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Microglia sequelae: brain signature of innate immunity in
schizophrenia
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Schizophrenia is a psychiatric disorder with significant impact on individuals and society. The current pharmacologic treatment,
which principally alleviates psychosis, is focused on neurotransmitters modulation, relying on drugs with severe side effects
and ineffectiveness in a significant percentage of cases. Therefore, and due to difficulties inherent to diagnosis and treatment,
it is vital to reassess alternative cellular and molecular drug targets. Distinct risk factors – genetic, developmental, epigenetic,
and environmental – have been associated with disease onset and progression, giving rise to the proposal of different
pathophysiological mechanisms and putative pharmacological targets. Immunity is involved and, particularly microglia – innate
immune cells of the central nervous system, critically involved in brain development – have captured attention as cellular players.
Microglia undergo marked morphologic and functional alterations in the human disease, as well as in animal models of
schizophrenia, as reported in several original papers. We cluster the main findings of clinical studies by groups of patients: (1) at
ultra-high risk of psychosis, (2) with a first episode of psychosis or recent-onset schizophrenia, and (3) with chronic schizophrenia; in
translational studies, we highlight the time window of appearance of particular microglia alterations in the most well studied animal
model in the field (maternal immune activation). The organization of clinical and translational findings based on schizophrenia-
associated microglia changes in different phases of the disease course may help defining a temporal pattern of microglia changes
and may drive the design of novel therapeutic strategies.
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INTRODUCTION
Schizophrenia is a chronic multifactorial mental disorder, present-
ing variable clinical manifestations. Patients manifest different
symptoms, classified as positive (e.g. delusions, hallucinations),
negative (e.g. social withdrawal, self-neglect, avolition, and loss of
motivation) and/or cognitive (e.g. working memory and attention
deficits) [1]. The first symptoms usually manifest during late
adolescence and early adulthood and are, in the majority of cases,
depressive and negative symptoms (in a minority of cases,
psychotic symptoms are the first to appear) [2]. Due to the scarce
symptomatology until the occurrence of the first episode of
psychosis, if we consider the chronopathology of schizophrenia,
the diagnosis is late and patients already present substantial brain
changes, in terms of structure, neurochemistry, and connectivity
[3]. Based on schizophrenia onset and progression, three stages
are established: (1) latent, pre-morbid – implicates biological
processes intrinsic to brain development and maturation and
extends from the prenatal period to childhood; (2) high-risk,
prodromal – usually initiates in adolescence, hampering brain
reorganization (e.g. sexual maturation) and (3) chronic, fluctuating
– occurs at adulthood (for more details see ref. [3]; Fig. 1).
In addition to the diversity in clinical presentation, the identified

risk factors (from development and genetic to environmental and
epigenetic) also reflect the involvement of several biological

systems in the genesis and progression of the disease [4, 5]. In
consequence, several theories (focused on environmental and
genetic factors, neurochemical and neuroanatomical abnormalities
[6–8]) have emerged in an attempt to clarify the biological basis of
schizophrenia. Objectively, if we consider the drugs currently used
in the clinical practice (different generations of modulators of the
subtype D2 of dopamine receptors, modified over the years in
order to attenuate severe side effects associated with D2 receptor
blockade [9]), dopamine hypothesis is the most well accepted
theory. It postulates an (1) excess of dopamine transmission in
subcortical limbic areas, such as the nucleus accumbens (NAc),
amygdala (AMY), and hippocampus (HIP) (mesolimbic pathway) –
responsible for the positive symptoms [10, 11] - and a (2)
dopamine deficiency in the prefrontal cortex (PFC; mesocortical
pathway) – responsible for the negative and cognitive symptoms
[12] (Fig. 2). Despite the unquestionable beneficial effects,
antipsychotics still present important limitations, including beha-
vioral, neurological (namely extrapyramidal effects), hematological,
cardiovascular, metabolic, and endocrine (weight gain, hyperlipi-
demia, and diabetes mellitus) adverse effects [7, 13–16]. The
identification of alternative cellular and molecular drug targets
would fill the gap that still remains in schizophrenia treatment.
Over the past years, immunity has been implicated in the

genesis, progression and clinical manifestations of psychiatric
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disorders, including schizophrenia (for review [17–20]). Although
out of the scope of this review, we cannot afford to mention the
immunomodulatory properties of antipsychotic drugs [21, 22],
namely the ability to normalize altered levels of inflammatory
mediators, reported as a mechanism underlying the remission of
psychotic symptoms [23].
Innate immunity involves different cells able to mount an

inflammatory response to insults, including microglia, which
colonize the central nervous system during early neurodevelop-
ment. Throughout life and from the very beginning of brain
development, these innate immune cells perform an essential
function – synapse pruning, which involves the phagocytosis of
synapses [24–26]. In the past, it has been proposed that an
aberrant synaptic pruning occurs in schizophrenia [4, 27–29],
raising the idea that microglia could be involved in its genesis and
progression. Notably, the effect of antipsychotics on microglia (for
a review see ref. [30]) is not well established, a nuclear question to
clarify if drug efficacy is related with the modulation of disease-
associated microglia sequelae. The aim of this review is not to
summarize the inflammatory-immune hallmarks of schizophrenia,
but rather focused on disease-associated changes of this specific
cellular candidate – microglia. These cells are in tight communica-
tion with the first newborn neurons, being sensitive and responsive
to neurochemical signs (reviewed in refs. [31, 32]), exerting a
crucial modulatory role in the formation/maturation of neurons

and neuronal circuits in critical periods of brain development, and
later, contributing to brain homeostasis. We here gather clinical
and translational findings related with microglial changes (seque-
lae) in schizophrenia.

MICROGLIA IN BRAIN DEVELOPMENT AND HOMEOSTASIS:
KICKOFF TO SCHIZOPHRENIA
Microglia are immune cells derived from embryonic yolk-sac
myeloid progenitors. After the colonization of the brain (early in
the embryonic period, before the completion of blood-brain
barriers) [33], microglia migrate towards different brain regions,
proliferate and mature at different paces from species to
species. After the initial colonization, self-renewal by prolifera-
tion is accepted as the only mechanism of repopulation
throughout life [34].
These heterogeneous cells are categorized in subpopulations,

according to the expression of particular gene clusters, and
present distinct transcriptomic profiles with brain region specifi-
city, that change over time to functionally respond to particular
demands of different developmental phases [34–36]. Microglia
also present a panoply of morphologic phenotypes, ranging from
amoeboid to varied degrees of cellular processes ramification [37].
In response to different stimuli, a notable ability to change from
amoeboid to ramified phenotypes (and vice-versa) is granted by

Fig. 1 Schizophrenia progression involves three stages. (1) latent, pre-morbid (from the prenatal period until childhood) implicates
biological processes intrinsic to brain development and maturation; (2) high-risk, prodromal (usually initiates in adolescence) - impacts on
brain reorganization (e.g. sexual maturation); and (3) chronic, fluctuating (adulthood).

Fig. 2 Dopamine hypothesis underlying schizophrenia pathophysiology (hypo- and hyperfunctional dopaminergic pathways). Schematic
representation of hypofunctional (decreased dopamine transmission to the prefrontal cortex (PFC)) and hyperfunctional (increased dopamine
transmission to nucleus accumbens (NAc), amygdala (AMY) and hippocampus (HIP).
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cellular processes well adapted to the surveillance of brain
parenchyma, through dynamic extension and retraction mechan-
isms [38, 39]. Importantly, microglia do not transit only between a
“healthy” ramified and a “pathological” amoeboid phenotype, as
initially believed. Instead, microglia undergo morphological
adaptions, depending on their brain location and stimuli, a topic
that our group has been studying in the context of mental
diseases [40–42].
Due to their phagocytic ability and capacity to produce and

release inflammatory mediators and growth factors, microglia
actively contribute to the proper establishment and maturation of
neural circuits. Microglia can stimulate neurogenesis by support-
ing survival, proliferation, and maturation of neuronal progenitor
cells (NPCs) and neurons [43]) or, instead, eliminate neurons, NPCs
or apoptotic cells by phagocytosis (reviewed in refs. [32, 44]).
The settlement between elimination or strengthening depends

on microglia-neuron communication, that occurs through the
release of soluble factors [45] or physical contact [31, 46]. Distinct
signaling pathways, involving fractalkine/fractalkine receptor
(CX3CL1/CX3CR1), OX-2 membrane glycoprotein/OX-2 membrane
glycoprotein receptor (CD200/CD200R), Toll-like receptors (TLRs),
cytokines, complement pathways (complement component 1q/
complement component 1q receptor – C1q/C1qR, complement
component 3/complement component 3 receptor – C3/C3R),
extracellular vesicles, among others [47–49], mediate neuron-
microglia interactions.
Microglia is able to eliminate or strengthen cells and subcellular

domains, namely synapses [24], a function of high relevance in the
onset of schizophrenia, proposed to be coincident with an
aberrant process of synapse pruning [50, 51], as firstly reported
by Feinberg [52]. In schizophrenia, the complement system is a
key intervenient in synapse elimination by microglia, in particular
the components C4 and C3. The former, which is increased in the
hippocampus of patients (in neurons and synapses) [53], activates
C3, that binds to a receptor exclusively expressed by myeloid cells,
including microglia [26, 54, 55]. Other authors demonstrated that
C4 variants associated with schizophrenia, increase C3 deposition
in neurons [51], synaptic engulfment by microglia [51, 56] and
reduce the connectivity in the PFC of prepubertal rats [56].
This group of findings clearly points to the involvement of the

complement pathway, further supporting the proposed theory of
excessive synaptic pruning in the genesis of schizophrenia [50]. If
this represents one of the triggering events of the disease, the
pharmacologic modulation of the complement system emerges as
a potential therapeutic approach. However, as previously men-
tioned, diagnosis is usually subsequent to the first episode of
psychosis, when substantial changes already occurred in the brain,
including cellular plastic events of microglia, eventually contribut-
ing to disease progression. To clearly define microglia as a cellular
target in the disease, one must know the nature and the time of
appearance of specific microglial changes with disease progres-
sion. In the following sections, we reunite data from clinical and
non-clinical studies focused on microglia sequelae.

MICROGLIA SEQUELAE: CLINICAL FINDINGS IN SCZ PATIENTS
Several epidemiological studies have shown that changes in the
immune system are linked to psychosis and, therefore, to
schizophrenia pathophysiology [57–60]. Most studies describe
alterations in cellular and/or molecular mediators assessed in
patient blood, rather than immune changes in the brain. The
detection of peripheral immune changes is a more feasible and
low-cost approach, that may help finding novel biomarkers of
disease, improving diagnosis and progression monitoring. For
instance, a correlation was established between increased levels of
interleukine-6 in serum (measured at 9 years old) with a twofold
increase risk of developing psychotic symptoms at 18 years [61].
Although aware of the importance of peripheral immune changes

that may have the contribution of factors produced and released
by microglia (properly reviewed elsewhere, e.g. [17–20]), the main
goal of the present article is to review changes exclusively related
with this particular type of immune cells of the central nervous
system.
Here, we organized the clinical studies in two subsections,

neuroimaging techniques, that allow in vivo monitorization and
longitudinal analyses, and post-mortem assessments, a comple-
mentary approach that helps finding molecular and cellular
pathophysiological traits of the disease.

Neuroimaging approaches as a readout for
neuroinflammation mediated by microglia
In the last years, new techniques and methodologies granted
significative advances in neuroimaging. Even though, there is a
lack of reliable markers to properly evaluate microglia. The
available methods mainly target a mitochondrial protein (18-kDa
translocator protein, TSPO) highly expressed in activated microglia,
that is, involved in an inflammatory response to pathological
conditions, such as psychiatric diseases [62]. Thus, the measure-
ment of TSPO levels through the use of radiotracers has been
commonly performed to investigate microglia activation in SCZ
patients [63], although we would like to emphasize that TSPO is
not exclusively expressed in microglial cells [64] and its expression
does not correlate with the expression of canonical activation
markers [65]. Anyway, we consider of importance to reunite and
carefully analyze clinical findings based on TSPO evaluation to
finally take objective conclusions about the validity of considering
TSPO as a readout of microglia-mediated neuroinflammation (see
Table 1).
To better understand the potential conflicting results between

studies, it is important to consider some bias related to TSPO
radiotracers, starting from the binding affinity of the radioligands,
that ranges from low (for first generation radiotracers) to high (for
second-generation radiotracers), which potentially influences the
analysis. Besides, the binding of some radiotracers is conditioned
by a common genetic polymorphism in exon 4 of the TSPO gene
(rs6971), resulting in distinct TSPO binding profiles (for more
details see ref. [66]). The methods applied to calculate total/
regional TSPO binding also vary among studies: simplified
reference tissue model (method mostly used for 11C-PK11195
radiotracer) [67–70]; two-tissue component model (2TCM) with
metabolite-corrected arterial plasma curve as input function (11C-
PK11195 [71, 72] or second-generation radiotracer [64, 71–78])
and/or two-tissue compartmental model accounting for endothe-
lial vascular TSPO binding (2TCM-1K) [74–76, 79]. Finally, schizo-
phrenia itself accounts for important confounding factors, such as
cohorts heterogeneity, medication, stage of disease progression,
to mention a few (see review [80]).
For the sake of clarity, we divided neuroimaging studies in three

groups of patients in different stages of the disease: (1) ultra-high
risk of psychosis, (2) first episode of psychosis (FEP) or recent-
onset schizophrenia and (3) chronic schizophrenia.

Patients at ultra-high risk of psychosis. In the literature, we only
found two studies exploring TSPO binding in patients at ultra-high
risk of psychosis. Curiously, normal values of TSPO tracing were
described when a low binding affinity radiotracer (11C-PK11195)
was used (the low affinity may hypothetically limit the detection of
subtle changes) [67]. When a second-generation radiotracer (11C-
PBR28) was used, the authors established a correlation between
increased TSPO tracing and the severity of symptoms [75]. It is
important to emphasize that, in addition to differences in the
affinity of radiotracers and methodologic approaches, the conclu-
sions were supported by observations in different brain regions.

Patients with FEP or recent-onset schizophrenia. As described in
patients at risk of psychosis, in this group of patients with FEP, the

A.C. Rodrigues-Neves et al.

3

Translational Psychiatry          (2022) 12:493 



Ta
bl
e
1.

M
ic
ro
g
lia

se
q
u
el
ae

in
sc
h
iz
o
p
h
re
n
ia

p
at
ie
n
ts

(e
vi
d
en

ce
s
fr
o
m

n
eu

ro
im

ag
in
g
st
u
d
ie
s
b
as
ed

in
TS

PO
m
ea
su
re
m
en

t)
.

R
ad

io
tr
ac
er

B
ra
in

re
g
io
n

TS
PO

fi
n
d
in
g

R
ef
s.

Pa
ti
en

ts
at

u
lt
ra
-h
ig
h
ri
sk

(U
H
R
)
o
f
p
sy
ch

o
si
s

–
1
1
C
-P
K
11

19
5

D
o
rs
al

fr
o
n
ta
l,
o
rb
it
al

fr
o
n
ta
l,
an

te
ri
o
r
ci
n
g
u
la
te
,m

ed
ia
l
te
m
p
o
ra
l,

th
al
am

u
s,
an

d
in
su
la

N
o
ch

an
g
es

[6
7]

–
1
1
C
-P
BR

28
To

ta
l
g
ra
y
m
at
te
r,
fr
o
n
ta
l,
an

d
te
m
p
o
ra
l
lo
b
e

In
cr
ea
se

[7
5]

Pa
ti
en

ts
w
it
h
FE

P
o
r
re
ce
n
t-
o
n
se
t

sc
h
iz
o
p
h
re
n
ia

(in
cl
u
d
es

ac
u
te

re
la
p
se

p
at
ie
n
ts
a)

FE
P

[1
8
F]
FE

PP
A

D
o
rs
o
la
te
ra
l
an

d
m
ed

ia
l
p
re
fr
o
n
ta
l
co

rt
ex
,t
em

p
o
ra
l
co

rt
ex

,
h
ip
p
o
ca
m
p
u
s,
to
ta
l
g
ra
y
m
at
te
r,
an

d
w
h
o
le

b
ra
in

N
o
ch

an
g
es

[7
3]

FE
P

1
1
C
-P
BR

28
G
ra
y
m
at
te
r,
w
h
it
e
m
at
te
r,
fr
o
n
ta
l
an

d
te
m
p
o
ra
l
co

rt
ex
,a

n
d

h
ip
p
o
ca
m
p
u
s

D
ec
re
as
e

[7
4]

FE
P

[1
8
F]
PB

R1
11

C
o
rt
ic
al

lo
b
es

an
d
ci
n
g
u
la
te
d
co

rt
ex

,c
er
eb

el
lu
m
,b

ra
in

st
em

,t
h
al
am

u
s,

b
as
al

g
an

g
lia
,a

m
yg

d
al
a,

an
d
h
ip
p
o
ca
m
p
u
s

In
cr
ea
se

a
[7
6]

R
ec
en

t-
o
n
se
t

1
1
C
-P
K
11

19
5

1
1
C
-P
K
11

19
5

1
1
C
-P
K
11

19
5

[1
1
C
]D
PA

-7
13

D
o
rs
al

fr
o
n
ta
l,
o
rb
it
al

fr
o
n
ta
l,
an

te
ri
o
r
ci
n
g
u
la
te
,m

ed
ia
l
te
m
p
o
ra
l

co
rt
ic
es
,t
h
al
am

u
s,
an

d
in
su
la
;

an
te
ri
o
r
ci
n
g
u
la
te
,p

re
fr
o
n
ta
l,
o
rb
it
o
fr
o
n
ta
l,
p
ar
ie
ta
l
an

d
te
m
p
o
ra
l

co
rt
ic
es
,c
au

d
at
e,

p
u
ta
m
en

,t
h
al
am

u
s,
am

yg
d
al
a,

h
ip
p
o
ca
m
p
u
s,
an

d
b
ra
in
st
em

;
fr
o
n
ta
l,
te
m
p
o
ra
l
an

d
p
ar
ie
ta
l
co

rt
ic
es
,t
h
al
am

u
s,
an

d
st
ri
at
u
m
;

C
in
g
u
la
te
,p

ar
ie
ta
l,
fr
o
n
ta
l,
te
m
p
o
ra
l
an

d
o
cc
ip
it
al

co
rt
ic
es
,

h
ip
p
o
ca
m
p
u
s,
an

d
am

yg
d
al
a

N
o
ch

an
g
es

[6
7,

69
,7

0,
77

]

R
ec
en

t-
o
n
se
t

1
1
C
-P
K
11

19
5

To
ta
l
g
ra
y
m
at
te
r
(a
ll
b
ra
in
)

In
cr
ea
se

[7
1]

Pa
ti
en

ts
w
it
h
w
el
l-e

st
ab

lis
h
ed

sc
h
iz
o
p
h
re
n
ia

–
1
1
C
-P
K
11

19
5

1
1
C
-P
K
11

19
5

[1
8
F]
FE

PP
A

D
o
rs
al

fr
o
n
ta
l,
o
rb
it
al

fr
o
n
ta
l,
an

te
ri
o
r
ci
n
g
u
la
te
,m

ed
ia
l
te
m
p
o
ra
l,

th
al
am

u
s,
an

d
in
su
la
;

an
te
ri
o
r
ci
n
g
u
la
te
,p

re
fr
o
n
ta
l,
o
rb
it
o
fr
o
n
ta
l,
p
ar
ie
ta
l
an

d
te
m
p
o
ra
l

co
rt
ic
es
,c
au

d
at
e,

p
u
ta
m
en

,t
h
al
am

u
s,
am

yg
d
al
a,

h
ip
p
o
ca
m
p
u
s,
an

d
b
ra
in
st
em

;
M
ed

ia
l
an

d
d
o
rs
o
la
te
ra
l
p
re
fr
o
n
ta
l
co

rt
ic
es
,t
em

p
o
ra
l
co

rt
ex
,

h
ip
p
o
ca
m
p
u
s,
an

d
st
ri
at
u
m

N
o
ch

an
g
es

[6
7,

69
,7

8]

–
1
1
C
-P
K
11

19
5

1
1
C
-P
K
11

19
5

1
1
C
-P
BR

28

D
o
rs
o
la
te
ra
la

n
d
ve

n
tr
o
la
te
ra
lp

re
fr
o
n
ta
lc
o
rt
ic
es
,o

rb
it
o
fr
o
n
ta
l,
an

te
ri
o
r

ci
n
g
u
la
te
,a

n
d
p
ar
ie
ta
l
co

rt
ic
es
;

Fr
o
n
ta
l,
te
m
p
o
ra
l,
p
ar
ie
ta
l
an

d
o
cc
ip
it
al

co
rt
ic
es
,b

as
al

g
an

g
lia
,

h
ip
p
o
ca
m
p
u
s,
an

d
ce
re
b
el
lu
m
;

To
ta
l
g
ra
y
m
at
te
r,
fr
o
n
ta
l,
an

d
te
m
p
o
ra
l
lo
b
e

In
cr
ea
se

[6
8,

72
,7

5]

a I
n
cl
u
d
es

ac
u
te

re
la
p
se

p
at
ie
n
ts
.

A.C. Rodrigues-Neves et al.

4

Translational Psychiatry          (2022) 12:493 



results are conflicting, with three main studies describing an
increase [76], a decrease [74] or the absence of changes [73] in
TSPO tracing. Again, besides differences in radiotracer affinities,
the heterogeneity of the individuals involved in the studies may
influence the results, as occurs with the study reporting an
increase in TSPO [76], that includes patients with an acute relapse,
that likely present exacerbated microglia-mediated neuroinflam-
mation. The complexity of the analysis increases if we segregate
patients under medication and not treated, since pharmacother-
apy is an important confounding effect, mainly considering the
immune modulatory effect of antipsychotics, as previously
mentioned. Normal TSPO was observed in a cohort under
antipsychotic medication [73], whereas decreased TSPO levels
were found in non-treated FEP patients [74] or recent-onset
schizophrenia [69].
In patients with recent-onset schizophrenia under antipsycho-

tic treatment, most studies indicate the absence of neuroin-
flammation, as assessed by TSPO evaluation [67, 69, 70, 77]. Even
though, we were able to find two studies reporting abnormal
TSPO levels [64, 71].

Patients with chronic schizophrenia. Studies including patients
with chronic schizophrenia, that are usually under antipsychotic
treatment, report increases [68, 72, 75] or normal levels of TSPO
[67, 69, 78]. In this case, one cannot justify the absence of TSPO
changes with the use of low affinity radiotracers, since the use of
the low affinity 11C-PK11195 radiotracer did not allow the
detection of changes in two studies [67, 69], but detected
increased TSPO expression in another study/cohort [72].
In summary, the available published studies applying TSPO

tracing, are not sufficient to correlate disease progression and/or
severity of symptoms with microglia-mediated inflammation. One
cannot exclude the existence of a correlation, simply because the
studies were not designed taking into account the influence of
strong bias, from the stage of the disease, the severity of
symptoms or the influence of medication (a problem even more
important if we consider that different classes of drugs with
potential different immune modulatory effects exist). Efforts have
been made to circumvent this heterogeneity, increasing the level
of patient stratification; however, stratification based on highly
selective criteria implies the inclusion of higher number of

individuals, which constitutes a serious limitation in clinical
practice.

Schizophrenia-associated microglia alterations revealed by
post-mortem studies
Post-mortem analysis is an important tool to identify and
characterize changes in microglia that are not possible to detect
in live patients, although one must be aware of important
confounding factors, namely the cause of death, co-morbidities,
medication, lack of knowledge of disease stage, and/or symptoms
predominance, to mention a few. Some studies do not mention
the stage or the predominant symptomatology and only refer the
involvement of patients with a diagnosis [65, 81–83] or chronic
schizophrenia [84–88]. The lack of information about disease
staging led us to organize post-mortem data by brain region (as a
summary, please see Table 2).
Glia plasticity, in general, and microglia plasticity, in particular,

have been a matter of debate in the fields of basic neurosciences
and psychiatry/neurology. The concept refers to the ability of
microglia to undergo adaptative changes at different levels,
namely in cell density, morphology and/or function, in response to
physiological or pathological stimuli. For instance, alterations in
the number of microglial cells may reflect a proliferative status,
that typically occurs in non-physiological conditions (with the
exception of normal brain development, characterized in certain
phases by intense microglia proliferation). The morphological
remodeling of microglia is also a biologic finding of several
diseases and, interestingly, pre-clinic studies point towards a
correlation between symptoms amelioration and the recovery of
the healthy, normal morphology of microglia by pharmacologic
interventions [40, 89]. One of the advantages of post-mortem
analyses is precisely the possibility of performing a characteriza-
tion of the so-called disease-associated microglia (DAM), as
described in the context of neurodegenerative diseases [90].
Typically, the presence of amoeboid microglia was taken for
decades as an index of activation, usually implicated in the
response to an injury or brain disease. So, several studies in the
literature report microglia changes in schizophrenia patients,
based on the dual analysis of two phenotypes, ramified (resting)
or amoeboid (activated) cells. This approach has been gradually
replaced by more sophisticated morphometric methodologies,

Table 2. Microglia sequelae in schizophrenia patients (post-mortem evidences).

Brain region Finding Changes Refs.

Prefrontal cortex – Transcripts (TSPO, CX3CR1, ITGAM,
CD163, HLA-DRA, IL-1β levels)b

No changes [65]

Microglia density No changes [81, 82]

Increase [84–86, 92, 94]

Morphologic profile Increase soma size and decrease
arborization

[86]

Phagocytic function No changes [87]

Cingulate cortex – Total number of microglia cells
(lateralization effect)

High density of microglia in right
hemisphere than the left

[83]

Temporal cortex – Transcripts (CX3CR1, TMEM 119, P2Y12,
CSFR1, among others)

Decrease [82]

Microglia density Increase [82, 84, 86]

Subcortical regions Substantia nigra Transcripts (AIF-1, CD68, and TSPO)|only
in high immune groupa

Increasea [88]

Corpus callosum Transcripts (TSPO)b No changes [65]

Hippocampus Microglia density Increase [96]
aThis increase was only detected in a high immune group
bAll studies were performed in tissue with the exception of TSPO evaluation in prefrontal cortex and corpus callosum
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that include the determination of morphologic parameters
considered relevant for microglia function, such as the degree of
ramification or the brain area occupied per cell (hypothetically
related with the efficacy of immune surveillance). We have also
contributed to the finding that microglia present distinct regional
morphologic phenotypes in the brain and that the morphologic
remodeling in pathologic conditions is also different according to
the brain region under analysis [40–42, 89, 91].
Besides the characterization of microglia morphology, post-

mortem studies allow the quantitative analysis of parameters that
may reflect the functional state of microglia, namely the local
levels of inflammatory mediators (although other cells in the brain
are able to produce and release these substances), enzymes
involved in the inflammatory response operated by microglia,
among others, that will be presented throughout this and the next
sections. The data obtained deserve careful interpretation, as the
readouts of cellular physiology are, as expected, seriously affected
by the process of cell death and the underlying lesion.
Considering the regional segregation of microglia, we will then

review the main findings per brain region, in particular because
schizophrenia-associated microglia phenotypes were recently
described in schizophrenia patients (increase of microglia soma
size and decrease of arborization) [86].

Prefrontal region. Starting with the analysis of data collected in
the frontal cortex, several studies report an increase in the density
of microglia [84–86, 92, 93]. We found one study where, in general,
no changes were detected, but reporting an increase in the
number of activated microglia in three patients (without convin-
cing justification/discussion) [81]. One of the referred studies also
demonstrates the increase of cytokine levels [93] and other the
integrity of the phagocytic ability of microglia [87]. In opposition, a
recent meta-analysis [82] stands for the absence of changes in
microglia density in the frontal cortex from schizophrenia post-
mortem tissue. Of note, this meta-analysis included all studies with
patients with a diagnosis, without considering the disease stage,
symptoms predominance and other bias, that must be taken in
consideration, as suggested by a study claiming for a correlation
between the increased number of amoeboid microglia and the
predominance of positive symptoms [92]. Other factor that may
feed the controversy is the effect of lateralization (differences
between hemispheres); it was recently observed, although
specifically in the cingulated cortex, a higher density of microglia
in the right hemisphere, as compared with the left one [83]. Finally,
some authors evaluate microglia transcripts in the frontal cortex
(particularly in the middle frontal gyrus), but no changes were
detected, namely in TSPO labeling or in genes associated with
microglia in physiologic (Allograft inflammatory factor 1 - AIF1,
Integrin alpha M - ITGAM) or activated state (Cluster of
Differentiation 163 - CD163, HLA-DRA, interleukin (IL)-1β) [65].
Nevertheless, a down-regulation of CX3CR1 ligand (CX3CL1) [94],
mainly released by neurons, and its receptor (CX3CR1), present in
microglia [95], was found in this brain region, suggesting a
compromise of neuron-microglia communication.

Temporal region. In the temporal region, the evidences gath-
ered so far are consistent, converging for an increase of microglia
density [82, 84, 86] accompanied by a decrease in several
transcripts (e.g. CX3CR1, Transmembrane Protein 119 - TMEM
119, Purinergic Receptor P2Y12 - P2RY12, HLA class II histocom-
patibility antigen, DR alpha chain - HLA-DRA, Colony stimulating
factor 1 receptor - CSFR1) [82].

Subcortical regions. In subcortical regions, we found two reports
about microglia transcripts in schizophrenia patients, one claiming
for no changes in the corpus callosum [65] and the other showing
an increase of several transcripts in the substantia nigra [88]. In the
hippocampus, we found a very interesting finding on the relation

between symptoms and microglia changes: the authors observe
higher microglia numbers in patients with predominant psychotic/
positive symptoms, as compared with patients with predominant
negative symptoms [96]. This very relevant observation is clearly
related with other finding by Purves-Tyson in 2019, that failed to
find transcriptomic changes in schizophrenia patients until their
stratification, in the case, by splitting the group in high and low
immune biotypes [88]. The increased levels of AIF-1, CD68, and
TSPO transcripts was only detectable in the subgroup of high
immune biotype [88], whereas increased numbers of T and B
lymphocytes were detected in schizophrenia with a different
clinical presentation, categorized as paranoid [96], reinforcing the
contribution of the peripheral immune system in particular
contexts of the disease [17, 18]. In line with this concept, it was
reported the activation of microglial cells in culture by exposure to
serum samples from recent-onset schizophrenia patients [97],
proving the responsiveness of microglia to peripheral signals and
strengthening the interest of these cells as targets in the context
of schizophrenia pharmacologic treatment.

MICROGLIA SEQUELAE: FINDINGS FROM SCZ ANIMAL MODELS
Animal models, although unable to replicate human diseases, are
valuable tools in the study of neurobiological basis, mainly in the
case of brain, that is of particularly difficult access. Despite the
obvious limitations of animal models, such as the absence of
symptoms of human schizophrenia (e.g., hallucinations, delusions),
the fact is that several neurochemical changes, behavioral alterations,
and biomarkers accomplish validity criteria to address pathophysio-
logical mechanisms and to test novel therapeutic tools [98].
Although the etiology of schizophrenia is not fully understood, it

is known that gestation is a period particularly sensitive, namely to
genetic and environmental risk factors. In the literature, studies on
microglia alterations in schizophrenia are mainly described in a
model of maternal immune activation, the reason why this model
is the most mentioned along this section. This animal model
consists in the administration of an agonist of the Toll-like receptor
3, poly I:C (polyinosinic:polycytidylic acid) to pregnant rodents.
Several protocols are found in the literature, namely concerning
the gestational time window of administration (early gestation:
8–9.5 days; mild gestation: 12.5–13.5; mild-late gestation:
14.5–15 days; late gestation: 16.5–18.5 days). These differences in
the protocol have a tremendous impact on brain development and
require cautious interpretation of results. Adult descendants
develop neuroanatomical, neurochemical and behavioral changes,
some replicating disease traits found in schizophrenia patients,
such as dopamine hyperactivity, ventricles enlargement, social and
cognitive deficits and repetitive behaviors, that are clearly
dependent of the gestational period of administration (for more
details see [99]). In this article, we organize data related with
microglia changes, mainly in poly I:C model (poly I:C - Table 3;
others - Table 4), covering different periods of life (prenatal period,
postnatal period, adolescence and adulthood; the main findings
are summarized in Fig. 3). This chronological organization of
microglia alterations (even aware of the importance of the time of
exposure to poly I:C) may help identifying precise period(s) of
microglia changes and, thus, of therapeutic modulation, hopefully
as precociously as possible in the trajectory of the disease.

Prenatal period
In the prenatal period, microglia are actively proliferating and
migrating to the appropriate regions of the brain [100]. After this
period of brain colonization, microglia are engaged in the active
regulation of the number of newborn neurons and/or synapses,
according to their functional state [100]. This function of microglia
is mainly supported by their phagocytic ability and by the
production and secretion of molecular mediators, able to
influence neuronal/synapse fate [43, 101, 102].
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As previously mentioned, in the studies found in the literature,
maternal immune activation model is the main experimental option
to model schizophrenia when the main aim is to evaluate microglia.
Although we found different protocols of poly I:C administration
(different gestational days, GD, single shot or double injection), a
factor that certainly interferes with brain development, the fact is
that the reported microglia changes are consistent between studies.
When the administration of poly I:C is performed early in

gestation (GD 9.5), the offspring (embryonic day, ED, 17) presents
transcriptomic alterations in microglia, particularly in genes
associated with cell motility structures (protrusions) and neur-
itogenesis [103]. The administration some days later (GD 12.5 or
14.5) accelerates the establishment of a transcriptional profile
(assessed in ED 14) characteristic of later developmental phases
[34]. Poly I:C administration at mild/mild-late gestation period (at
GD 12 or 15), triggers an increase in microglia dynamics (total
distance moved over time), without interfering with morphology
(evaluated at ED 18) [104]. A single or double injection of poly I:C
(at GD 11.5 and/or GD 15.5) did not alter microglia density or the
levels of pro-inflammatory cytokines at ED 17.5 [105].
In summary, apart differences in the maternal immune stimulation

plan, this prenatal stimulus produces congruent changes of microglia
transcriptome, mainly associated with the early acquisition of a
profile typical from a later stage (one study report alterations in
motility that, however, do not impact on colonization or cell density).

Postnatal period
Maternal immune activation during gestation, besides the altera-
tions already observed in utero, is also associated with changes in
microglia density after birth. However, the published works analyze
different brain regions upon exposure to poly I:C at different

gestational periods, protocol details that hinder concluding about
increases or decreases in density. Microglia density per brain region
may be expressed as the total number of cells or as the number of
specific cellular phenotypes, namely amoeboid (in perinatal phases
indicates greater immaturity) or already equipped with protrusions
or cellular processes and ramifications.
The administration of poly I:C close to the delivery day (GD 20) is

associated to an increase in the total density and in the density of
amoeboid microglia in the hippocampus, immediately after birth,
that is, at postnatal day (PND) 1 [106]. Earlier administration of poly
I:C (mild-late administration, GD15) increased the number of
amoeboid microglia in supraventricular corpus callosum (region
where primitive microglia accumulate and then migrate tangen-
tially across corpus callosum, acquiring a ramified phenotype), while
associated with a decrease in corpus callosum, striatum, somato-
sensory cortex and hippocampus [107], suggesting an effect upon
density dependent on the brain region under analysis. It is
important to note that changes in microglia density, in this period
of development, can result from changes in proliferation, death or
migration; to disentangle which specific mechanism drives micro-
glia changes may guide assertive therapeutic options.
In addition to changes in microglia density, alterations in the

systems CX3CR1-CX3CL1 and CD200R-CD200 (evaluation of mRNA
and protein levels of the ligands and respective receptors) were
observed in the cortex and in the hippocampus of the offspring of
mothers exposed to poly I:C (GD 15) or to a different immune
stimulus such as lipopolysaccharide (LPS), at GD7 [108]. These two
systems are important hubs of communication between microglia
and neurons, and the described alterations may suggest an
impairment in the crosstalk between different types of cells, that is
fundamental to adequate circuit wiring and development.

Table 4. Microglia sequelae: evidences from neurodevelopment until adulthood in others schizophrenia animal models.

Other schizophrenia animal models Adolescence Adulthood

PND 28 PND 35 PND 56 PND 60–100

DamsDams

Wistar rats
LPS injection
GD 17 until delivery

No changes in
density (hip)
♂ and ♀
[112]

– – –

Wistar rats
single poly I:C injection PND5-7

– ↑Microglia activation
↑ Inflammation
(PFC, striatum
and hip)
[116]

– ↑ Microglia
activation
↑ Inflammation
(PFC, striatum
and hip)
[116, 124]

Gunn and Wistar rats

– – Only ♂
↑ Microglia activation
Similar microglia density
Microglia with enlarged areas
of cytoplasm rich in organelles
and some phagocytic pouches
(hip)
[121, 122]

–

PND post natal day, PFC prefrontal cortex, hip hippocampus.
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Adolescence
Adolescence, a period of intense plasticity and neuronal
circuit rearrangements, is also a critical time window of
susceptibility to brain disorders, including schizophrenia [109].
Moreover, schizophrenia diagnosis is often associated with
adolescence, the driver for pre-clinical studies in this phase of
life using animal models of the disease.
In the period of rodent weaning (PND 21) no changes were

observed in the total number or in the number of phagocytic
microglia [110]. However, a different study reports an increase in the
number of amoeboid cells in the hippocampus of male descendants
of rodent mothers subjected to poly I:C administration at GD 15
[111]. Again, the moment of poly I:C administration is different (GD 9
when no changes were observed) between studies.
A few days later (PND 28), LPS offspring (injections from GD 17

until delivery) still not present changes in microglia density in the
hippocampus [112]. Nevertheless, 2 days later, poly I:C offspring
(PND 30) present a higher number of microglial cells in the
hippocampus and striatum, but not in the frontal cortex. This
increase was accompanied by morphologic alterations (e.g.
reduced number of processes and branches) only in the
hippocampus [113].
More recently, it was observed that morphologic changes

parallel changes of functional markers in the poly I:C model, and
described enlarged microglial cell bodies and a retraction of
processes (alterations often taken as indicators of a reactive state,
typically associated to disease conditions) in the hippocampus,
corpus callosum, striatum, and PFC, accompanied by an increase
in the expression of inducible nitric oxide synthase (iNOS), a key
enzyme involved in inflammatory processes [114].

In line with the present knowledge about microglia hetero-
geneity throughout the healthy brain, but also in psychiatric
conditions [40–42, 89], differences found in microglia at adoles-
cence are likely dependent on the brain region under study.
Interestingly, at this age, sex-dependent changes in microglia
immune profile were also observed in poly I:C offspring (only
females present alterations in genes related to a pro-inflammatory
state, namely an up-regulation of interleukin 4 receptor (CD124)
and macrophage mannose receptor (CD206) and a down-
regulation of Cluster of Differentiation 54 (CD54), C-C chemokine
receptor type 2 (CCR2, CX3CR1) [115]. This observation is
particularly meaningful and aligned with the work developed in
our lab, which is focused in sex-specific morphologic remodeling
processes in psychiatric diseases [40–42, 89, 91].
The results gathered so far, highly suggestive of a pro-

inflammatory profile of microglia in the period of adolescence,
are corroborated by studies with different designs. For instance, if
the administration of poly I:C is performed after birth (e.g. at PND
5-7), a pattern of microglia reactivity by a pro-inflammatory
response is still observed in the hippocampus, striatum and PFC,
at PND 35 [116]. Concordantly, others showed that the increase of
pro-inflammatory cytokines in the hippocampus and PFC of poly
I:C offspring (early administration, GD 9) at PND 40 is paralleled by
the increase of microglia numbers in these brain regions, thus
suggesting that microglia are probably a major player in this
immune response [117].
Despite the consistency of the presented studies, one study

reported the absence of microglia changes (in terms of number,
morphology and phagocytosis) in the hippocampus of poly I:C
offspring at PND 40 [110]. Controversial evidences were found in

Fig. 3 Microglia sequelae in schizophrenia animal models. The alterations are organized in four periods of development: prenatal, neonatal,
adolescence and adulthood. Titles in capital letters evidence the main alteration(s) observed at a particular period of life. ED embryonic day,
PND postnatal day, MG microglia, C cortex, HIP hippocampus, SCC supraventricular cortex, CC corpus callosum, PFC prefrontal cortex.?
imprecise time window of appearance of microglia alterations. 1evidences from other SCZ animal models.
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the number of microglial cells in the hippocampus of poly I:C
offspring at PND 40 (even though the coincident administration of
poly I:C at GD 9), but the studies were conducted in different
animal species, presenting temporal differences in the appearance
of some phenotypic characteristics (in fact, rat development lags
∼1.5 days behind mice [99]). In addition, the markers used to stain
microglia in these studies were also different (IBA-1 versus CD68)
and stain different microglia populations (IBA-1 – total microglia;
CD68 – phagocytic microglia).
Finally, to further support the contribution of microglia for the

pathophysiology of schizophrenia in rodent models and, in
particular, during adolescence (PND 21-42), the depletion of these
cells and the subsequent repopulation ameliorates several
phenotypic traits of the disease. Particularly, poly I:C offspring
presented changes in microglia transcriptome early in develop-
ment (E17 and PND 7) that were no longer observed after
microglia depletion and repopulation during adolescence, there-
fore contributing for the recovery of microglia-neuron commu-
nication and behavioral changes in this animal model at
adulthood [103]. Additionally, the administration of minocycline
(antibiotic with anti-inflammatory effects, usually used as a
microglia modulator) during adolescence (PND 21-35) was also
able to normalize the hyper-ramification of microglia in DG, as well
as behavior alterations observed in adult mice prenatally exposed
to poly I:C [118].
In summary, the data gathered so far at adolescence point to a

general increase in microglia density, accompanied by a shift to a
pro-inflammatory phenotype, typically associated to pathological
conditions. The contribution of these alterations to the presenta-
tion of schizophrenia in the animal model is strongly supported by
the elimination/repopulation experiment and is clearly suggestive
of the relevance of microglia at adolescence to the pathophysiol-
ogy of schizophrenia.

Adulthood
Similarly to what happens in other time windows of rodent life, at
adulthood, the majority of the studies available report alterations
in the density, as well as morphologic remodeling of microglia and
a deviation to a pro-inflammatory state, commonly referred as
activation state and often related with pathologic conditions or
threats to homeostasis.
At adulthood (PND 56), higher levels of a TSPO radiotracer were

detected in the PFC and hippocampus of rats prenatally exposed
to poly I:C (early gestational period, GD 9) [119]. Conversely, others
describe a decrease in TSPO staining in the PFC (but not in the
hippocampus) in the poly I:C model [64]. As previously explained,
caution must be taken when considering TSPO levels as an index
of neuroinflammation mediated by microglia or even microglia
activation, since other cells, including astrocytes and vascular
endothelial cells, also express TSPO [64] and it was recently
demonstrated that its expression does not correlate with the
expression of microglia activation markers [65].
Other studies support a pro-inflammatory profile in the adult

brain of schizophrenia models, gathering evidences for the
increase in microglia density in different brain regions without
[120] or with the presence of phagocytic structures compatible
with the so-called activated state [121, 122]. Two studies
performed later (PND 60–69) with rats prenatally [123] or
postnatally [124] exposed to poly I:C further support the general
idea of higher density and the presence of activated microglia.
Curiously, one of these studies refers a reduction in the phagocytic
ability of microglia [123] and other a pro-inflammatory environ-
ment in the PFC of rats subjected to prenatal poly I:C [117, 125],
thus suggesting that microglia are predominantly in a pro-
inflammatory state.
Interestingly, at PND 80–90, sex-specific changes in the density

(more microglia clusters in the hippocampus of males), ramifica-
tion level (lower ramification in the hippocampus of males),

phagocytic activity (lower phagocytic activity in males) and
interaction with synapses (more contact points with neurons in
the case of females) have been described in the poly I:C model
[126]. Recently, the same authors demonstrated that these
phenotypic alterations are associated to sex-specific changes in
excitatory and inhibitory synapse density. Poly I:C males present
more synapses and inhibitory inputs, probably due to a deficient
synaptic elimination, whereas females present a reduction in the
number and activity of excitatory synapses [127]. These studies are
highly relevant in the sense they describe a functional disturbance
of the neuronal network, possibly correlated with poly I:C-induced
microglia phenotypic alterations. These observations are in line
with already described failures in the communication between
microglia and neurons, which depends on the ability of microglia
to sense their local environment. In fact, Mattei and co-workers
described changes in a cluster of genes involved in microglia
sensing abilities (sensome) [123]. Further suggesting a deficiency
in microglia-neuron communication in schizophrenia models, a
study demonstrated a disruption in the CX3CL1 (fractalkine
released by neurons)-CX3CR1 (fractalkine receptor expressed by
microglia) axis in poly I:C animals [128]. Finally, Manitz and co-
workers proposed an impairment of the proper surveillance of
brain parenchyma by microglia, based on the detection of
alterations in microglia markers, namely a decrease of CD11b
(integrin of the complement receptor 3) levels in poly I:C offspring
at PND 100 (at both sexes) and a decrease of CD45 (negative
regulator of microglia activation), exclusive to males. As described
in other models of psychiatric disorders, these observations
suggest that microglia sequelae are dependent, not only on the
brain region under analysis, but also on sex [129], a question that
deserves further investigation, considering differences in the
incidence and clinical presentation found in clinics.
In summary, at adulthood, the majority of studies point to

increased microglia density and activation state associated with a
pro-inflammatory environment, a pattern of alterations apparently
starting during adolescence. Some evidences also demonstrate a
functional compromise of microglia, associated with their
phagocytic ability, an alteration potentially implicated in the
incorrect selection of synapses for pruning and behavior
abnormalities. Future studies should clarify this issue.

Main conclusions and implications for schizophrenia
diagnosis and therapeutics
Innate immunity and, in particular, its cellular elements (typified
by microglia in the central nervous system), have been implicated
in several psychiatric diseases with genesis during brain develop-
ment. In early development, the fine regulation of synapse
formation and selection for elimination is assisted by microglia-
mediated immune functions, subsequent to the proper detection
of neuronal/synaptic molecular signs. Thus, any brain or peripheral
alteration detected by microglia may elicit a response with
potential to interfere with the normal course of development, with
impact in the number, degree of maturation and function of
synapses/neurons and, ultimately, in behavior and health.
We find scattered studies exploring schizophrenia-associated

changes in microglia cells, both in animal models of the disease
(mainly obtained by gestational immune activation) and in
patients. However, we were not able to find a review
organizing and integrating pre-clinical and clinical information,
to clearly characterize microglia changes associated to schizo-
phrenia. The main aim of this work is to fill this gap, that we
consider mandatory to rethink therapeutic targets and strate-
gies for schizophrenia.
As main conclusion, schizophrenia-associated microglia seque-

lae are consistently observed in patients and animal models of
disease, even considering the lack of consistency in the design of
clinical and pre-clinical studies, that generates apparently
conflicting data.
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Clinical findings, mainly obtained by neuroimaging (PET analysis),
are biased by a serious of confounding factors that must be
considered in future studies. These factors include, mainly but not
exclusively, individual and inter-individual variability associated to:
sex and age of onset, predominance of positive or negative
symptoms, type and duration of pharmacological treatment of
schizophrenia and/or comorbidities. It is important to have in mind
that any immune-inflammatory concomitant condition may affect
microglia and this is a critical aspect, often undervalued in the
literature. In addition, there are important technical limitations in
assessing microglia or microglia correlates in live patients. For
instance, a variety of different tracers (with variable affinities for
endogenous ligands and erroneously taken as microglia markers)
are used in PET, and a clear definition of the outcomes to be
analyzed must be rethought and implemented. The clear meaning
of normal, increased or decreased PET tracing must be reinter-
preted in a consensus evaluation of its pathophysiological
implications and correlation with the clinical presentation of
schizophrenia (including the correlation suggested by some studies
with the predominance of positive or negative symptoms).
The post-mortem study of microglia from schizophrenia

patients globally demonstrates: (1) transcriptomic changes; (2)
density variations – increase density in frontal and temporal
cortices and a lateralization effect, that deserves further investiga-
tion; (3) the presence of amoeboid microglia in frontal and
temporal cortices and in the hippocampus (Table 2), apparently
more evident in the case of positive symptoms predominance
(this finding reinforces the importance of establishing rigorous
criteria in patient’s stratification). As claimed for in vivo studies,
microglia markers used in post-mortem studies present some
limitations, namely in selectivity (an overestimation of microglia
alterations may result from the contribution of other cells also
stained by the same markers, including perivascular macrophages
and/or infiltrating peripheral macrophages). Finally, one cannot
ignore the contribution of the cause of death to microglia

changes, as well as the influence of time of post-mortem, aspects
to be considered in the design of future studies.
Animal models of schizophrenia, namely based on the immune

stimulation during gestation, are very important sources of
information, otherwise impossible to get from clinical studies.
It is important to note that the main data from animal studies
presented and discussed in this article were obtained modeling
schizophrenia by maternal immune stimulation. As previously
mentioned, this animal model presents neurochemical changes
(e.g. dopamine dysfunction from early development – for review
see ref. [130]) and behavioral traits characteristic of schizophrenia
(as well as of other developmental brain diseases, including
autism, with similar symptoms and risk factors; for detail see refs.
[131, 132]). So, it is of importance to further study microglia in
alternative models to establish a universal mechanism of disease
and disease manifestations. From different pre-clinical studies, it is
unquestionable that microglia undergo alterations associated with
schizophrenia modeling. Overall, microglia alterations will vary
according to the period of life under analysis and can include
changes in: transcriptomic profile, motility, migration/colonization,
activation state (including morphologic alterations and cytokine
release) and function (phagocytosis, crosstalk with neurons; Table
3 and Fig. 3). Prenatally, most changes involve the transcriptome,
with microglia acquiring an adult-like phenotype earlier than in
basal conditions. The main alterations described in microglia at
postnatal period rely on density (increase) and migration (delay).
At adolescence, the increased density is still present and is
accompanied by a pro-inflammatory environment (characteristics
typically associated with the so-called activated microglia).
Notably, adolescence seems to be a critical period for intervention,
since microglia elimination/depletion or modulation (by the
control of the pro-inflammatory environment through minocy-
cline treatment) rescue microglia transcriptomic and morphologic
alterations, as well as microglia-neuron communication, in parallel
with the recovery of behavior traits typically present in

Fig. 4 Putative mechanisms by which microglia may contribute for the establishment of dual dopaminergic pathways. Schematic
representation of novel putative mechanisms by which microglia may oppositely influence dual dopaminergic pathways: imbalance between
the ability to eliminate and strengthen synapses.
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schizophrenia models. At adulthood, microglia still present an
activation state and some functional issues emerge, namely the
impairment of phagocytic ability and of microglia-neuron
communication.
According to the information organized in the present work,

it is clear that microglia is involved in the pathophysiology
of schizophrenia. If, as suggested by pre-clinical research, the
normalization of disease-associated changes of microglia, is
also able to ameliorate human symptoms of the disease, it is
important to design future studies including immune modulation
strategies able to limit microglia numbers, inflammatory pheno-
type and/or phagocytosis. In this regard, considering the lack of
efficacy of anti-inflammatory compounds in symptoms remission
(corticosteroids or non-steroid anti-inflammatory drugs, already
tested in clinical trials (https://clinicaltrials.gov/), it would be
desirable to improve the selectivity towards microglia. In parallel,
it is also mandatory to clarify if and how the immune modulatory
effects of antipsychotics impact on microglia and if these eventual
effects contribute to drug efficacy. The limitations associated
to neuroimaging data highlights the need of more adequate
tools to evaluate schizophrenia-associated microglia sequelae,
that may include data from human iPSC-derived glia (as reviewed
in refs. [133, 134]).
Far behind symptoms manifestation and diagnosis, we consider

it is also important to better understand schizophrenia genesis
during development. If, as suggested in the literature, an excessive
synaptic pruning may be the kickoff for neurobiological deviations
from normality, we think alternative mechanisms of disease need
to be explored in order to explain the described hypodopami-
nergic function, for instance, deficits in synaptic pruning in these
particular pathways. Synaptic pruning is a cellular response to
local cues in the brain, thus, synaptic pruning may be differently
affected in different brain areas. We hypothesize that the main
pathways implicated in the disease, which are dually hypo- or
hyperfunctional, may result from the excessive (as already
described) or from the compromised (a hypothesis not tested so
far) synaptic pruning (Fig. 4).
In conclusion, very early in development, a brain-region

determined microglia defect could trigger different mechanisms
of disease (kickoff). On the other hand, subsequent microglia
changes (sequelae) likely persist during disease progression and it
is apparently sufficient to target these sequelae to ameliorate
psychotic symptoms. The second approach is relatively easy to
test and implement in patients, but preventing kickoff mechan-
isms would require advanced knowledge about microglia
mechanisms of pruning at the molecular level and in utero
immune or genetic modulation of those mechanisms. Recent
discoveries on the involvement of specific components of the
complement system in microglia-mediated synaptic pruning
clearly helps defining new therapeutic targets.
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