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Poststroke depression (PSD) is a common complication of stroke. Brain network disruptions caused by stroke are potential
biological determinants of PSD but their conclusive roles are unavailable. Our study aimed to identify the strategic structural
disconnection (SDC) pattern for PSD at three months poststroke and assess the predictive value of SDC information. Our
prospective cohort of 697 first-ever acute ischemic stroke patients were recruited from three hospitals in central China.
Sociodemographic, clinical, psychological and neuroimaging data were collected at baseline and depression status was assessed at
three months poststroke. Voxel-based disconnection-symptom mapping found that SDCs involving bilateral temporal white matter
and posterior corpus callosum, as well as white matter next to bilateral prefrontal cortex and posterior parietal cortex, were
associated with PSD. This PSD-specific SDC pattern was used to derive SDC scores for all participants. SDC score was an
independent predictor of PSD after adjusting for all imaging and clinical-sociodemographic-psychological covariates (odds ratio,
1.25; 95% confidence interval, 1.07, 1.48; P = 0.006). Split-half replication showed the stability and generalizability of above results.
When added to the clinical-sociodemographic-psychological prediction model, SDC score significantly improved the model
performance and ranked the highest in terms of predictor importance. In conclusion, a strategic SDC pattern involving multiple
lobes bilaterally is identified for PSD at 3 months poststroke. The SDC score is an independent predictor of PSD and may improve
the predictive performance of the clinical-sociodemographic-psychological prediction model, providing new evidence for the

brain-behavior mechanism and biopsychosocial theory of PSD.
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INTRODUCTION

Poststroke depression (PSD) is a common complication of stroke,
affecting ~29% of patients at any time within 5 years poststroke
[1]. PSD is correlated with poorer functional outcome and higher
long-term mortality in stroke survivors [2]. For early prediction and
intervention of PSD, risk factors including physical disability, stroke
severity, history of depression, and cognitive impairment have
been well-recognized [2]. However, it is unclear whether PSD is
merely a “reactive” psychological response or whether there are
biological factors related to brain damage that directly contribute
to the development of PSD [3]. The association between lesion
location and PSD, though extensively investigated as a potential
biological factor of PSD, is still of considerable debate [2]. Neither
early region-of-interest(ROI)-based lesion analyses nor latest voxel-
based lesion-symptom mapping (VLSM) studies could provide
consistent results for the neural substrates of PSD based on lesion
location [4-6]. It is conceivable that PSD, like other depressive
disorders, can be a complex disconnection syndrome and may not
be mapped to a single brain region [5, 7]. The spatial topography
information used in VLSM only represents a surface-level depiction
of the lesion largely blind to its impact on the underlying brain
network [5, 8, 9]. Novel techniques have been emerging for

studying the association between lesion-induced functional or
structural disconnection (FDC or SDC, respectively) and neurop-
sychiatric symptoms after focal brain damage [9]. Lesion network
mapping (LNM) can indirectly estimate the FDC caused by each
lesion using normative functional neuroimaging data and then
statistically map the symptom of interest to a functional network
[9, 10]. Similarly, another technique named disconnectome can
indirectly measure the lesion-induced white matter SDC based on
normative connectome atlas and then test the association
between SDC and symptoms at tract or voxel level [11, 12]. Both
approaches, without need for specialized neuroimaging, may
prove broadly applicable and versatile for understanding the
neural basis of neuropsychiatric symptoms after stroke. A wide-
spread functional depression circuit centered on the left
dorsolateral prefrontal cortex (DLPFC) has been identified in
patients with focal brain damage using LNM and the lesion’s
overlap status with this network may predict the risk and severity
of PSD [5]. Recent evidence suggested that functional network
disruption caused by stroke could be explained by SDC [13]. SDC
might be a more upstream mechanism than functional network
disruption in the pathogenesis of PSD. Moreover, the indirect SDC
measures from disconnectome analysis were found superior to
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indirect FDC measures in predicting multiple behavioral deficits
after stroke [11]. Here, we hypothesized that a widespread SDC
pattern associated with PSD could be identified using disconnec-
tome analysis and that the biological effect of SDC would be
independently predictive of PSD after controlling for clinical-
sociodemographic-psychological factors.

This study aimed to (1) identify the strategic SDC pattern for
PSD at three months poststroke; (2) assess the value of SDC
information in PSD prediction. This work may shed more light on
the brain-behavior mechanism and explore new predictive
biomarkers for PSD.

METHODS

Participants and study design

A prospective cohort was enrolled from three independent hospitals in
Wuhan City, Hubei Province, China, between May 2018 and August 2019.
Institutional review boards reviewed and approved all study protocols.
Written informed consent was obtained from all participants. All
participants fulfilled the following inclusion criteria: (1) acute stroke
confirmed with magnetic resonance imaging (MRI) or computed
tomography (CT), with symptom onset to hospital admission <7 days, (2)
age =18 years old. The exclusion criteria were: (1) brain dysfunction caused
by non-vascular causes, such as brain tumors and traumatic brain injury, (2)
history of depression, dementia and other psychiatric disorders, (3)
communication problems due to aphasia, severe dysarthria, disturbance
of understanding or consciousness, (4) unable to complete the follow-up,
(5) transient ischemic attack and subarachnoid hemorrhage, (6) other
concomitant neurological disorders, such as Parkinson’s disease and
epilepsy, and (7) prior stroke history. For the 961 consecutive patients
enrolled with the above criteria, baseline sociodemographic, clinical,
psychological and radiographic information was collected within the first
48 hours after admission including: age, sex, education years, social
support (social support rating scale, SSRS), living alone or not, premorbid
physical exercise habit, prior stressful life event, acute ischemic stroke (AIS)
subtype (Trial of Org 10172 in Acute Stroke Treatment, TOAST), stroke
severity (National Institutes of Health Stroke Scale, NIHSS), cognitive
impairment (Montreal Cognitive Assessment, MoCA), level of disability
(Barthel Index, BI), acute management (tissue plasminogen activator,
endovascular intervention), chronic comorbidities, personality (Eysenck
Personality Questionnaire, which consists of three dimensions: extraver-
sion, neuroticism and psychoticism), lesion localization, and the timing of
imaging since stroke onset. Then 891 patients were assessed for presence
of PSD at three months (90 £ 7 days) poststroke in the clinic. Information
on antidepressant use and recent stressful life event was also collected.
During data analysis, we further excluded patients with hemorrhagic stroke
or without qualified neuroimages for lesion delineation. Finally, a total of
697 first-ever AlS patients with complete baseline and follow-up data were
included in this study. Details are shown in Supplemental Fig. I.

Behavioral assessment

The 17-item Hamilton Depression Rating Scale (HDRS) was applied to
assess depression status at 3 months (90+7 days) poststroke by two
experienced raters with high interrater reliability (intraclass correlation
coefficient: 0917, 95% confidence interval: 0.790-0.967). With the
diagnostic criteria in The Diagnostic and Statistical Manual of Mental
Disorders, Fifth Edition (DSM-5) being met, HDRS > 10 was regarded as
presence of PSD [14].

Image acquisition and preprocessing

Clinical neuroimages (MRI) performed at admission were collected for all
697 participants. Acquisition parameters were listed in Supplemental Table
I. The lesions were manually segmented on MRI by an experienced rater
(Chensheng Pan) blinded to PSD outcome in ITK-SNAP version 3.8.0
(www.itksnap.org). The lesion masks were supervised by another well-
trained neurologist (Wenzhe Sun) for agreement. Spatial normalization to
Montreal Neurological Institute (MNI 152) template was performed for
original MRI images and native lesion masks with Clinical Toolbox [15] of
Statistical Parametric Mapping (SPM12, Wellcome Trust Centre for
Neuroimaging, London, United Kingdom) running on MATLAB R2021a
(The MathWorks, Inc, Natick, MA). Visual inspection of the normalized
lesion maps, as well as manual correction if necessary, were performed
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(Chensheng Pan and Wenzhe Sun). The lesion volume (cm?) adjusted for
total brain volume was derived from the normalized lesion map.

Statistical analysis

Baseline characteristics were compared between PSD and non-PSD.
Continuous data were compared using nonparametric rank sum tests.
The x? tests were used for comparison of categorical variables. Statistical
significance was set to P < 0.05. All statistical analyses were performed in R
software version 4.1.0 (The R Foundation for Statistical Computing, Vienna,
Austria; www.r-project.org).

Lesion analyses

The prevalence of PSD in patients with left vs right hemispheric strokes
were compared using chi-square test (bihemispheric strokes excluded).
The lesion overlap map for all 697 patients and lesion probability maps of
PSD vs non-PSD groups were created to characterize the study cohort.
Lesion subtraction analysis was performed to provide a descriptive result
for possible regions implicated in PSD. VLSM was performed in NiiStat [16]
with PSD as a binary variable. Only voxels involving at least five patients
were included to maintain statistical power [17, 18]. One-tailed Lieberme-
ister tests [19] were used to test the association between lesion status of
each voxel and presence of PSD. To control the false positive rate in
multiple comparisons, voxel-level family wise error (FWE) correction was
performed with 10,000 random permutations [19]. Results were thre-
sholded at P(FWE) < 0.05 at voxel level, and a minimal cluster size was
determined with 10,000 permutations (pre-set voxel-wise threshold
p <0.001) [20]. For identification of significant clusters, the resulting Z
score map was overlaid onto the “jhu” atlas in MRIcron v1.0.

Voxel-based disconnection-symptom mapping

The SDC caused by each lesion was derived using Lesion Quantification
Toolkit (LQT) [12] which incorporates a large-scale normative connectome
atlas with novel algorithms for estimating lesion-induced SDC. With the
lesion embedded into the full set of streamlines in the Human
Connectome Project-842 (HCP-842) atlas [21], LQT output the voxel-wise
disconnection severity map where voxel intensities corresponded to the
percentage of all streamlines within each voxel that were expected to be
disconnected by the lesion. All 697 disconnection severity maps were
binarized at a severity threshold>10% to exclude voxels insufficiently
affected [12]. Binary disconnection maps of all 697 patients were
overlapped on template to show the disconnection prevalence across
white matter. The procedure of Voxel-based disconnection-symptom
mapping (VDSM) were the same as in VLSM except for two points: (1) Only
voxels disconnected in at least 5% patients (i.e. at least 35 patients when
N =697, supplementary VDSM analyses were performed with this thresh-
old set at 5 patients or 70 patients) were included in VDSM; (2) replacing
lesion map with binary SDC map as input. The resulting significant clusters
from VDSM were embedded in HCP-842 atlas to identify the corresponding
fiber tracts. Although our primary results were based on SDC map
binarized at 10%, VDSM was additionally repeated with disconnection
severity map binarized at lower (1%) and higher (20%) thresholds to
examine whether the results would be significantly biased by the choice of
threshold to define a disconnected voxel.

Tract-wise disconnectome analysis
LQT also output tract-wise disconnection severity results for the 70 tracts
defined in HCP-842 tractography atlas [12]. Disconnection severities for
each of 70 tracts were compared between PSD and non-PSD using
nonparametric rank sum tests with false discovery rate correction for
multiple comparisons (corrected P < 0.05).

SDC score and regression analyses

The SDC score was calculated as the weighted sum of intensities (Z scores)
for those VDSM-significant voxels that overlapped with a patient’s non-
binarized disconnection severity map (voxel-wise disconnection severities
as weights) using fslmaths and fslstats in FMRIB Software Library (FSL)
version 6.0. We performed univariable (Model 1) and multivariable (Models
2-3) logistic regression analyses to evaluate the association between SDC
score (log-transformed for ease of analysis) and PSD in the entire sample.
In the multivariable analysis, we constructed two models: Model 2,
adjusted for neuroimaging covariates (lesion volume, lesion localization
and timing of imaging since stroke onset); Model 3, additionally adjusted
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for all sociodemographic, clinical and psychological covariates. Variance
inflation factors (VIFs) were calculated for the fully-adjusted model (Model
3) to check for multicollinearity among variables. We also tested the
association between lesion volume and PSD by adjusting for lesion
localization, timing of imaging and all non-imaging covariates.

Split-half validation and predictive value of SDC score
Following preexisting literature [5, 22], we performed split-half analysis (i.e.
2-fold cross-validation) to test the generalizability of our results. The entire
sample was randomly split into two halves (dataset 1: n = 349; dataset 2:
n = 348). VDSM was repeated for each of the two datasets. For each patient in
one dataset, SDC score was calculated based on VDSM results from the other
dataset. Then SDC scores were compared between PSD and non-PSD groups.
The entire sample was divided into three risk groups (low/medium/high)
defined by SDC score tertiles. The true PSD prevalence and severities were
compared among three risk groups using 2-by-3 x? test and nonparametric
rank sum test, respectively. The above multivariable logistic regression
analyses for SDC score were repeated in both dataset 1 and dataset 2.

To examine the added value of SDC score to well-known clinical-
demographic and psychosocial predictors in PSD prediction, we first
trained two logistic regression models in dataset 1: (1) we pre-selected 8
frequently-reported predictors in current literature [2, 23, 24] (stroke
severity, level of disability, cognitive impairment, age, sex, education level,
neuroticism and extroversion) to build a basic model; (2) SDC score was
incorporated into the basic model to train an enhanced model. Both
models were tested in dataset 2. All above modeling procedures were
repeated again with dataset 1 and dataset 2 interchanged. The event-per-
variable (EPVs) were controlled >10 for all models to ensured model
stability. VIFs were calculated for all models to check for multicollinearity
among predictors. The discrimination of each model was measured by area
under receiver operating characteristic curve (AUC). The incremental
improvement of adding SDC score to basic prediction model was
measured by category-free net reclassification improvement (NRI) [25]
and integrated discrimination improvement (IDI) [26] using R software
(“PredictABEL” package). For two enhanced models with SDC score, we
applied dominance analysis [27] to rank the relative importance of
predictors using R software (“dominanceanalysis” package, fit function:
r2.m), and then averaged the two results for visualization.

VDSM at individual symptom level

Recent evidence suggests that the association between biopsychosocial
factors and depression may be symptom-specific [28-31]. Unraveling
mechanisms and risk factors of depression at individual symptom/
dimension level has become a new research paradigm which is being
advocated in the field of PSD [3, 5]. We performed exploratory VDSM
analyses for each of 14 symptoms extracted from HDRS (12 depressive and
2 anxiety symptoms, see Supplemental Table II).

RESULTS

Analyses of baseline parameters

Baseline parameters were compared in Table 1 between PSD and
non-PSD. The 697 AIS patients were mildly affected with a median
initial NIHSS of 3, of which 194 (27.8%) were rated as PSD at
3 months poststroke. The PSD group had significantly more
females (P <0.001), lower education level (P<0.001), less pre-
morbid physical exercise (P<0.001), higher stroke severity
(P <0.001), higher levels of disability (P <0.001), poorer cognitive
function (P < 0.001), lower extraversion (P = 0.005), higher neuroti-
cism (P < 0.001), and larger lesion size (P < 0.001). The AIS subtype
composition also differed significantly between PSD and non-PSD
(P=10.033). Inter-group difference in lesion localization was not
observed (P=0.183). Antidepressant use was recorded in 76
(10.9%) patients during follow-up, among which 39 (51.3%)
patients were still rated as PSD at 3 months poststroke. No new
stressful life event was reported during follow-up.

Lesion analyses

The prevalence of PSD was not significantly different between left
vs right hemispheric strokes (27.5% vs 31.0%, P = 0.374). All other
results from lesion analyses were shown in Fig. 1. The lesion
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frequency (1a) and coverage (1e) in left hemisphere were lower
than in right hemisphere largely due to exclusion of phasic
patients with lesions in the dominant hemisphere. We reached
relatively high coverage (57.0%) of whole brain voxels in VLSM
though bilateral frontal lobes and infratentorial structures were
insufficiently covered (1e). The significant clusters from VLSM,
involving multiple structures in right-sided frontal, parietal and
temporal lobes, aligned with the hot zones in lesion subtraction
plot (1d and 1f). Detailed locations for these significant clusters
were listed in Supplemental Table Il

Voxel-based and tract-wise disconnectome analyses for PSD

as a whole syndrome

The primary VDSM results were shown in Fig. 2. The left frontal
white matter was less frequently disconnected than the right
counterpart largely due to exclusion of aphasic patients (2a).
Significant voxels survived the voxel-level FWE correction and the
cluster size threshold were mainly observed in bilateral temporal
white matter and posterior corpus callosum, as well as white
matter next to bilateral prefrontal cortex and posterior parietal
cortex (2¢). The significant clusters in VDSM were highly consistent
across varied disconnection-frequency thresholds (5, 35, or 70
patients; Supplemental Fig. Il). The fiber tracts intersected by these
significant clusters, as well as significant results from tract-wise
disconnectome analysis, were listed in Supplemental Table IV.
Results from additional VDSM analyses with other binarization
thresholds were shown in Supplemental Fig. Ill.

SDC score and regression analyses

The results of univariable and multivariable analyses for the
relationship between SDC score and PSD were shown in Table 2.
In the fully-adjusted model controlling for various imaging and
non-imaging covariates (Model 3), SDC score was independently
predictive of PSD (odds ratio, OR 1.25; 95% confidence interval, Cl
1.07,1.48; P = 0.006). Multicollinearity was not detected in Model 3
(all VIFs < 3). Though lesion volume was significantly larger in PSD
than in non-PSD (P <0.001, Table 1), it was not associated with
PSD after controlling for lesion localization, timing of imaging, and
non-imaging covariates (OR 1.01; 95% Cl 0.99,1.02; P = 0.200).

Split-half validation and predictive value of SDC score
Results for split-half replication were shown in Fig. 3. VDSM results
from dataset 1 (3a) and dataset 2 (3b) were highly similar. In this
section, each patient’s SDC score was calculated based on VDSM
results from the dataset he/she did not belong. SDC scores were
significantly higher in PSD than in non-PSD (3c). SDC score alone
could predict the risk and severity of PSD (3d-3e). SDC score was
independently associated with PSD in both datasets after
controlling all imaging and non-imaging covariates (mean odds
ratio 1.20, both P < 0.05). In the two rounds of modeling, NRI and
IDI suggested significant improvement of predictive performance
in enhanced models (Table 3). The mean AUC for two basic
models was 0.737 in training and 0.721 in testing, while the mean
AUC for two enhanced models was 0.754 in training and 0.744 in
testing. Multicollinearity was not detected (VIFs < 3 for all models).
In dominance analyses for enhanced models, SDC score ranked
the highest in terms of predictor importance (3f).

VDSM at individual symptom level

Five symptoms (depressed mood, loss of interest, retardation,
psychiatric anxiety, general somatic symptoms) were more strongly
correlated with SDC (Supplemental Figs. IV-VIII), while the other
nine symptoms showed negative results.

DISCUSSION
To the best of our knowledge, this is first prospective cohort study
introducing VDSM-defined SDC information into PSD prediction.
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Table 1. Baseline characteristics of the study sample.

Variable Total

N 697
Sociodemographic factors
Age, years 59 (52,66)
Sex, female 144 (20.7)
Education years 9 (9,12)
Social support level 38 (32,43)
Living alone 52 (7.5)
Premorbid physical exercise habit 231 (33.1)
Prior stressful life event 40 (5.7)
Clinical factors
Stroke subtype
large-artery atherosclerosis 464 (66.6)
cardioembolism 46 (6.6)
small-vessel occlusion 59 (8.5)
stroke of other determined etiology 42 (6)
stroke of undetermined etiology 86 (12.3)
NIHSS 3 (1,5)
BI 95 (60,100)
MoCA 20 (16,24)
Tissue plasminogen activator administered 46 (6.6)
Endovascular intervention 36 (5.2)
Diabetes mellitus 179 (25.7)
Hypertension 401 (57.5)
Hyperlipidaemia 147 (21.1)
Coronary heart disease 48 (6.9)
Psychological factors
Neuroticism 9 (6,11)
Extroversion 11 (8,14)
Psychoticism 5 (3,6)
Neuroimaging factors

Timing of imaging since stroke onset, days 3(23)
Lesion localization -
left hemispheric 244 (35)
right hemispheric 274 (39.3)
bihemispheric 30 (4.3)
infratentorial 149 (21.4)
Lesion volume, cm? 5.0 (2.1,17.2)

PSD Non-PSD P value
194 503 -
59.5 (52,66) 59 (52,66) 0.925
56 (28.9) 88 (17.5) <0.001*
9 (6,12) 9(9,12) <0.001*
38 (32,44) 38 (34,43) 0.841
15 (7.7) 37 (7.4) 0.866
43 (22.2) 188 (37.4) <0.001*
13 (6.7) 27 (5.4) 0.498
0.033*
139 (71.6) 325 (64.6) -
18 (9.3) 28 (5.6) -
11 (5.7) 48 (9.5) =
7 (3.6) 35 (7) -
19 (9.8) 67 (13.3) -
4 (2,8) 2 (1,5) <0.001*
67.5 (40,100) 95 (65,100) <0.001*
17 (13,21) 21 (17,24) <0.001*
12 (6.2) 34 (6.8) 0.784
15 (7.7) 21 (4.2) 0.057
55 (28.4) 124 (24.7) 0317
111 (57.2) 290 (57.7) 0917
37 (19.1) 110 (21.9) 0.417
18 (9.3) 30 (6) 0.121
9(712) 8 (5,10) <0.001*
11 (7,13) 11 (9,15) 0.005*
5 (3,6) 5(3,6) 0.874
3(1,4) 3(23) 0.749
- - 0.183
67 (34.5) 177 (35.2) -
85 (43.8) 189 (37.6) -
10 (5.2) 20 (4) -
32 (16.5) 117 (23.3) -
9.5 (3.7,27.6) 4.1 (1.9,14.1) <0.001*

Continuous variables are presented as median (interquartile range) and categorical variables as n (%).
PSD poststroke depression, NIHSS National Institutes of Health Stroke Scale, Bl Barthel index, MoCA Montreal Cognitive Assessment.

*P < 0.05.

We identified the SDC pattern associated with PSD at 3 months
poststroke and proposed a new imaging biomarker that
independently predicts PSD.

In our cohort, the incidence of PSD (27.8%) at three months
poststroke is comparable with previous studies [1]. To explore the
neural substrate of PSD, we first performed standard lesion
analyses and then focused on the underlying structural con-
nectome disruption caused by lesions. PSD is not associated with
lesion laterality (left vs right hemisphere) in our sample. The VLSM
results and lesion subtraction plot converge to the association
between PSD and multiple brain regions in the right frontal,
temporal and parietal lobes (Fig. 1). The results may not imply that
PSD is more correlated with right hemisphere considering the
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relatively lower lesion frequency and therefore lower statistical
power in left hemisphere. We compared our results with
preexisting PSD publications using lesion-symptom mapping
(either voxel-based or multivariate). Results are highly hetero-
geneous in studies focusing on lesion location (Supplemental
Table V). Recent evidence suggests that depressive disorders may
be better represented in a widespread brain network rather than
any single brain region [5, 7]. For example, Michael D. Fox’s group
found that lesions associated with depression after focal brain
damage (ischemic stroke, hemorrhagic stroke and traumatic brain
injury), as well as effective brain stimulation targets for major
depressive disorder (MDD), could be mapped to a common
functional network spanning multiple lobes bilaterally [5, 32].

Translational Psychiatry (2022)12:461
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Results of Lesion Analyses. a overlap of all 697 lesion masks showing lesion frequency of the entire sample; b lesion prevalence(%) in

PSD group; c lesion prevalence(%) in non-PSD group; d lesion subtraction plot (b minus c); e only voxels involving at least 5 patients were
included in VLSM (red); f significant clusters (circled) from VLSM that survived FWE-corrected Z threshold of 4.65 and cluster size threshold of

22. Axial coordinates refer to MNI space in mm. L indicates left.

Applying novel disconnectome technique and voxel-wise
analysis, we identified the association between SDC of certain
white matter regions and PSD (Fig. 2). First, SDC within bilateral
temporal white matter may be associated with PSD. A prior study
showed the similar result that lesions in temporal lobes were
associated with PSD three months poststroke [33]. Reduced gray
matter volume of superior and middle temporal gyri were
observed in MDD [34]. Second, SDC next to bilateral limbic
structures (hippocampi and amygdalae) and bilateral prefrontal
cortex are associated with PSD in our study, which is in line with
the fronto-limbic model described in MDD [35] and vascular
depression [36]. The role of prefrontal cortex in depression has
been confirmed by studies demonstrating that symptoms of PSD

Translational Psychiatry (2022)12:461

or vascular depression can be significantly alleviated after
repetitive transcranial magnetic stimulation targeted at DLPFC
[37, 38]. LNM analysis also identified a functional depression circuit
centered on the DLPFC [5]. Fourth, we found the association
between posterior corpus callosum disconnection and PSD,
though the role of posterior corpus callosum disconnection in
MDD had been described [39]. The posterior corpus callosum,
connecting bilateral temporal, parietal and occipital cortices, may
play a vital role in maintaining stable functional communication
between hemispheres [40]. Fifth, significant voxels were observed
next to bilateral posterior parietal cortex which is one of the major
associative regions in human brain and integrates information
from somatosensory, auditory, visual, motor, cingulate and

SPRINGER NATURE
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Fig. 2 Results of the primary VDSM analysis in the entire sample. a overlap of 697 binary SDC maps showing SDC frequency across white
matter; b only voxels disconnected in at least 5% of patients (i.e. 35 patients) were included in VDSM; c significant clusters from VDSM that
survived FWE-corrected Z threshold of 4.47 and cluster size threshold of 60. Axial coordinates refer to MNI space in mm. L indicates left.

Table 2.
Variable Model 1

OR (95% Cl) P value
SDC score (log-transformed) 1.42 (1.24,1.64) <0.001*

Model 1: crude model;

Univariable and multivariable logistic regression analyses for the association between SDC score and PSD.

Model 2 Model 3
OR (95% CI) P value OR (95% ClI) P value
1.39 (1.18, 1.66) <0.001* 1.25 (1.07,1.48) 0.006*

Model 2: adjusted for neuroimaging covariates including timing of imaging since stroke onset, lesion localization and lesion volume;
Model 3: additionally adjusted for all sociodemographic, clinical, and psychological factors.

SDC structural disconnection, OR odds ratio, C/ confidence interval.
*P < 0.05.

prefrontal cortices [41]. The important role of frontoparietal
network (composed of posterior parietal cortex and DLPFC) in
depression had been described [42]. The fiber tracts heavily
intersected by significant clusters from VDSM are largely consistent
with significant tracts from tract-wise disconnectome analysis
(Supplemental Table IV). These PSD-associated tracts involve
association pathways (e.g. superior/middle/inferior longitudinal
fasciculus, arcuate fasciculus, inferior fronto-occipital fasciculus),
projection pathways (acoustic/optic radiation) and commissural
pathways (corpus callosum) [21]. The loss of integrity for these
inter-lobar and inter-hemispheric connections may be the key
neural substrate of PSD. It's worth noting that a single lesion can
disconnect multiple fiber tracts intersecting with it, and disconnec-
tion of a fiber tract may result from lesions anywhere along its
course. This might explain the inconsistency of results from studies
focusing on lesion itself. Of note, similar to the LNM-defined
functional depression circuit [5, 32], our PSD-associated SDC pattern
also involves multiple lobes bilaterally. The association between
structural and functional connectivity, or between SDC and FDC, is
not fully understood and still warrants further investigation [13].
Additional VDSM analyses with SDC map binarized at different
severity thresholds (1%, 20%) revealed high similarity between
results (Supplemental Fig. lll), suggesting that VDSM may not be
strongly biased by the choice of threshold to define a disconnected
voxel. Based on the primary VDSM results, we derived SDC scores for

SPRINGER NATURE

all 697 participants. SDC score remained as an independent predictor
of PSD after controlling for lesion volume, lesion localization, timing
of imaging, as well as all clinical-demographic and psychosocial
factors (Table 2). Lesion volume was not independently associated
with PSD, as observed previously [43]. VDSM results were stable and
generalizable in split-half replication (Fig. 3a, b). We may use SDC
score alone for PSD risk stratification (Fig. 3d, e). Considering the
biopsychosocial multifactorial nature of PSD, SDC score can be
integrated with clinical, sociodemographic and psychological
predictors to build a multidimensional prediction model. The
classification performance of the basic prediction models was
significantly improved (significant NRI and IDI) when SDC score
was added, indicating a promising role of SDC information in PSD
prediction (Table 3). The relative importance of each predictor in
enhanced models is measured with general dominance (average
contribution) in dominance analysis. SDC score may outperform
three well-known clinical predictors (stroke severity, level of disability,
cognitive impairment) and all psychosocial factors in PSD prediction
(Fig. 3f). This result is in accordance with the biopsychosocial theory
that PSD is not merely a psychosocial response but also the direct
consequence of neurobiological damage after stroke [2]. VDSM
analyses at symptom level suggest that the association between SDC
and PSD may be symptom-specific: depressed mood, retardation
and general somatic symptoms were correlated with anterior
(especially left frontal) SDC (Supplemental Figs. IV-VI); psychiatric
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non-PSD; d true PSD prevalence compared among three risk groups defined by SDC score tertiles; e true PSD severities compared among
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Table 3. Improvement of model performance after introduction of SDC score (enhanced model vs basic model) in split-half analyses.

Variable  Models trained in dataset 1 and tested in dataset 2 Models trained in dataset 2 and tested in dataset 1
Training set effect P value Testing set effect P value Training set effect P value Testing set effect P value
size (95% CI) size (95% Cl) size (95% Cl) size (95% Cl)
NRI 0.339 (0.117, 0.562) 0.003* 0.305 (0.077,0.533) 0.009* 0.399 (0.166,0.632) <0.001* 0.322 (0.093,0.550) 0.006*
IDI 0.042 (0.017, 0.066) <0.001* 0.028 (0.003,0.053) 0.027* 0.023 (0.004,0.042) 0.017* 0.037 (0.020,0.054) <0.001*
NRI category-free net reclassification improvement, /DI integrated discrimination improvement, C/ confidence interval.

*P<0.05.
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anxiety was more strongly associated with posterior SDC (Supple-
mental Fig. VII); loss of interest was mapped to both anterior and
posterior white matter (Supplemental Fig. VIIl). The other 9 symptoms
are less likely to be associated with SDC and may result from other
mechanisms: (1) psychosocial response to disability; (2) other
biological factors (e.g. inflammation); (3) symptom-symptom inter-
actions [44-46]. Future studies may not only treat PSD as a whole
syndrome but also explore risk factors or mechanisms for individual
symptoms and aspects of PSD [3].

Our VDSM results tied well with brain network theory of
depression and offered new insights on the neural substrate of
PSD. The independent predictive effect and added value of SDC
information in PSD prediction may provide more evidence for the
biopsychosocial model of PSD. Our study, along with recent
evidence showing that preserved structural connections may
serve as an essential mediator between treatment and favorable
clinical outcome in AlS patients [47], may inform new preventative
and therapeutic strategies for PSD. A variety of approaches,
enabling preservation of anatomical connection after central
nervous tissue injury by promoting axonal regeneration, revascu-
larization and neuronal survival [48], could be effective in reducing
the risk and severity of PSD and improving functional outcome
after stroke. However, some limitations still exist in our study. First,
selection bias (e.g. exclusion of aphasic patients who tend to have
higher NIHSS and more depressive symptoms, which is a common
limitation in the field of PSD research) might limit the general-
izability of our results. Applying depression scales applicable for
aphasic patients [49] may be helpful. Second, we performed
massive univariate tests with dichotomized behavioral data in
VDSM. The mass-univariate approach is vulnerable to consistent
errors resulting from collateral vasculature [50]. Multivariate
techniques [51, 52] may serve as promising alternatives in future
studies. However, lesion-symptom inference based on mass-
univariate approach is still widely accepted [18, 53]. Third,
disconnection map in our study was indirectly estimated from
the HCP-842 atlas with the lesion embedded in, thus not
necessarily representing the actual SDC. However, the HCP-842
atlas is the averaged result of large-scale normal population, thus
well-suited for use as a reference for white matter anatomy [12].
LNM or disconnectome studies based on normative atlases are
less costly and more generalizable [11]. The clear temporal order
between lesion-induced disconnection and PSD outcome allows
causal inference which can hardly be made in most direct
functional neuroimaging studies (revealing correlation instead) [9].
The atlas-based approach can be complemented by other
advanced methodology including direct connectome analysis
[54]. Fourth, the baseline depression status was not included as a
covariate. There is inter-individual variability at baseline that likely
contributes to inter-individual variability at 3 months post-stroke
that cannot be accounted for. Covarying for depression at baseline
can maximize variance related to the stroke specifically. Finally,
future studies in population of various regions or ethnicity are
entailed in validating the role of SDC in the etiology of PSD.

In conclusion, a strategic SDC pattern involving multiple lobes
bilaterally is identified for PSD at 3 months poststroke. The
baseline SDC score is an independent predictor of PSD and may
improve the predictive performance of the clinical-
sociodemographic-psychological prediction model, providing
new evidence for the brain-behavior mechanism and biopsycho-
social theory of PSD.
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