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Epigenome-wide DNA methylation analysis of whole blood
cells derived from patients with GAD and OCD in the Chinese
Han population
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Generalized anxiety disorder (GAD) and obsessive-compulsive disorder (OCD) had high comorbidity and affected more than 44
million people around the world leading to a huge burden on health and economy. Here, we conducted an epigenome-wide DNA
methylation study employing 93 patients with GAD, 65 patients with OCD, and 302 health controls, to explore epigenetic
alterations associated with the onset and differences of GAD and OCD. We identified multiple differentially methylated positions
(DMPs) and regions (DMRs): three DMP genes included RIOK3 (cg21515243, p= 8.00 × 10−10), DNASE2 (cg09379601,
p= 1.10 × 10−9), and PSMB4 (cg01334186, p= 3.70 × 10−7) and two DMR genes USP6NL (p= 4.50 × 10−4) and CPLX1
(p= 6.95 × 10−4) were associated with the onset of GAD and OCD; three DMPs genes included LDLRAP1 (cg21400344,
p= 4.40 × 10−12), ACIN1 (cg23712970, p= 2.98×10−11), and SCRT1 (cg25472897, p= 5.60 × 10−11) and three DMR genes WDR19
(p= 3.39 × 10−3), SYCP1 (p= 6.41 × 10−3), and FAM172A (p= 5.74 × 10−3) were associated with the differences between GAD and
OCD. Investigation of epigenetic age and chronological age revealed a different epigenetic development trajectory of GAD and
OCD. Conclusively, our findings which yielded robust models may aid in distinguishing patients from healthy controls
(AUC= 0.90–0.99) or classifying patients with GAD and OCD (AUC= 0.89–0.99), and may power the precision medicine for them.
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INTRODUCTION
Generalized anxiety disorder (GAD) and obsessive-compulsive
disorder (OCD), affected more than 44 million people around the
world [1]. Both GAD and OCD can cause marked anxiety or distress
on patients: GAD makes patients experience worry and fear about
everyday situations frequently, intensively, excessively, and persis-
tently, that interfere the daily life and are hard to control; OCD
makes patients experience recurrent and persistent thoughts, urges
or images which were intrusive and unwanted [2]. Meta-analysis
indicated the direct cost and indirect cost of GAD and OCD achieved
the 2.08 and 0.22% of gross domestic product [3], respectively. GAD
and OCD had been proved to be associated with environmental
factors like prenatal events [4], urban environment [5], and drug
abuse [6]. DNA methylation (DNAm), a major epigenetic modifica-
tion in humans, regulates the expression of genes and alters the trait
without alteration in DNA sequence. DNAm changes [7–9] were
observed in patients with GAD or OCD, which indicated their
pathological role in them. There is a challenge in the diagnoses
because of the high risk of co-morbidity and common symptoms
among GAD and OCD [10, 11]. To date, studies only focused on one
disease, and the similarities and differences of epigenetic structures
among them hadn’t been elucidated yet.

In this study, we employed 93 patients with GAD, 65 patients
with OCD, and 302 health controls (HC) to investigate the DNAm
alteration associated with the onset of GAD and OCD and the
differences and similarities in DNAm structure between them. In
addition, we will testify if the observations can be a diagnosis tool
aiming in aiding the precision medicine of GAD and OCD.

MATERIALS AND METHODS
Participants
In this study, a total of 158 drug-naïve and first-episode patients (93 GADs
and 65 OCDs) were recruited in Peking University Sixth Hospital from 2013
to 2021. The age (mean ± S.D) of GAD and OCD was 36.94 ± 12.07 and
29.31 ± 10.06, respectively. The ratio of sex (male:female) of GAD and OCD
was 39:54 and 43:22, respectively. Diagnosis and collection of blood
samples were conducted by the clinical research physicians from Peking
University Sixth Hospital. All patients were diagnosed with GAD or OCD
according to the criteria of the Diagnostic and Statistical Manual of Mental
Disorders, fourth edition (DSM-IV).
We recruited a total of 302 healthy participants in Beijing. The age

(mean ± S.D) of healthy control was 24.47 ± 3.29. The ratio of sex
(male:female) of healthy control was 149:153. We included participants if
they were (1) Chinese of Han ancestry (including the participants and their
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parents); (2) age ranging from 18 to 45; (3) no current or history of
neurological or psychiatric disease met the criteria of Diagnostic and
Statistical Manual of Mental Disorders, 4th Edition, Text Revision (DSM-IV-
TR), assessed by psychiatrists using the Structured Clinical Interview for
DSM-IV-TR Axis I Disorders, Non-patient Edition (SCID-I/NP). We excluded
participants if they had (1) a history of psychiatric or neurological diseases
and substance abuse or dependence (including the participants and their
parents); had a history of loss of consciousness for more than 5min; (3) are
pregnant or lactating women or women planning to become pregnant.
The demography of participants and statistics of clinical information can

be found in Table 1. This study was approved by the Institutional Review
Boards of Peking University Sixth Hospital and the written informed
consent was obtained from each participant.

Epigenome-wide DNA methylation profiling and quality control
Genomic DNA was extracted with the QIAamp DNA Mini Kit (QIAGEN, Hilden,
Germany) from whole blood and treated with sodium bisulfite following
standard procedures. Genome-wide DNA methylation was assessed using
Infinium HumanMethylation450 BeadChip and EPIC BeadChip. Firstly, we
tried to filter samples with at least 5% of the probes that did not pass a 0.05
detection P value threshold, and no sample was removed. We then filtered
the probes with >0.01 detection P value in more than 5% samples and the
probes with <3 bead count in at least 5% samples, and then we filtered
probes with annotated SNPs together or with probes located on sex
chromosomes or align to multiple locations as identified in Nordlund et al
[12]. Beta values (ranging from 0 to 1) were then generated to represent
methylation ratios at a given CpG site, and higher beta values indicate higher
methylation levels. Technical differences between two different probe types
were then normalized by beta-mixture quantile normalization method
(BMIQ) [13] as implemented in the “ChAMP” R package [14]. After the
processing pipeline, 375,546 probes remained for the following analyses.

Adjustment of confounders
We used champ.runCombat function to conduct the correction of batch
effect. Cell proportion was estimated by DNA Methylation Age Calculator.
We included sex, age, blood cell proportion, and principal components
that explain 95% of the variance in the linear model by R package limma to
reduce the potential confounding.

Identification of differentially methylated positions
Differentially methylated position (DMP) analysis was performed by
“ChAMP.DMP” function from ChAMP package in R. Multiple testing was
adjusted using the Benjamini and Hochberg correction, with the
significance threshold set at an adjusted p-value < 0.05.

Identification of differentially methylated regions
Differentially methylated region (DMR) analysis was performed to detect
differentially methylate with “ChAMP.DMR” function from ChAMP
package in R and “Bumphunter” algorithm with parameters as (1) 1000
times of bootstrapping for reducing the bias in sampling; (2) beta value
smoothing was performed for each CpG site [14]. P values were corrected
by the Benjamini–Hochberg method, with the threshold set at an
adjusted p-value < 0.05. For each DMR, a minimum number of three
consecutive CpG sites were required to constitute a DMR.

Gene ontology analysis
Gene ontology (GO) analysis for DMP-annotated and DMR-annotated
genes was conducted by g:Profiler [15]. We used all known genes as

reference for the GO enrichment. For each GO term with the p-value
adjusted by Benjamini and Hochberg that was less than 0.05 was
considered significant.

Epigenetic clock calculation
We used epigenome-wide methylation data to calculate the epigenetic clocks
by DNA Methylation Age Calculator (https://dnamage.genetics.ucla.edu). The
data for calculation are not normalized by our methylation profiling pipeline
and are normalized by the DNA methylation Age Calculator. We use the age
acceleration residual, the recommended epigenetic clock measurements [16],
to estimate the epigenetic clock profile.

Evaluation of blood-brain correlation in DNA methylation
We used the online database, Blood-Brain DNA Methylation Comparison
Tool (https://epigenetics.essex.ac.uk/bloodbrain/) which included the
whole-genome wide methylation data of peripheral blood and brain
tissues (prefrontal cortex, entorhinal cortex, superior temporal gyrus, and
cerebrum) from the matched individuals, to evaluate the brain-blood
correlation. The online database used the Pearson correlation to measure
the coefficient of DNA methylation between brain tissues and peripheral
blood, p-value < 0.05 was considered as the significant correlation.

Development of diagnostic and distinguish models
The whole model development pipeline was under the machine learning
framework provided by R package caret. We used the methylation level of
CpG sites which were from the differential methylation analysis (1081 CpG
sites for the case-control study and 398 CpG sites for the GAD vs OCD
study) and the machine learning algorithm eXtreme Gradient Boosting
(xgBoost) to develop the model. We used the following preprocessing
procedures for model development: (1) we shuffled all samples and
randomly separated them into a training dataset and test dataset with the
ratio of 7:3; (2) we scaled, centered, and Box-cox transformed the training
dataset, store the data distribution of training dataset, and applied the
data distribution into test dataset (to avoid the data leakage); (3) we used
10-fold cross-validation to build the model and to avoid the underfitting or
over-fitting; (4) we used the random search to optimize hyper-parameters
(e.g., gamma, max depth of the tree, drop rate, etc.), relied on the area
under the curve (AUC) to evaluate the model performance, and select the
model which was with highest AUC as the ultimate model.

Statistics
The statistical power of the sample size was estimated by G*power
software [17] (version 3.1) under the models of Pearson correlation,
ANOVA, and t-test, which can be found in Supplementary figure S1.
Statistical analysis was conducted in R 4.1.1. We used Pearson correlation
to estimate the correlation coefficient between two variables. A threshold
of p-value < 0.05 was considered as a significant correlation. We used the
Wilcoxon test to compare the difference in mean between two groups and
used the Kruskal–Wallis test to compare the difference in mean between
three groups, a threshold of p-value < 0.05 was considered as the
significant difference.

Data deposition
The DNA methylation data of this study can be accessed on Peking
University Open Research Data Platform (https://doi.org/10.18170/DVN/
ORDT4O).

RESULTS
Demography of participants and study design
Table 1 described the demographic information of our partici-
pants. We included 93 participants with GAD, 65 participants with
OCD, and 302 healthy people (HC). The sample size provided
enough statistical power for the following analyses (see Supple-
mentary Fig. S1).
We used the combination of GAD and OCD (cases, all were drug-

naive) and the HC to conduct a case-control study investigating the
DNA methylation change. In this setting, the age (mean ± S.D) were
33.80 ± 11.87 and 24.47 ± 3.29 in cases and HC, respectively, and
there is a significant difference in age between cases and HC
(Wilcoxon test, agecases vs ageHC, p= 1.47 × 10−16) suggesting a

Table 1. Demography.

Cases (n= 158) HC (n= 302)

GAD (n= 93) OCD (n= 65)

Age (mean±S.D) 33.80 ± 11.87a 24.47 ± 3.29a

36.94 ± 12.07b 29.31 ± 10.06b

Sex (female, %) 76 (48.10%) 153 (50.66%)

54 (58.06%) 22 (33.84%)
aWilcoxon test, agecases vs ageHC, p= 1.47 × 10−16; bWilcoxon test, ageGAD
vs ageOCD, p= 4.13 × 10−5.
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bias of age. Besides, there were 76(48.10%) and 153(50.66%)
females in cases and HC, respectively.
Another study was conducted between patients with GAD and

with OCD (GAD vs OCD). In this study, the age (mean ± S.D) were
36.94 ± 12.07 and 29.31 ± 13.06 in GAD and OCD, respectively, and
there is a significant difference in age between cases and HC
(Wilcoxon test, ageGAD vs ageOCD, p= 4.13 × 10−5) indicating the
confounding from age. There were 54(48.10%) and 22(33.84%)
females in cases and HC, respectively, which suggested a bias
in sex.
Conclusively, the statistical result of demography indicated the

potential confounding of age and sex, therefore, as we mentioned
in the method section, the adjustment for the confounding factors
was applied to the methylation data before the analyses were
carried out.

Differential methylation analyses in the case-control study
To investigate the epigenetic factors associated with the onset of
GAD and OCD, we conducted the differential methylation analyses
between patients with GAD and OCD (cases) and health controls
(HC). We identified a total of 514 differentially methylated
positions (DMPs), the top 10 significant DMPs were listed in Table 2,
four of which were brain-blood correlated and were highlighted in
bold. Compared to HC, 476 DMPs were hypermethylated and 38
DMPs were hypomethylated in cases (Fig. 1A). The regions of
DMPs were shown in the left heatmap of Fig. 1B, about 43% of
DMPs were enriched in promoter regions like TSS1500 (TSS,
transcription start site; 100 CpG sites [19.46%]), TSS200 (43 CpG
sites [8.37%]), 5’UTR (55 CpG sites [10.7%]), and 1st exon (23 CpG
sites [4.47%]) and about 57% of DMPs were enriched in non-
promoter regions like body (149 CpG sites [28.99%]), IGR
(intergenic region, 123 CpG sites [23.93%]), and 3′UTR (21CpG
sites [4.09%]). The locations of DMPs were shown in the right
heatmap of Fig. 1B, that 30.74% (158 CpG sites), 25.69% (132 CpG
sites), 23.93% (123 CpG sites), 19.65% (101 CpG sites) of DMPs
were in opensea island, shore, and shelf, respectively. Gene
ontology (Fig. 1C) revealed that DMP-affected genes involved the
biological processes like the transduction and regulation of
signaling, affected the cellular components like synapse which is
pivotal for mental health disorders, and regulated the molecular
functions like protein binding, enzyme binding, and DNA binding
that are crucial for the regulation of transcription and expression
of DNA. Besides, these genes were associated with the develop-
ment process. Among the DMP genes, two CpG sites overlapped
with the risk loci of GAD and OCD from published genome-wide
association studies: cg10740573 (nearby MTA1, Fig. 1K) [18] and
cg24646457 (nearby PLA2G4D, Fig. 1J) [19]. Among the top 10
DMP genes, we found two of them were related to mental health
disorders: RIOK3 (cg21515243, Fig. 1F) was a gender-specific risk
factor for Alzheimer’s disease [20] and PSMB4 (cg01334186,
Fig. 1H) involved inflammation was related to the susceptibility
to major depression [21]. Besides, DNASE2 (cg09379601, Fig. 1G)
was associated with the regulation of autoinflammation [22].
We identified a total of 119 DMRs (constituted by 556 CpG sites)

between cases and HC, most of them were brain-blood correlated.
The top 10 significant DMRs were listed in Table 3 and showed
blood-brain correlation. As shown in the left heatmap in Fig. 1B, in
556 CpG sites from DMRs, 73.15% of them were enriched in
promoter regions including TSS1500 (130 CpG sites [22.97%]),
TSS200 (135 CpG sites [23.85%]), 1st exon (70 CpG sites [12.37%]),
and 5′UTR (79 CpG sites [13.96%]) and 26.85% of them were
enriched in non-promoter regions including 3′UTR (10 CpG sites
[1.77%]) and IGR (51 CpG sites [9.01%]). The right heatmap of
Fig. 1B described the locations of these CpG sites: more than half
of them were located (299 CpG sites [52.83%]) in island, 33.39%
(189 CpG sites), 13.07% (74 CpG sites) and 0.71% (4 CpG sites) of
them were in shore, opensea, and shelf, respectively. GO analysis
indicated these DMR genes were related to the regulation ofTa
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Fig. 1 Differential methylation analyses in the case-control study. A Volcano plot for differentially methylated positions (DMPs). Gray points
represented the nonsignificant DMP; red and blue points represented the significant DMPs with hyper or hypo-methylation (case vs control),
respectively. B Heatmap plots, the left heatmap described the regions of CpG sites: the detected DMPs were mainly enriched in regions as
body (149 CpG sites [28.99%]), IGR (intergenic region, 123 CpG sites [23.93%]), and TSS1500 (100 CpG sites [19.46%]), and were less enriched in
TSS200 (43 CpG sites [8.37%]), 5’UTR (55 CpG sites [10.7%]), 3′UTR (21 CpG sites [4.09%]) and 1st exon (23 CpG sites [4.47%]); The CpG sites
from DMRs were mainly from the regions as TSS1500 (130 CpG sites [22.97%]), TSS200 (135 CpG sites [23.85%]), 1st exon (70 CpG sites
[12.37%]), 5′UTR (79 CpG sites [13.96%]), and were less from the regions like 3′UTR (10 CpG sites [1.77%]) and IGR (51 CpG sites [9.01%]). The
right heatmap described the location of CpG sites: the detected DMPs were located in opensea (158 CpG sites [30.74%]), island (132 CpG sites
[25.69%]), shore (123 CpG sites [23.93%]), and shelf (101 CpG sites [19.65%]). CpG sites of DMRs were in island (299 CpG sites [52.83%]), shore
(123 CpG sites [23.93%]), and opensea (74 CpG sites [13.07%]) and were less located in shelf (4 CpG sites [0.71%]). C Bar plot for the top 10
terms for biological process, molecular function, and cellular component from gene ontology analysis of DMP-annotated genes. D Bar plot for
the top 10 terms for biological process, molecular function, and cellular component from gene ontology analysis of DMR-annotated genes.
E Venn diagram for the overlap gene between DMP and DMR. The illustrations of important DMPs were shown in (F–K), patients with GAD or
OCD (case) and healthy controls (HC) are distinguished by different colors. The Y-axis represented the beta value of each CpG probe. Wilcoxon
test was used to test the significance of difference of mean beta value between two groups. L The diagnose model performance in
classification of cases and HC: the model got the AUC of 0.99 (95%CI 0.98–1, red line) and 0.90 (95%CI 0.86–0.96, blue line) in training dataset
(n= 323) and test dataset (n= 137), respectively.

L. Guo et al.

4

Translational Psychiatry          (2022) 12:465 



molecular functions like signaling and metabolism, cellular
components like organelle, and biological processes like bindings
of proteins and receptors (Fig. 1D). Same as we observed in DMPs,
the DMR genes were involved in the development process such as
nervous system development as well. Furthermore, we noticed
that some DMR genes were associated with other mental health
disorders as well. For example, the DMR gene USP6NL was a risk
locus for Alzheimer’s disease [23, 24], and the DMR gene CPLX1
was associated with cognitive resilience [25], nerve system
development [26], and schizophrenia [27, 28]. The DMP and
DMR overlapped 2 genes (Fig. 1E), one of them named MEST
(Fig. 1I) was an imprinted gene whose DNAm level reflected the
in-utero stress [29]. Full tables of DMPs, DMRs, and GO results can
be found in Supplementary Tables 1–4.
To evaluate whether our findings can diagnose the onset of

GAD and OCD, we used the CpG sites identified in DMPs and
DMRs and develop a diagnostic model. The diagnostic model
showed robustness in the diagnosis of GAD and OCD with the
AUC of 0.99(95%CI 0.98–1) and 0.90(95%CI 0.86–0.96) in the
training dataset and test dataset, respectively (Fig. 1L).

Differential methylation analyses between GAD and OCD
We then investigated the DNAm alteration between GAD and
OCD. As Fig. 2A illustrated, a total of 161 DMPs were detected
between GAD and OCD. Compared to patients with OCD, 75 of
them were hypermethylated, and 86 of them were hypomethy-
lated in patients with GAD. Half part of the DMPs were enriched in
promoter regions: TSS1500 (21 CpG sites [13.04%]), TSS200 (34
CpG sites [21.12%]), 5′UTR (19 CpG sites [11.8%]), and 1st exon (9
CpG sites [5.59%]); 21.74, 22.36, and 4.35% of DMPs were enriched
in the gene body (35 CpG sites), IGR (36 CpG sites), and 3′UTR (7
CpG sites), respectively (Fig. 2B, left heatmap). Besides, 51.55% of
DMPs were in island (85 CpG sites), 25.47, 15.53, and 7.45% of
DMPs were in opensea (41 CpG sites), shore (25 CpG sites), and
shelf (12 CpG sites), respectively (Fig. 2B, right heatmap). These
DMPs were mapped into 123 DMP genes. In the top 10 DMP
genes (Table 2, brain-blood correlated CpG sites were highlighted
in bold), ACIN1 (Fig. 2F) was associated with chronic stress [30],
SCRT1 (Fig. 2G) involved the conversion of microglia to neuron [31]
and the nerve system development [32], C11orf80 (Fig. 2H) was
related to the embryo development [33]. GO analysis (Fig. 2C)
revealed the DMP genes involved biological processes like
transport, regulation of enzyme activity, and signaling, cellular
components like cell membrane, junction, and adhesion, and
molecular functions like bindings of receptors and substances.
We detected 53 DMRs (constituted by 236 CpG sites). The CpG

sites of DMRs were largely (79.66%) from promoter regions
including TSS200 (84 CpG sites [35.59%]), TSS1500 (47 CpG sites
[19.92%]), 1st exon (24 CpG sites [10.17%]), and 5′UTR (33 CpG
sites [13.98%]) and were less from the regions of gene body (33
CpG sites [13.98%]) and IGR (11 CpG sites [4.66%], Fig. 2B, left
heatmap). Besides, 50.85% of them were in island (120 CpG sites)
and the rest of them were in shore (92 CpG sites [38.98%]),
opensea (23 CpG sites [9.75%]), and shelf (1 CpG site [0.42%],
Fig. 2B, right heatmap). Same as case-control study, most of the
CpG sites showed brain-blood correlation. Among the top 10 DMR
genes (Table 3), WDR19 was associated with ataxia [34], SYCP1
regulated the meiosis progress [35, 36], FAM173B [37, 38] and CCT5
[37] involved chronic pain. GO analysis indicated that DMR genes
were associated with the metabolic and cellular process,
organelles, and binding process (Fig. 2D). Overlap between DMP
and DMR genes left gene FAM172A (Fig. 2H, L) that the DNAm of it
was associated with the placental situation [39]. Full tables of
DMPs, DMRs, and GO results can be found in Supplementary
Tables 5–8, respectively.
In addition, we used the CpG sites identified in DMPs and DMRs

to build a model and test its performance in distinguishing GAD
from OCD (distinguish model). In the classification of GAD andTa
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OCD, the model performed robustly as the AUC of 0.99(95%CI
0.99–1) and 0.89(95%CI 0.79–0.99) in the training dataset and test
dataset, respectively (Fig. 2J).

Investigation of the epigenetic development trajectory
Results from DMP and DMR in both the case-control study and
GAD vs OCD study indicated the DNAm alterations in genes that
were associated with growth and development were in relation to
the onset of and the divergence of GAD and OCD. Therefore, we

estimated the age acceleration residual (epigenetic age), a
measurement that reflects the epigenetic trajectory of growth
and development, to compare the differences in development.
Pearson correlation indicated a significant correlation between
chronological age and epigenetic age in HC (R= 0.11, p= 0.046)
but not in cases (Fig. 3A), which suggested a deviation of
epigenetic age in patients compared to healthy controls. Besides,
the direction of correlation in HC was positive whereas in cases
was negative, which indicated the epigenetic age in cases might
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fall behind or overtake the chronological age. To further confirm
the alteration in development trajectory, we compared the
deviation of age, that is the difference between chronological
age and epigenetic age, and found a significant difference in the
deviation between cases and HC (Wilcoxon test, p= 5.9 × 10−13,
Fig. 3B). The density plot showed that the median deviation in
cases overtook the HC’s, which suggested epigenetic retardation
in patients with GAD and OCD (Fig. 3C).
Then, we investigated the development trajectory between

GAD and OCD. No significant correlation between chronological
age and epigenetic age in both GAD and OCD (Fig. 3D). The Violin
plot revealed a significant difference in the deviation between
GAD and OCD (Wilcoxon test, p= 0.00013, Fig. 3E), which
suggested a different development trajectory between subtypes
of GAD and OCD. As the density plot shown in Fig. 3F, the median
deviation of GAD overtook OCD’s, which indicated the speed of
epigenetic development was slower in GAD than in OCD.
At last, we compared the deviation among GAD, OCD, and HC

and found a significant difference among them (Kruskal-Wallis
test, p= 1.3 × 10−15, Fig. 3G). The speed of epigenetic develop-
ment was much closer to HC in OCD than in GAD (Fig. 3H)

DISCUSSION
In this study, we conducted epigenome-wide DNA methylation
analyses in peripheral blood cells from 158 patients (93 patients
with GAD and 65 patients with OCD) and 302 health controls of
Chinese Han ancestry. Though the data we used were generated
from blood tissue, our results showed that DMP and DMR genes
were involved in the development and function of the central
nervous system. Our results supported the important role of
aberrant DNA methylation of neurodevelopmental genes in the
onset and differentiation of GAD and OCD. Meanwhile, we found a
different epigenetic trajectory that characterized GAD and OCD.
Mental health disorders such as schizophrenia, major depressive

disorder (MDD), and bipolar disorder are polygenic inherited
[40–42]. To date, two genome-wide association studies [18, 19]
indicated the polygenic inheritance of GAD and OCD. However,
whether GAD and OCD were polyepigenic inherited was not fully
investigated. Our results identified aberrant DNA methylation across
a total of 493 genes (383 DMP genes and 112 DMR genes),
indicating the accumulative effects of DNA methylation on the
pathogenesis of GAD and OCD. Besides, we identified aberrant DNA
methylation in 166 genes (123 DMP genes and 44 DMR genes) that
differentiated the GAD from OCD. These genes with aberrant DNA
methylation, dysregulated the processes of metabolism, binding,
and signaling and thus were involved in the onset and differentia-
tion of GAD and OCD in different ways. Many of them showed brain-
blood correlation in methylation level, suggesting the disease-

related brain methylation status can be referred to the peripheral
blood. To notice, the location where CpG sites were methylated has
a different impact on gene expression. DNA methylation occurred in
promoter regions (including 1st Exon, 5’UTR, TSS200, and TSS1500)
can suppress the activity of transcription factors and then lead to
expression reduction, whereas in gene body will upregulate the
expression [43]. As our results described the CpG sites from DMPs
and DMRs that were identified in both the case-control study and
GAD vs OCD study were enriched in the promoter regions and gene
body, thus the methylation changes may affect the gene expression.
Considering the lack of matched transcriptome evidence, whether
these methylation changes can regulate gene expression in real and
involve the pathology should be explored in further study and be
carefully demonstrated.
The presence of common genetic traits in mental health disorders

has been demonstrated [44]. In the top of results from DMPs and
DMRs, we found the shared mechanism among GAD, OCD, and other
mental health disorders. For example, the DMP gene RIOK3 and the
DMR gene USP6NL (overlapped DMR gene between case-control
study and GAD vs OCD study) were the risk genes for Alzheimer’s
disease [20, 23, 24]. Anxiety-like feelings and compulsive behaviors
can be seen in patients with MDD, schizophrenia, or cognitive
disorders. The DMP genes PSMB4 [21] had been reported associated
with the susceptibility of MDD. The DMR gene CPLX1 was aberrantly
expressed in patients with schizophrenia [28] and was confirmed as
the risk gene of schizophrenia [27]. Meanwhile, CPLX1 involved
cognitive resilience [25].
Studies indicate that GAD and OCD were development-related

mental health disorders [4, 5]. We identified a set of genes that
involved immune system development, cerebellar cortex develop-
ment, and regulation of nervous system development. In the top of
our results, the DMP gene CPLX1 was associated with brain
development and affected brain structure [26]. The DMP and DMR
gene MEST that was identified in the case-control study was an
imprinted gene associated with in-utero stress and can affect fetal
development [29]. Between GAD and OCD, the differentially
methylated genes we detected affected the development in
different aspects: DMP gene SCRT1 regulated the conversion from
microglia to neuron which was crucial for nerve system develop-
ment [31, 32]; DMR gene SYCP1 regulated the fetal chromosome
synapsis;[35, 36] DMP-DMR gene FAM172A was reported its DNA
methylation was related to maternal circadian disruption which
can affect the fetal development [39]. Through the epigenetic
development trajectory analysis, we found the retardation of
epigenetic development in patients with GAD and OCD compared
to healthy controls and a different retardation level for each
subtype, which supported the results of differential methylation
analyses. Besides, neuroinflammation can be seen in patients with
GAD or OCD. For example, the translator protein distribution

Fig. 2 Differential methylation analyses between patients with GAD and OCD. A Volcano plot for differentially methylated positions (DMPs).
Gray points represented the nonsignificant DMP; red and blue points represented the significant DMPs with hyper or hypo-methylation (GAD
vs OCD), respectively. Between patients with GAD and patients with OCD, 161 significant DMPs were detected: B The heatmap plots. The left
heatmap described that the detected DMPs were mainly enriched in regions as body (35 CpG sites [21.74%]), IGR (intergenic region, 36 CpG
sites [22.36%]), and TSS1500 (21 CpG sites [13.04%]), TSS200 (34 CpG sites [21.12%]), and 5′UTR (19 CpG sites [11.8%]) and were less enriched
in 3′UTR (7 CpG sites [4.35%]) and 1st exon (9 CpG sites [5.59%]) and that the CpG sites from DMRs were mainly from the regions as TSS200 (84
CpG sites [35.59%]), TSS1500 (47 CpG sites [19.92%]), 1st exon (24 CpG sites [10.17%]), 5′UTR (33 CpG sites [13.98%]), and body (33 CpG sites
[13.98%]) and were less from the regions like IGR (11 CpG sites [4.66%]); the right heatmap illustrated that the detected DMPs were located in
island (85 CpG sites [51.55%]), opensea (41 CpG sites [25.47%]), shore (25 CpG sites [15.53%]), and shelf (12 CpG sites [7.45%]) and that the CpG
sites of DMRs were in island (120 CpG sites [50.85%]), shore (92 CpG sites [38.98%]), and opensea (23 CpG sites [9.75%]) and were less located
in shelf (1 CpG site [0.42%]). C Bar plot illustrated the top 10 terms for biological process, molecular function, and cellular component from
gene ontology analysis of DMP-annotated genes. D illustrated the top 10 terms for biological process, molecular function, and cellular
component from gene ontology analysis of DMR-annotated genes. E Venn diagram for the overlap gene between DMP and DMR. The
illustrations of important DMPs were shown in (F–I), patients with generalized anxiety disorder (GAD) and patients with obsessive-compulsive
disorder (OCD) are distinguished by different colors. The Y-axis represents the beta value of each CpG probe. Wilcoxon test was used to test
the significance of difference of mean beta value between two groups. J The distinguishing model performance in classification of GAD and
OCD: the model got the AUC of 0.99 (95%CI 0.99–1, red line) and 0.89 (95%CI 0.79–0.99, blue line) in training dataset (n= 112) and test dataset
(n= 46), respectively.
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volume (a neuroimaging biomarker reflecting microglia activation
during neuroinflammation) was elevated in patients with OCD and
prevention of the expression interleukin-33 in lipopolysaccharide-
induced inflammation model attenuated the anxiety-like behavior.
We identified two DMPs cg01334186 and cg09379601 nearby the
inflammation-related genes PSMB4 and DNASE2, respectively, were
associated with the onset of GAD and OCD, which was supportive
to the neuroinflammation hypothesis in GAD and OCD.
Both GAD and OCD can cause marked anxiety or distress in

patients [2]. Investigation of the similarities and differences in

epigenetics between the two diseases can contribute to the
understanding of their mechanisms. Elevated serum cholesterol
levels can be found in patients with GAD and OCD [45], we found
LDLRAP1 associated with hypercholesterolemia [46] was differen-
tially methylated between GAD and OCD. Moreover, we dis-
covered two genes FAM173B and CCT5 from one DMR were
associated with chronic pain [37]. However, there are fewer
studies on pain in GAD and OCD, and there is a lack of sufficient
evidence to clarify how this aberrant DNA methylation associated
with chronic pain distinguishes GAD from OCD. A DMR gene TNXB
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Fig. 3 Estimation of the epigenetic clock (age acceleration difference). A Pearson correlation in the case-control study revealed a significant
correlation (p < 0.05) between chronological age and epigenetic age (age acceleration residual) in health control (HC, right panel) and a
nonsignificant correlation in cases (GAD and OCD, left panel). B Wilcoxon test indicated a significant difference of epigenetic-chronological
deviation between cases and controls (p= 5.9 × 10−13). C Density plot for epigenetic-chronological deviation between cases and controls.
D Pearson correlation of chronological age and epigenetic age (age acceleration residual) in GAD (left panel) and OCD (right panel),
respectively. E Wilcoxon test indicated a significant difference of epigenetic-chronological deviation between GAD and OCD (p= 0.00013).
F Density plot for epigenetic-chronological deviation between GAD and OCD. G Kruskal–Wallis test indicated a significant difference of
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associated with the onset of social anxiety disorder reported by
Wiegand et al [47] was confirmed as a DMP gene for the onset of
GAD and OCD in our study.
This study focused on DNAm change which is one of the

epigenetic modifications. Besides it, other forms of epigenetic
modifications like histone modification (e.g., phosphorylation,
acetylation, ubiquitylation, and sumoylation) and non-coding RNA
(e.g., micro RNA) involved OCD and GAD, respectively. Abnormal
phosphorylation was associated with repetitive behaviors (RBs)
which are the signature of OCD, for example, the elevated
phosphorylation of rpS6 (neural activity marker) promoted RB in
mice [48] and abnormal phosphorylation of RAP1 can be found in
patients with OCD [49]. It can affect anxiety-like behavior as well
that the study reported the phosphorylation levels of ERK
(extracellular signal-regulated kinase) in the amygdala were
associated with anxiety symptoms in human beings [50]. Studies
suggested the influences of acetylation and sumoylation in
anxiety-like behaviors, for example, increased acetylation of Arc
SARE attenuated anxiety-like behavior in adult rats, besides,
sumoylation of Rac1 [51] and serotonin 1a receptor [52] regulated
anxiety-like behavior. Micro RNAs (miR) were reported to regulate
the related symptoms of GAD or OCD as well. The physiological
pathways of anxiety associated with the expression of BDNF,
HTR2C, MAOA, and RGS2 can be affected by miR-22 [53] and the
repetitive behavior in heterozygous knocked-out mice can be
prompted by the partial loss of miR-137 [54]. These forms of
epigenetic modifications of the genes identified in our study were
not reported, which suggested the DNAm may be one unique
epigenetic modification for the pathology of GAD or OCD.
Since the first time Horvath developed the epigenetic clock and

observed different developmental trajectories between patients
with cancers and healthy people [16], people realized the gap
between epigenetic age and chronological age may reflect the
pathology of diseases. The epigenetic developmental trajectories
in patients with psychiatric disorders were abnormal compared to
healthy controls and varied among different psychiatric disorders.
For example, the epigenetic clock was retarded in patients with
schizophrenia [55] and was accelerated in patients with posttrau-
matic disorder [56], bipolar disorder [57], or major depressive
disorder [58]. The epigenetic clock among GAD and/or OCD was
less investigated, and our results add the understanding of the
epigenetic characteristics of GAD and OCD in a further step.
Disease-related DNA methylation changes could serve as biomar-

kers to assess, diagnose, and monitor disease [59, 60]. Our findings
yielded two models that were robust in diagnosing and differentiat-
ing GAD and OCD. Though sample size of our study provided
sufficient statistical power, validation in a larger sample size and
different ethics for the models would be required in future study for
their generalization. Ultimately, our results showed the promise of
DNA methylation in identifying patients from healthy controls or
classifying patients with GAD and OCD, which can be a precision
medicine implementation and may aid in early detection, accurate
diagnosis, and individualized treatment of GAD and OCD.
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