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Although reducing criminal outcomes in individuals with mental illness have long been a priority for governments worldwide, there
is still a lack of objective and highly accurate tools that can predict these events at an individual level. Predictive machine learning
models may provide a unique opportunity to identify those at the highest risk of criminal activity and facilitate personalized
rehabilitation strategies. Therefore, this systematic review and meta-analysis aims to describe the diagnostic accuracy of studies
using machine learning techniques to predict criminal and violent outcomes in psychiatry. We performed meta-analyses using the
mada, meta, and dmetatools packages in R to predict criminal and violent outcomes in psychiatric patients (n = 2428) (Registration
Number: CRD42019127169) by searching PubMed, Scopus, and Web of Science for articles published in any language up to April
2022. Twenty studies were included in the systematic review. Overall, studies used single-nucleotide polymorphisms, text analysis,
psychometric scales, hospital records, and resting-state regional cerebral blood flow to build predictive models. Of the studies
described in the systematic review, nine were included in the present meta-analysis. The area under the curve (AUC) for predicting
violent and criminal outcomes in psychiatry was 0.816 (95% Confidence Interval (Cl): 70.57-88.15), with a partial AUC of 0.773, and
average sensitivity of 73.33% (95% Cl: 64.09-79.63), and average specificity of 72.90% (95% Cl: 63.98-79.66), respectively.
Furthermore, the pooled accuracy across models was 71.45% (95% Cl: 60.88-83.86), with a tau squared (t°) of 0.0424 (95% Cl:
0.0184-0.1553). Based on available evidence, we suggest that prospective models include evidence-based risk factors identified in
prior actuarial models. Moreover, there is a need for a greater emphasis on identifying biological features and incorporating novel
variables which have not been explored in prior literature. Furthermore, available models remain preliminary, and prospective
validation with independent datasets, and across cultures, will be required prior to clinical implementation. Nonetheless, predictive
machine learning models hold promise in providing clinicians and researchers with actionable tools to improve how we prevent,

detect, or intervene in relevant crime and violent-related outcomes in psychiatry.
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INTRODUCTION

Available evidence suggests that one in eight men, and one in
sixteen women will subsequently commit a serious criminal
offense after release from a psychiatric facility [1]. This
phenomenon is not isolated to specific geographical or
generational effects, considering that in a systematic review
comprising 33,588 individuals from 24 countries and 109
datasets, high rates of mental illness in prisoners were found
in both high- and low-income countries over the timespan of
four decades [2].

Additionally, results from a large Swedish registry study
comprising 98,082 individuals with a history of hospitalization
suggests that one in every twenty violent crimes is committed by
someone with severe mental illness [3]. Given the high prevalence
of criminal acts committed across cultures in individuals with
severe mental illness, there has been a concerted effort to identify

predictors of prospective criminal risk following discharge from
psychiatric facilities.

In response to this, actuarial assessments became increasingly
widespread, which use statistical algorithms to identify prospec-
tive patient risk, usually at the group level [4]. However, there is
little evidence that actuarial risk estimates can accurately
determine whether a specific patient will reoffend or commit
subsequent acts of violence [5]. This is largely because most risk
estimates have been developed statistically to assess group-based
risk and perform poorly when making individualized predictions
[5]. Altogether, this illustrates the limitations of current methods
and the importance of a more precise, effective, and personalized
approach to risk assessment in forensic settings. Given the ethical,
psychiatric, and legal ramifications of inappropriately mischar-
acterizing the prospective risk of any given patient, and the
resulting consequences to the individual, their families, and
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broader society, there is a growing interest in the use of artificial
intelligence and predictive analytics to facilitate clinical decision
making at an individual level [6]. This can potentially pave the way
for tailor-made tools for the diagnosis, assessment, and treatment
of patients [7, 8]. While predictive machine learning models have
already shown promise in other fields of medicine [9, 10], there is
a growing effort towards predicting criminal outcomes in
psychiatric patients at an individual level. Incorporating such
models into routine clinical care presents the potential to facilitate
personalized and targeted rehabilitation strategies to decrease
prospective criminal outcomes. To the best of our knowledge,
there are no systematic reviews describing the diagnostic
accuracy of machine learning models in predicting criminal and
violent outcomes in psychiatry. Therefore, this systematic review
and meta-analysis aim to assess the diagnostic accuracy of studies
using machine learning techniques to predict criminal outcomes
in psychiatry.

METHODS
This study has been registered on PROSPERO with the registration number
PROSPERO CRD42019127169.

Search strategy

We searched three electronic databases (PubMed, Scopus, and Web of
Science) for articles published up until April 2022. To identify relevant
studies, the following structure for the search terms was used: (Artificial
Intelligence OR Supervised Machine Learning AND crime-related outcomes
in psychiatry). The complete search filter is available in the supplementary
material. We also screened references from included articles to search for
potentially missed articles.

Eligibility criteria

This systematic review was performed according to the PRISMA statement
[11]. We selected original articles that used supervised machine learning
models to predict crime-related outcomes in mental illness. We excluded
review articles and studies using unsupervised learning, since methods
such as clustering are not outcome oriented. Furthermore, studies that
predicted crime or violent-related outcomes in individuals without
psychiatric disorders were excluded, although further information regard-
ing these studies can be found in Supplementary Table 2.

Data collection and extraction

Potential articles were independently screened in a blinded standardized
manner for title and abstract contents by two researchers (DW and DLG).
Following this, the full texts of screened articles were obtained and
evaluated according to the inclusion and exclusion criteria. A third author
(PB) provided a final decision in cases of disagreement. Criminal outcomes
were operationalized as rearrest, reconviction of crimes, or prediction of
the type of crime committed. Violent outcomes involved recorded violent
incidents during inpatient stay or following hospital discharge.

Quality assessment

We created a machine learning quality assessment table based on experts’
opinion to evaluate the reproducibility and reliability of the included
studies. Our assessment provides a quick way to evaluate published papers
and can also serve as a checklist for future studies. Briefly, the instrument
comprises nine methodological considerations, including representative-
ness of the sample, confounding variables, outcome assessment, algorithm
selection, feature selection, class imbalance (where applicable), missing
data, performance/accuracy, and testing/validation. The instrument can be
found in Supplementary Table S1, and further details can also be found in
the Supplementary Material.

Statistical analysis

A bivariate meta-analysis was performed for crime-related and violent
outcomes using the mada [6] meta [12], and dmetatools packages in R [6].
Since we anticipated considerable between-study heterogeneity, a random
effects model was used to pool effect size. Additionally, an adjusted profile
restricted maximum likelihood estimator was used to calculate the
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heterogeneity variance tau square (t%). This metric was selected since
the heterogeneity statistic /> can be biased in meta-analyses with small
sample sizes [13]. Using the retisma function in ‘mada’ [6], a linear mixed
model with random effects was selected to produce summary estimates of
sensitivity and specificity, as well as calculate AUC and partial AUC
summary receiver operating characteristic (ROC) curves, as described
elsewhere [14]. 95% confidence intervals for summary AUC were
generated using 2000 iterations of parametric bootstrapping with the
‘dmetatools’ package in R. Additionally, using the metamean function in
‘meta’ [12], mean accuracy across models was pooled alongside standard
error of model accuracy, as detailed in Supplementary Table S3. As we
anticipated considerable between-study heterogeneity, a random effects
model was selected to pool effect sizes. The restricted maximum likelihood
estimator [15] was selected to calculate the heterogeneity variance T2.
Knapp-Hartung adjustments [16] were also used to calculate the
confidence interval around the pooled effect. Additionally, we pooled
the diagnostic odds ratio, and the positive negative and likelihood ratios
within a random effects model with a DerSimonian-Laird estimator [17].

Four studies were excluded from the meta-analysis, as the authors did
not report the sensitivity and specificity of their models. Criminal outcomes
were operationalized as rearrest, reconviction of crimes, or prediction of
the type of crime committed. Violent outcomes involved recorded violent
incidents during inpatient stay or following hospital discharge.

RESULTS

We found 12,420 potential titles/abstracts and included 20 studies
which met inclusion criteria. A list of the included studies and their
most relevant characteristics and findings are described in Table 1,
while Table 2 details the diagnostic accuracies, odds ratios, and
likelihood ratios of studies contained within the meta-analysis.
Additionally, a schematic of the meta-analytic diagnostic accuracy
of predicting criminal recidivism and physical violence are detailed
in Fig. 1. Furthermore, a machine learning quality assessment,
additional figures related to model performance, and a table
comprising twenty-one studies assessing criminal outcomes in
non-psychiatric individuals can be found in the supplementary
material. Additional information about machine learning algo-
rithms [18] including methodological considerations, common
problems, and limitations, can be found elsewhere [19].

Of the studies included in the systematic review, six assessed
predictors of criminal recidivism [20-25], two assessed predictors
of the type of criminal offence [26, 27], three assessed predictors
of physical violence during inpatient stay [28-30], and six assessed
predictors of violent offending and aggression following discharge
[24, 31-38]. All studies, apart from two [21, 30], used clinical input
features, including socio-demographic information, question-
naires, and psychometric measures to derive predictions.

Studies assessing criminal outcomes

Eight studies used machine learning models to predict criminal
outcomes in patients with psychiatric disorders [20-27]. Delfin and
colleagues conducted the first 10-year follow-up of a cohort of
forensic psychiatry patients, including 44 individuals, who under-
went a single-photon emission CT scan. These data, alongside
eight evidence-based clinical risk factors, were used in a random
forest model to predict criminal recidivism, resulting in an
accuracy of 82% and an AUC of 0.81. Of note, when only clinical
risk factors were used alone, model performance degraded, with
an accuracy of 64% and AUC of 0.69, emphasizing the importance
of combining clinical and biological features to predict criminal
recidivism. The top features reflecting neuronal activity included
the right and left parietal lobe, left temporal lobe, and right
cerebellum [21].

Kirchebner and colleagues used 653 clinical features to predict
recidivism in 344 individuals with schizophrenia. Patients who had
a criminal record prior to their current offence were considered as
recidivists. Following imputation, the best performance was
observed using Boosted Trees, with an accuracy of 67.6%. Without
imputation, a Naive Bayes classifier achieved an accuracy of 79.4%.
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Pflueger, 2015 2! 0.84[0.77,0.89]
Sonnweber, 2021 HH 0.73[0.67,0.77)
Thomas, 2005 - 0.19[0.14, 0.26]
Wang, 2020 o 0.63[0.53,0.72)
Watts, 2021 - 0.83[0.73,0.90]
| I e — —

Sensitivity

Average: 73.33% (95% Cl:64.09-79.63)

Delfin, 2019 —=—  0.84[0.67,0.93]
Kirchhebner, 2020 ! 0.74[0.65,0.81]
Kirchhebner, 2022 - 0.80[0.70, 0.87]
Linaker, 1995 - 0.81[0.70, 0.89]
Pflueger, 2015 . 0.86[0.79,0.91]
Sonnweber, 2021 - 0.62[0.51,0.73]
Thomas, 2005 ®  0.96[0.94,0.97]
Wang, 2020 - 0.32[0.26, 0.39]
Watts, 2021 g 0.60 [0.54, 0.66]
|

026 061 097
Specificity

Average: 72.90% (95% Cl: 60.50-96.6)

Fig. 1 Paired Forest plot of model accuracy for criminal and violent outcomes in psychiatry. A linear mixed model with random effects was
selected to produce summary estimates of sensitivity and specificity using the retisma function in mada. The average sensitivity across studies
was 73.33% (95% |: 64.09-79.63) and average specificity was 72.90% (95% Cl: 60.50-96.6). As such, the balanced accuracy across models

(sensitivity + specificity/2) is 73.11%.

Important variables included amisulpride prescription prior to
offence, recent stressors, recent legal complaints, and number of
prior offences [24].

Sonnweber et al. developed a model to differentiate between
violent and non-violent offenders in patients with schizophrenia.
The best performance was observed using a gradient boosting
machine, resulting in a balanced accuracy (operationalized as the
average of sensitivity and specificity, as defined elsewhere [39]) of
67%. The most important variables included time spent in
hospitalization, age at diagnosis, daily olanzapine at discharge,
PANSS score at discharge, and social isolation in adulthood [26].

Furthermore, Watts and colleagues developed a machine
learning model to predict the type of criminal offence committed
in a large transdiagnostic sample of 1240 psychiatric patients.
Using multiclass classification, they showed that sexual crimes
could be discriminated from violent and nonviolent crimes at an
individual level with an accuracy of 71.22%. Moreover, following
recursive feature elimination, a reduced model with 36 variables
resulted in an accuracy of 71.58%. The most important features for
the model included previous absolute discharge, previous sexual
convictions, cluster A personality disorder, and female gender [27].
Other studies predicted rearrest after release from jail [20, 22],
reconviction for a violent crime [23], and risk of general criminal
recidivism [25]. A summary of these findings can be found in Table
1 and Supplementary Table S2.

Studies assessing violent outcomes

Twelve studies used machine learning techniques to predict
violent outcomes in patients with psychiatric disorders [28-38, 40].
Linaker and colleagues predicted violent incidents in psychiatric
patients using behavioral symptoms from health records from
24 h prior. Overall, 48 acts of violence were recorded from 32
patients, and following feature selection using correlation
coefficients, six variables were used as predictors in a logistic
regression model. The authors reported a sensitivity of 81.3% and
specificity of 100%, however it was unclear how class imbalance
was addressed, since only 34.7% of patients committed an act of
violence during the study [32].

Kirchebner and colleagues used a series of known stressors to
predict violent offending in 370 patients with schizophrenia. The
overarching goal was to determine whether accumulated stressors
precipitated violent outcomes in patients. Using boosted classification

SPRINGER NATURE

trees, they reported an accuracy of 76.4%. However, no external
validation or testing set was used, instead, performance was assessed
using 5-fold CV [40].

Furthermore, Menger et al. used text analysis from doctor and
nurse notes to predict violent incidents in psychiatric inpatients.
Four feature extraction methods were used, comprising binary
bag of words, term frequency-inverse document frequency (tf-idf)
bag of words, document embeddings, and word embeddings, as
described elsewhere. An AUC of 0.788 was observed using
document embeddings with recurrent neural networks. The worst
performances occurred with the Naive Bayes algorithm, which is
the most classical and widely used algorithm for text classification
[28].

Monahan and colleagues classified patients according to high
and low risk of violence following discharge from psychiatric
facilities. Decision trees were used in a binary classification task,
and features were selected using a stepwise model, where the
threshold of statistical significance between the feature and
outcome were set at P < 0.05. The model correctly identified 72.6%
of the sample as either low or high risk. Important variables
included seriousness of prior arrests, motor impulsiveness,
paternal drug use, and recurrent violent fantasies. It is important
to mention that 27.4% of the total sample remained unclassified,
meaning it could find no combination of risk factors to classify
patients into high or low-risk groups [33].

Additionally, Suchting and colleagues used saliva FK506 binding
protein 5 (FKBP5) polymorphisms alongside demographic and
psychometric variables to predict state aggression, which resulted
in an R? of 0.66 [30]. Other studies identified predictors of violent
risk following discharge [37, 38] and aggression in patients
[29, 31, 34-36], which are further described in Table 1.

Meta-analysis of diagnostic accuracy
A forest plot detailing model performance can be observed in
Figs. 1 and 2, while Table 2 details the diagnostic accuracies, odds
ratios, and likelihood ratios across studies. Additional details
related to the standard error of model accuracy, 95% Cl, and the
true/false positives and negatives, can be found in Supplementary
Table S3. Nine studies were pooled, comprising 2,428 patients (the
same dataset of 370 patients was used across two studies [26, 40]).
Additionally, nine studies which did not report the sensitivity
and specificity of models [20, 22, 23, 28, 29, 31, 33-35], and one

Translational Psychiatry (2022)12:470
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Study Total Mean SD Mean Mean 95%-Cl Weight
Wang, 2020 780 47.00 6.6300 47.00 [46.54;47.47] 11.6%
Thomas, 2005 219 57.50 50.3600 ——+— 57.50 [51.20;64.57] 10.7%
Sonnweber, 2021 369 67.82 66.9800 —e 67.82 [61.32;75.01] 10.9%
Watts, 2021 322 71.58 42.9300 - 71.58 [67.04,76.43] 11.3%
Kirchhebner, 2022 369 75.84 42.2300 . 75.84 [71.65;80.27] 11.4%
Kirchhebner, 2020 344 79.40 32.4600 - 7940 [76.04,8291] 11.5%
Defin 2019 44 80.50 42.3000 ——+—— 80.50 [68.92;94.02] 10.1%
Pflueger, 2015 259 85.00 36.8600 = 85.00 [80.63;89.61] 11.4%
Linaker, 1995 92 90.65 34.9100 —+— 90.65 [83.79;98.07] 11.2%

Random effects model 2798

——

71.45 [60.88; 83.86] 100.0%

I
50

Heterogeneity: = 0.0424, p=0

T T
70 80 90

Fig.2 Pooled effects of model accuracy. Pooled accuracy of criminal and violent models in psychiatry across 2428 patients (two studies used
the same sample n =370) within a random effects model using a restricted maximum likelihood estimator to calculate the heterogeneity
variance t2. Reported mean accuracy across models was used, in conjunction with standard deviation, calculated by multiplying the standard
error by the square root of the sample size (SD = SExn). Knapp-Hartung adjustments were used to calculate the confidence interval around
the pooled effect. The average accuracy across models was 71.45% (95% Cl: 60.88-83.86), with a heterogeneity variance t° of 0.0424.

regression-based model [30] were excluded from the meta-
analysis. Overall, the pooled accuracy across models was 71.45%
(95% Cl: 60.88-83.85), with a sensitivity ranging from 54.4%-87.3%
(average: 73.33%, 95% Cl: 64.09-79.63) and specificity ranging
from 60.5-96.6% (average: 72.90%, 95% Cl: 63.98-79.66). The
heterogeneity statistic > for pooled model accuracy was 0.0424
(95% Cl: 0.0184-0.1553). A plot of the false positive rate against
sensitivity for all studies can be found in Supplementary Fig. S1.

The diagnostic odds ratio (DOR) across studies was 9.75 (95% Cl:
4,035-22.72; T2 =1.505) as detailed in Table 2. Similarly, the
positive likelihood ratio (posLR) was 3.083 (95% Cl: 1.954-4.866,
with a 1 of 0437 (95% Cl: 0.000-0.897), and the negative
likelihood ratio (negLR) was 0.342 (95% Cl: 0.201-0.583), with a T°
of 0.566 (95% Cl: 0.000-3.476), respectively. Additionally, the log
DOR across studies was 2.466 (95% Cl: 1.534-3.397). The average
prevalence of the positive class (presence of criminal and violent
outcomes) was 43.435% of the sample across studies. Further-
more, the AUC across studies was 0.816 (95% Cl: 0.745-0.875) in
predicting criminal and violent outcomes, with a partial AUC of
0.773. Spearman’s rho indicated a weak association (rho = 0.150,
95% Cl: —0.571-0.740) with a large confidence interval between
the sensitivities and false positive rates of included studies.

DISCUSSION

To the best of our knowledge, this is the first systematic review
comprising studies using supervised machine-learning techniques
to predict criminal or violent outcomes in individuals with
psychiatric disorders. Throughout our review, we have identified
recurrent features and algorithms used, as well as current
methodological challenges. In this section, we detail key aspects
of these models, showcasing their limitations as well as our
perspectives on best practices for developing machine learning
models with clinical utility. Further details regarding common
methodological issues in machine learning models can be
observed in the supplementary material.

Model interpretability, model performance, and confidence
intervals
More recent machine learning algorithms that use regularization
parameters to account for common issues such as multicollinear-
ity, tended to show higher performance accuracy in predicting
outcomes. However, model complexity carries the trade-off of
greater difficulty in model interpretability and explainability [41].
Recently, new local explanation methods have been developed,
including SHapley Additive exPlanations (SHAP), to explain
variable contributions at the individual level [42]. Adaptations of
this, such as TreeExplainer, leverage the internal structure of tree-
based models to efficiently compute local explanations using

Translational Psychiatry (2022)12:470

Shapley values [43]. Moreover, SHAP dependence plots can be
used to showcase the effect that a single feature has on
predictions made by the model [43]. In two studies included in
the current review, feature importance metrics were not reported
[28, 35]. It is argued that future studies may benefit from an
increased focus on model interpretability, which may aid in the
generalizability and replicability of such work.

Furthermore, it is important to highlight that model perfor-
mance can be over-optimistic when assessed using internal cross-
validation alone, in the absence of separate training and testing
sets. Of the twenty studies contained in the present review, only
seven (35%) incorporated training and testing sets in model
development. In the majority of studies [25, 28-31, 33-36, 38]
(76.9%) that evaluated model performance using internal cross-
validation alone, sample sizes were also well over 100 patients. As
mentioned elsewhere, several other fields use cross-validation to
tune regularization parameters in model development, rather than
taking performance estimates at face value [44]. Similarly, it is
important to mention that uncertainty estimates should be
considered when evaluating model performance and its potential
clinical utility. Of nine studies comprising the meta-analysis, only
four (44.4%) [21, 26, 27, 37] reported accuracy estimates using a
method such as 95% confidence intervals.

Model performance and clinical predictors

Overall, eighteen models assessed clinical predictors of criminal
and violent outcomes [20, 22-29, 31-38, 40]. In criminal prediction
models, accuracy was generally high, ranging from 67.83-82%.

With respect to criminal behavior, common predictors across
models included age at first crime, substance use disorder, cluster
B personality disorder, prior criminality, a high number of
stressors, and childhood trauma. Future work may benefit from
comprising a standardized evidence-based risk battery for use in
prospective models.

Furthermore, models predicting violent behavior were more
variable, ranging from 58.25-92.1%, with five of twenty studies
(25%) [22, 23, 28, 35] comprising the systematic review only
reporting AUC. As such, several were excluded from the meta-
analysis. Nonetheless, important clinical features included confu-
sion, irritability, threats, recently attacking objects, child abuse,
physical neglect, and callous affect. Important search terms
included aggressive, offered, angry, door, walk, arrest, offer
emergency medication, and walked.

With respect to the meta-analysis comprising nine studies
(n=2428 patients), the pooled accuracy was 71.45% (95% ClI:
60.88-83.86) in predicting criminal and violent outcomes. More-
over, as detailed in Table 2, the DOR was 9.757 (95% ClI:
4,035-22.72; T=1.505) and log DOR was 2466 (95% I
1.534-3.397). As discussed elsewhere, the DOR is a measure of
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the effectiveness of a diagnostic test that is independent of
prevalence [45]. A DOR of 9.757 represents a high ratio of the odds
of the test being positive if the individual will commit prospective
criminal and violent outcomes relative to the odds of the test
being positive if the individual will not prospectively commit
criminal and violent outcomes. However, a large upper and lower
bound of the 95% ClI was observed, and the log DOR suggests a
more conservative test effectiveness. Similarly, the posLR was
3.083 (95% Cl: 1.954-4.866), suggesting a small increase in the
likelihood of committing violent and criminal outcomes in
patients with a positive test. In addition, the negative likelihood
ratio was 0.342 (95% Cl: 0.201-0.583), suggesting a 20-25%
decrease in the odds of committing violent and criminal outcomes
in patients with a negative test result.

Model performance and biological predictors

Furthermore, two models [21, 30] assessed biological predictors
pertaining to saliva SNPs and resting-state regional cerebral blood
flow. Although they contained small sample sizes and lacked
external validation, both showed promising performance, corre-
sponding to an R2 of 0.66, and accuracy of 82%, respectively.
Important features included KBP5_14 (rs1460780), FKBP5_92
(rs9296158); and FKBP5_94 (rs9470080), right and left parietal lobe
rCBF, left temporal lobe rCBF, and right cerebellum. Subsequent
studies may benefit from replicating these findings and incorpor-
ating additional biological and physiological variables.

Limitations

Currently, the field of predicting crime and violent-related
outcomes using machine learning techniques remain in its
infancy. As such, there is a lack of studies validating model
performance using independent cohorts. Furthermore, it is
important to note that model accuracy should be considered
alongside several other factors, such as the input features used,
the preprocessing pipeline, feature selection method, model
optimization strategy, and the validation procedure. Furthermore,
data-driven approaches to feature selection can be useful in many
cases, since it does not require knowledge derived from pre-
existing literature to manually select important variables [46-48].
Of note, the absence of a formalized feature selection strategy was
observed across a subset of studies.

There are several available feature selection methods, with
varying degrees of appropriateness depending on the application,
as described elsewhere [47]. Furthermore, feature selection can be
useful to improve the generalizability of models when applied to
independent datasets [49]. Considering that predictive models
applied to forensic healthcare can have significant legal repercus-
sions - such as incorrectly identifying individuals as not criminally
responsible when in fact they are, or the inability to detect
malingering - it is paramount that we use the most optimal
methods available for these purposes.

Additionally, only two studies developed separate models to
assess potential differences in performance between men and
women using the same variables, as described in the supplemen-
tary material. Rosselini et al. reported an AUC of 0.74 for men and
an AUC of 0.82 for women in predicting violent crime [50].
Additionally, the same authors also investigated predictors of
major violent crime and reported an AUC of 0.81 for both models
in men, and an AUC of 0.80-0.82 for both models in women.
Based on these studies, it is still unclear whether biological sex or
gender play a key role in deciding which features should be
included within a predictive machine-learning model.

Future directions

Moving forward, a further refinement of predictive models in
forensic risk prediction is required. Potentially, this may be
facilitated by using a wider framework when selecting the input
data in our models. Considering that our model performance is
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directly dependent on the available input data, an exploratory
data-driven approach may be warranted in predictive models.

Most machine learning studies in forensic psychiatry thus far
focus purely on clinical and administrative data, given the
widespread availability of such data. However, other modalities,
such as neuroimaging (MRI, fMRI, DTI), electrophysiology (EEG, MEG,
ERG) various sensors (actigraphy, heart rate variability), and genomic
features (whole genome sequencing, whole exome sequencing, and
RNA sequencing) may prove to facilitate model performance, when
used in conjunction with clinical data. Moreover, longitudinal studies
with larger multicentric samples and adequate external validation
are needed to translate proof-of-concept predictive models into
applications to be used in clinical and legal settings. We hypothesize
that such models may facilitate a more personalized approach to
patient evaluation and risk management, provide greater precision
in deriving a tailored treatment plan, and aid clinicians and the legal
system in the decision-making process as it pertains to mentally
disordered offenders. Ultimately, they may become critical tools to
assist in prison sentencing, to determine fitness to stand trial, and to
optimize the progress of individuals in the forensic system towards
rehabilitation.

DATA AVAILABILITY
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