresses the
differentiation in the distribution of the pairwise gray-level
randomness, which measures the brain subtle changes and express
the entropy at microscale level. Entropy in psychosis has been
investigated previously in patients with schizophrenia and indicated
thalamus, hippocampus as potential brain biomarkers [29]. To
exclude the possibility that our findings simply reflect volume
reductions in these regions, we investigated whether regions
contributing most to the diagnostic group membership (i.e., regions
with PR values) were correlated with changes in brain volume in
individuals with FEP and CHR (see Supplemental Figs 5–7). We found
no indication of correlation of the relevance of the regions in the
diagnostic group membership with volumetric changes in specific
areas, i.e., amygdala, putamen, thalamus, hippocampus, insula,
pallidus, rectus, parahippocampus, lingula, and Heschl.
The localization of alterations appeared to differ between subjects

in different illness stages using the difference of entropy map:
whereas most prominent alterations in FEP involved the cingulate
gyrus and subcortical regions such as the nigrostriatal circuit,
amygdala, and hypothalamus (Fig. 3a), CHR with later transition to
psychosis demonstrated alterations mainly in cortical regions, the
thalamus, and cerebellum (Fig. 4a). Both gray matter and white
matter loss in specific brain regions were more prominent in CHR
with transition to psychosis (CHR_T) compared to CHR who did
make the transition. These brain alterations considered of high
clinical relevance, resulting in—for example—more severe positive
and negative symptoms and worse social functioning [91, 96].
The main advantages of the proposed method are the

interpretability of the results and the use of non-segmented
images, which eliminate segmentation errors. However, the
implementation of the proposed method succumbs in limitations
on the parameter’s selection. Many studies are showing significant
differences in many texture features with variations in MRI
acquisition [97–99]. The variability in standardization of MRI
intensities influences the extraction of the texture features. In this
study, the radiomic texture feature maps were extracted from the
registered masked T1-weighted image in MNI space (as opposed
to the original space as in Korda et al. [35]. The original intensities
of T1-weighted MRI were not directly comparable across subjects,
especially in the CHR and FEP subjects’s brain, so we proceeded to
extract the GLCM texture features on the registered MRIs).
Although there is great interest in using radiomics in health
sciences, poor standardization and generalization of radiomics
results hinder its application in clinical practice. Authors in [58],
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found that noise, resolution, choice of quantization method, and
number of gray levels in the quantized image had a significant
impact on most texture features, with the magnitude of the effect
varying between features. Parameter selections such as the radius
of the cubes and the structure of the neural network should be
further examined. Regarding the LRP explanations, difference of
entropy was the dominant texture feature map for psychosis.
However, we recommend that further studies use multiple texture
features, as each one expresses a different dynamic of brain
heterogeneity. In summary, different methodological options
need to be further explored in order to get a better understanding
of the neurobiological changes in psychosis and their course from
the CHR to the FEP stage, in order to make findings relevant for
targeted interventions and individual treatment options. To
investigate whether different neuroimaging modalities can be
combined and used for increased accurate prediction, further
work is required and should be addressed in future studies.
Another unresolved question concerns the effects of antipsy-

chotic medication [3]. Several studies have shown that antipsy-
chotic medication has an impact on alterations in WM
disturbances between treated patients, drug-naïve patients and
healthy controls [100, 101], while smaller brain tissue volumes and
larger cerebrospinal fluid volumes can be observed in long-term
treatment with antipsychotics [102]. It is still unclear whether brain
abnormalities are already present at early stages and probably
predicting the clinical onset of schizophrenia, or if these changes
occur during the course of illness or are caused by pharmacolo-
gical treatment [103]. It is crucial that the nature, time occurrence
and further course of such brain changes as well as the impact of
antipsychotic treatment is further investigated.

CONCLUSIONS
Conventional imaging parameters are inadequate for quantification
of the spatial distribution of microscopic tissue heterogeneity. A
promising alternative to improve the diagnosis of psychosis on the
basis of neurobiology is the application of radiomics texture features.
We investigated the relation between neurobiological markers and
LRP explanations. We observed that texture feature maps can be a
useful representation for characterizing dissimilarities in brain
structure in a complementary manner to volumetric analysis. Further
studies in large cohorts are warranted to establish the key regions
and key texture features that characterize psychotic disorders, in
order to improve our understanding of the neurobiological changes
that occur before the onset of psychosis and promote research on
prevention and treatment methods for CHR subjects.

Limitations
In this study, we investigated the prediction accuracy of different
radiomics texture features separately. The number of features,
especially when used for machine learning classification, is
another challenging issue in radiomics’ utility. Further studies
are needed to investigate the redundancy in the combination of
the radiomics texture features. Although the results are in line
with previous studies, an external validation set is required to
validate the models and the potential biomarkers, which is not
applied in this study. Repeated nested cross-validation and cross-
validation feature selection is applied to avoid overfitting,
minimize bias, and enhance the generalizability of the model.
However, the small sample size is a drawback of the study and
validation of the proposed method in larger datasets is requested.
In contrast to conventional machine learning techniques, which fit
better to small samples, deep learning techniques provide insights
on the explanation for the classification decisions. Another
methodological drawback of the proposed method lies on the
missed consensus within texture features extraction process
regarding the applied image normalization method. Last, in the

current analysis the heterogeneity of diagnoses in the CHR_NT has
not been investigated.
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APPENDIX A
Entropy: measure the complexity of the texture distribution. Entropy is a measure of
chaos, if the values are consistently across, this means that the texture is very
stochastic. Inverse to this property is the energy.

Entropy ¼ �
XNg1

i¼1

XNg2

j¼1
GLCMði; jÞ ln GLCMði; jÞ

Contrast: reflects the distance from the GLCM diagonal. Values on the diagonal
(where i and j are the same) result in zero contrast, whereas the contrast increases by
increase of distance from the diagonal.

Contrast ¼
XNg1

i¼1

XNg2

j¼1
ði � jÞ2GLCMði; jÞ

Where µ is the GLCM mean.
Difference of entropy: measures the disorder related to the gray-level difference
distribution of the image.

Diffentropy ¼ �
XNg�1

k¼0
GLCMx�y kð Þ log2ðGLCMx�yðkÞÞ

where GLCMx�y , Ng are expressed as:

GLCMx�yðkÞ ¼
XNg1

i¼1

XNg2

j¼1
GLCMði; jÞ;where i � jj j ¼ k; and k ¼ 0; 1; ::;Ng � 1

Sum of entropy: measures the disorder related to the gray-level sum distribution of
the image.

Sumentropy ¼ �
X2Ng

k¼2
GLCMxþy kð Þ log2ðGLCMxþyðkÞÞ

GLCMxþy kð Þ ¼
XNg1

i¼1

XNg2

j¼1
GLCM i; jð Þ;where i þ j ¼ k; and k ¼ 2; 3; ::; 2Ng

Homogeneity: measures the smoothness (homogeneity) of the gray-level distribution
of the image; it is (approximately) inversely correlated with contrast—if contrast is
small, usually homogeneity is large

Homogeneity ¼
XNg1

i¼1

XNg2

j¼1

1

1þ ði � jÞ2 GLCMði; jÞ

Energy: reflects the regularity and uniformity of the image distribution. The energy is
high when the voxels are very similar, e.g., chess image.

Energy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XNg1

i¼1

XNg2

j¼1
GLCM2 i; jð Þ

vuut

APPENDIX B
For the specific deep learning schema with 5 hidden layers with size 2, the LRP
algorithm is presented:
Relevance of the 7th layer

R 7ð Þ
j ¼ f xð Þ; j ¼ 1; 2

Where the sixth layer is the real-valued prediction output of the
classifier f for the two classes j.
Relevance of the 6th layer between neurons i and j
For j ¼ 1; 2 and i ¼ 1; 2

R 6;7ð Þ
i j ¼

zij
zjþε R

7ð Þ
j ; zj � 0

zij
zj�ε R

7ð Þ
j ; zj<0

8
<

: ;

zij ¼ xiwij ;

zj ¼
X2

i¼1
zij þ bj

Where xi is the output of the fifth hidden layer using the tansig
transfer function on the net input, wij are the weights and bj the
biases of the neurons connect the fourth and third layer. ε is 0.001
just to avoid the division with zero. So, the voxel-wise relevance in
the third hidden layer is calculated as:

Rð6Þi ¼
X2

j¼1
R 6;7ð Þ
i j

Relevance of the 5th layer between neurons i and k
For i ¼ 1; 2 and k ¼ 1; 2

R 5;6ð Þ
k i ¼

zki
ziþε R

6ð Þ
i zi � 0

zki
zi�ε R

6ð Þ
i ; zi<0

8
<

: ;

zki ¼ xkwki ;

zi ¼
X2

k¼1
zki þ bi

Where xk is the output of the fourth hidden layer using the tansig
transfer function on the net input, wki are the weights and bi the
biases of the neurons connect the second and third layer. ε is
0.001 just to avoid the division with zero. So, the voxel-wise
relevance in the second hidden layer is calculated as:

R 5ð Þ
k ¼

X2

i¼1
R 5;6ð Þ
k i

Relevance of the 4th layer between neurons i and k
For i ¼ 1; 2 and k ¼ 1; 2

R 4;5ð Þ
k i ¼

zki
ziþε R

5ð Þ
i ; zi � 0

zki
zi�ε R

5ð Þ
i ; zi<0

8
<

: ;

zki ¼ xkwki ;

zi ¼
X2

k¼1
zki þ bi

Where xk is the output of the third hidden layer using the tansig
transfer function on the net input, wki are the weights and bi the
biases of the neurons connect the second and third layer. ε is
0.001 just to avoid the division with zero. So, the voxel-wise
relevance in the second hidden layer is calculated as:

R 4ð Þ
k ¼

X2

i¼1
R 4;5ð Þ
k i

Relevance of the 3rd layer between neurons i and k
For i ¼ 1; 2 and k ¼ 1; 2

R 3;4ð Þ
k i ¼

zki
ziþε R

4ð Þ
i ; zi � 0

zki
zi�ε R

4ð Þ
i ; zi<0

8
<

: ;

zki ¼ xkwki ;

zi ¼
X2

k¼1
zki þ bi

Where xk is the output of the second hidden layer using the
tansig transfer function on the net input, wki are the weights
and bi the biases of the neurons connect the second and third
layer. ε is 0.001 just to avoid the division with zero. So,
the voxel-wise relevance in the second hidden layer is
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calculated as:

R 3ð Þ
k ¼

X2

i¼1
R 3;4ð Þ
k i

Relevance of the 2nd layer between neurons k and l
For k ¼ 1; 2 and l ¼ 1; 2

R 2;3ð Þ
l k ¼

zlk
zkþε R

3ð Þ
k ; zk � 0

zlk
zk�ε R

3ð Þ
k ; zk<0

8
<

: ;

zlk ¼ xlwlk ;

zk ¼
X2

l¼1
zlk þ bk

Where xl is the output of the first hidden layer using the tansig
transfer function on the net input, wlk are the weights and bk the
biases of the neurons connect the second and third layer. ε is
0.001 just to avoid the division with zero. So, the voxel-wise
relevance in the first hidden layer is calculated as:

R 2ð Þ
l ¼

X2

k¼1
R 2;3ð Þ
l k

Relevance of the 1st layer between input voxels and neurons l

For d ¼ 1; ¼ ; 212295 voxels:

R 1;2ð Þ
d l ¼

zdl
zlþε R

2ð Þ
l ; zl � 0

zdl
zl�ε R

2ð Þ
l ; zl<0

8
<

: ;

zdl ¼ xdwdl ;

zl ¼
X212295

d¼1
zdl þ bl

Where xd is the input registered texture feature map based image,
wdl are the weights and bl the biases of the neurons connect the
input and second layer. So, the voxel-wise relevance in the input
layer is calculated as:

R 1ð Þ
d ¼

X2

l¼1
R 1;2ð Þ
d l
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