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Bipolar disorder (BD) is a mood disorder involving recurring (hypo)manic and depressive episodes. The inherently temporal nature
of BD has inspired its conceptualization using dynamical systems theory, which is a mathematical framework for understanding
systems that evolve over time. In this paper, we provide a critical review of the dynamical systems models of BD. Owing to the
heterogeneity of methodological and experimental designs in computational modeling, we designed a structured approach that
parallels the appraisal of animal models by their face, predictive, and construct validity. This tool, the validity appraisal guide for
computational models (VAG-CM), is not an absolute measure of validity, but rather a guide for a more objective appraisal of models
in this review. We identified 26 studies published before November 18, 2021 that proposed generative dynamical systems models
of time-varying signals in BD. Two raters independently applied the VAG-CM to the included studies, obtaining a mean Cohen’s κ of
0.55 (95% CI [0.45, 0.64]) prior to establishing consensus ratings. Consensus VAG-CM ratings revealed three model/study clusters:
data-driven models with face validity, theory-driven models with predictive validity, and theory-driven models lacking all forms of
validity. We conclude that future modeling studies should employ a hybrid approach that first operationalizes BD features of
interest using empirical data to achieve face validity, followed by explanations of those features using generative models with
components that are homologous to physiological or psychological systems involved in BD, to achieve construct validity. Such
models would be best developed alongside long-term prospective cohort studies involving a collection of multimodal time-series
data. We also encourage future studies to extend, modify, and evaluate the VAG-CM approach for a wider breadth of computational
modeling studies and psychiatric disorders.
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INTRODUCTION
Bipolar disorder (BD) is a mood disorder of unknown etiology
characterized by episodes of mania, depression, and periods of
euthymia [1–5]. Many studies have investigated BD during
episodes of mania, depression, or euthymia, but fewer have
studied the time-course of transitions and episodicity of activity,
cognition, and emotion. This longitudinal course is a critical
element for understanding BD [6], and is predictive of treatment
response [7].
Dynamical systems theory is a mathematical framework for

studying systems that evolve over time (reviewed in Supplemental
Materials and [8, 9]), which makes it an appealing framework for
studying and modeling time-varying aspects of BD. A dynamical
systems model captures the relationship between a system’s
features of interest and an “evolution rule” that describes how
those features change over time. Sets of differential equations (in
the continuous time setting) or difference equations (in the
discrete-time setting) are used to describe these relationships.
Researchers can decide to use ordinary (deterministic) or
stochastic equations depending on whether the system being
modeled exhibits randomness or noise in its evolution. For
instance, the random noise component in a stochastic model of

mood dynamics in BD may represent fluctuations in an
individual’s environment [10, 11]. Dynamical systems modeling
approaches can therefore be used to mathematically conceptua-
lize theoretical mechanisms of BD, such as those linking affective
dysfunction to abnormalities of the behavioral activation system
[12], reinforcement learning [13–16] and the neuroanatomical
circuits governing emotional processing [17] or circadian function
[18, 19]. Such mathematical representations should force models’
assumptions and predictions to be identified clearly. Furthermore,
competing mechanistic hypotheses can be represented using
different model architectures, and their relative explanatory power
can be evaluated with statistically rigorous model selection
procedures [20]. The use of these dynamical systems methods in
BD research dates back more than 20 years [21], but their
contributions to the understanding of BD are unclear.
While studies using dynamic systems models of BD may explain

known phenomena and generate testable predictions for further
research, we currently lack standardized approaches to critically
appraise their validity. A preliminary review of this literature
reveals marked heterogeneity in the target audiences, technical
complexity, and clinical relevance. We, therefore, sought to
appraise these studies in a structured and transparent way by
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introducing a set of appraisal criteria that mirror criteria for
validating animal models in psychiatry. While this approach was
designed specifically for the present study, we kept it sufficiently
general to facilitate re-use, extension, and evaluation by
researchers interested in other conditions or models. Using this
structured approach, the present review will address the face,
predictive, and construct validity of dynamical systems models of
BD, and summarize the insights they have provided about its
temporal course and mechanisms. We then highlight conceptual
and methodological gaps in this literature, and propose a
roadmap for further computational modeling studies of BD.

METHODS
Search strategy and evaluation
The Scopus database was searched from inception until Novem-
ber 18, 2021 using the following search query:
TITLE-ABS-KEY((((affective OR bipolar) AND disorder) OR “manic

depression” OR “manic depressive” OR antidepressant) AND
(“mood dynamics” OR “mood variability” OR “mood variations”
OR circadian OR “biological rhythms”) AND (((bistability OR
multistability) OR (chaos OR “chaos theory” OR “strange attractor”)
OR (“lienard oscillators” OR “limit cycle” OR “limit cycle oscillators”)
OR (“nonlinear dynamics” OR “oscillations” OR “perturbation
method” OR “recurrent map” OR “stochastic resonance” OR
“winnerless competition”) OR (“crisis” OR “critical slowing down”
OR intermittency OR “chaotic intermittency”)) OR (“computational
modeling” OR “mathematical modeling” OR “time-series analysis”
OR “mechacognition” OR “cognitive network”))).
This query is split into three parts, requiring that papers touch

on all of (A) bipolar disorder, (B) mood or circadian dynamics, and
(C) dynamical systems. Within each of these parts, additional
terms are included using OR operators. Since papers on this topic
are published across different scientific fields, we iteratively built
this query using keywords from relevant search results (using OR
operators) until the number of results converged on a stable value.
This was done to minimize the risk of missing work in other
disciplines by virtue of nomenclature differences.
We included studies that have (A) been published in English

language peer-reviewed journals and (B) proposed generative
dynamical systems models of mood, activation, circadian rhythm
fluctuation, or other time-series signals in BD. We focused on
generative models because they do not simply describe some
phenomenon, but can also produce it through simulation.
Reference lists of included manuscripts were subsequently
searched for papers that may have been missed by our initial
search. We also searched lists of papers that cited the included
studies for further papers that may have been missed.

Evaluation of model quality
To evaluate computational models, we devised a set of criteria
analogous to those used for validating animal models of
neuropsychiatric disorders [22]. These criteria were divided into
checklists concerning face validity, predictive validity, and
construct validity, respectively (Fig. 1). A full copy of this validity
appraisal guide for computational models (VAG-CM) is included in
the Supplemental Materials.

Validity appraisal guide for computational models (VAG-CM). After
previously reviewing several manuscripts on dynamical systems
models of BD, one author (AN) found that harmonizing their
quality and findings was difficult without a clear structured
approach. As such, the VAG-CM was developed in order to better
organize this review. The VAG-CM is not intended as an absolute
evaluation of model validity, but rather as a structured approach
to appraise BD studies employing computational models.
Although the VAG-CM was specifically created for this review,
we attempted to design it with sufficient generality so other

researchers could potentially apply or extend it to other domains
and computational model types, such as those of neurons, circuits,
or cognitive mechanisms [23–25]. By adapting an approach and
nomenclature familiar to the psychiatric basic science community,
we aimed for the VAG-CM to facilitate successful translation and
interplay between computational modelers and experimental
psychiatric researchers. While there are other disciplines, such as
philosophy of science, which are concerned with the appraisal of
model quality in neuroscience, we are not aware of investigations
producing a structured appraisal approach for reviews such as
this. The approach used in animal modeling literature was also
selected because it (A) has been developed for the purposes of
establishing biological models of practical consequence for
managing psychiatric disorders in humans [22], (B) prioritizes
pragmatic utility over philosophical abstractions, and (C) high-
lights the necessary ties that must be built between experimental
and computational modeling researchers.
The VAG-CM attempted to minimize the influence of reviewers’

subjective impressions of the merits of a model’s assumptions. For
example, consider a model that makes the following simple but
non-trivial assumption: that “mood” at time t is independent of
mood at time t-1 (i.e., a Markovian assumption). The VAG-CM
required reviewers to simply identify whether study authors
offered theoretical or empirical justification (with appropriate
citations) for that assumption. This was done to limit the degree to
which reviewers judged assumptions based on their a priori
knowledge.
The first subscale, concerning face validity, asks whether a real-

world phenomenon has been sufficiently (A) characterized and
then (B) explained by a model (Fig. 1). For a BD-related
phenomenon to be sufficiently characterized, modelers must
provide a robust theoretical or empirical justification of their
assumptions based on the analysis of raw data or through the
presentation of a clearly documented literature review. When
evaluating a modeling study using the VAG-CM, the reviewer
places the responsibility on the modeling study to justify that the
phenomenon modeled is relevant, operationalized, and empiri-
cally identifiable.
In this subscale, we have also tried to capture evidence of

convergent and divergent validity. Convergent validity is the
degree to which a model of some condition can describe multiple
features of that condition. Divergent validity requires that the
model can explain features of its target condition, while not being
able to capture features of some relevant comparator condition.

Face validity. The degree to which the model exhibits behaviors
similar to the condition of interest.

a. The model describes a real-world phenomenon (i.e., a target state/
condition vis a vis comparators).

b. The target state/condition being modeled is identifiable according
to observable features.

c. The comparator state/condition being modeled is identifiable
according to observable features.

d. The model actually explains/predicts the target condition vis a vis
the comparator.

The second subscale, concerning predictive validity, asks
whether outputs from simulated interventions on the model
change in a fashion that mirrors the effects of some real-world
intervention (Fig. 1). Furthermore, this subscale asks if the
intervention on the model is empirically or theoretically justified
as a representation of a real-world change to the system. For
example, if model M1 captures depression (D), and model M2

captures normal mood (euthymia, E), then one may identify a real-
world transition resulting in D→ E mediated by antidepressants or
mood-stabilizers (or even just the passage of time). One could
then model that transformation as some function that turns
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M1→M2 (thereby resulting in a shift from D→ E in the model
output). Such a model would be a candidate for predictive validity,
since the form and consequences of the transformed model could
be tested empirically. Note that predictive validity is not solely
applicable to treatment-related phenomena. For example, pre-
dictive validity could be achieved by models capturing the
transition between high-risk, prodromal, and full expression of BD
episodes.

Predictive validity. The degree to which manipulations of the
model predict the effects of real-world interventions on the target
condition of interest.

a. There are identifiable and meaningful transitions between condi-
tions/states of interest in the real-world phenomenon.

b. Interventions/transitions in the model explain or predict corre-
sponding transitions in the condition/state of interest.

The third and final subscale, concerning construct validity,
evaluates the degree to which proposed models are con-
strained by empirically-derived biological or psychological
architectures (Fig. 1). For instance, a simple autoregressive
model or a complex recurrent neural network can be used to
capture mood dynamics, as they are sufficiently general to
explain most types of time-series data. However, that generality
may not provide much causal insight into the biological or
psychological mechanisms underlying the mood fluctuations in
BD, unless specific components of these models are empirically
or theoretically tied to biological or psychological constructs. In
other words, a model with construct validity must have an
architecture corresponding to biological or psychological
properties found to be relevant in BD. For example, biophysical
network models may allow us to understand the effects of
neuronal excitability on circuit-level computations [24]. The

Fig. 1 Illustration of the validity appraisal guide for computational models of psychiatric disorders. Abbreviations and symbols are
shown in the legend panel. Predictive validity (Panels A1 and A2): The presence of predictive validity requires identifying distinct features
(here F1 and F2), each of which is specifically explained by distinct models M1 and M2. One must show that there exists a real-world transition
(such as medication use) that results in the transition from feature F1 to F2, and that this can be adequately modeled by a transformation of
model M1 into M2. Face validity (Panels B1, B2, C1, C2): To establish face validity, one must identify features that characterize a target condition
(such as bipolar disorder; here Condition A), denoted F1

A, F2
A,… , FN

A. Ideally, features that characterize a relevant comparator, Condition B,
should also be identified (F1

B, F2
B,… , FK

B). If model M has face validity, then it should be able to explain as many features of condition A as
possible, while not explaining features of condition B. Finally, if model M explains some feature F1, then it should not explain mutually
exclusive features F2. Construct validity (Panels D1, D2): To establish construct validity, one must identify the components of a natural system,
such as a biochemical pathway or neural circuit, and establish that the functioning of that system explains some feature(s) F. A model system
has construct validity if it is specified at a level of abstraction such that individual components and interactions are homologous to those
present in the natural system.
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results from these computational simulations can then be
validated by examining results from real-world experiments.

Construct validity. The degree of homology between the model
architecture and mechanisms that are empirically or theoretically
deemed to underlie features of the target condition of interest.

a. There is a real and identifiable or plausible mechanism underlying
the target condition/state.

b. The model architecture is homologous to the mechanism of interest,
at an appropriate level of abstraction.

A model need not satisfy all three criteria to be useful. Face and
predictive validity alone may confer clinical utility, with construct
validity being irrelevant for such a model’s intended use. In fact,
face validity alone may be of great benefit for characterizing
features of BD.

Application of the validity appraisal guide
Two authors (AN, SS) independently applied the VAG-CM to
papers selected for full-text review. After an independent
appraisal, the checklist responses for each paper were
combined and inter-rater reliability was computed using
Cohen’s κ. Our measurement and reporting of κ served to
index the difficulty of interpreting each study in the context of
their application to BD, and the likelihood with which we expect
that alternative conclusions could be drawn by readers of
respective papers. After inter-rater reliability analysis, we
resolved conflicts by group consensus. We then applied
hierarchical clustering in the R programming language (v.
4.1.2) to consensus checklist data to evaluate the consistency of
ratings across similar studies, and to provide an organization for
our narrative review.

RESULTS
A total of 128 titles were returned from the initial search and 20
additional papers were identified by searching reference lists.
After title/abstract screening, 36 full-text papers remained, of
which 26 met inclusion criteria. The ten excluded papers did not
propose generative computational models of BD.
An initial independent review of papers yielded a mean Cohen’s

κ of 0.55, with a 95% confidence interval (CI) of (0.45, 0.64).
Cohen’s κ values for individual papers are plotted in Fig. 2. A
summary of VAG-CM ratings is shown in Table 1, with full results
shown in Supplemental Table 1. However, we must emphasize
that the VAG-CM is intended to be a guide for the structured
appraisal of computational modeling studies and not a general-
izable measure of absolute model validity. The level of inter-rater
disagreement merely indicates the degree to which a given study
was interpreted differently by the two raters.
Hierarchical clustering of VAG-CM data yielded three major

groups of studies (Fig. 2) summarized by the following
attributes: theory-driven models with predictive validity,
theory-driven models lacking face, predictive, and construct
validity, and data-driven models with face validity. These
clusters demonstrate that studies employing similar
approaches tend to be closely co-located on the dendrogram,
indicating that a given study design or model resulted in
consistent evaluations on the VAG-CM. For instance, Ortiz et al.
[26, 27] both employed autoregressive (AR) models, as did
Bonsall et al. [28] and Moore et al. [29, 30]. Bayani et al. [31],
Nobukawa et al. [32], and Doho et al. [33] employed the same
model architecture, as did several other closely co-located
studies [34–37]. Three notable exceptions formed their own
cluster of studies, owing to their demonstration of some
degree of predictive validity [10, 21, 38]. Papers are summar-
ized in Table 2.

Primarily data-driven models with face validity
Many studies employed AR models which assume that the value
of mood (or energy, activation, etc.) at time t is a linear function of
its own values at the previous 1 ≤ k ≤ t recordings. Although not
constructed to be explicitly homologous with any physiological or
psychological systems, AR models offer statistically rigorous
explanations of time-series data in BD [26–30, 39]. Most of these
models showed that self-ratings from BD are often well predicted
by self-ratings at the previous time step (i.e., the AR[1] model)
[30, 39] (Cohen’s κ= 0.8 and 0.54, respectively), although this is
likely also the case for healthy controls [26] (κ= 0.94) and
unaffected first-degree relatives of BD patients [27] (κ= 0.88).
Other studies that demonstrated face validity used models

based on coupled stochastic differential equations, which do not
assume that mood is linearly dependent on its past values. Using
self-report data collected every 2 months from 178 BD patients,
Cochran et al. [40]. (κ= 0.42) evaluated several predictions made
by existing theoretical models of mood dynamics in BD. The first
assumption they tested was that mood fluctuations are inherently
rhythmic with a consistent period [34, 37–39, 41, 42], which their
data could not conclusively prove or disprove. Although they
found no consistently predominant mood oscillation frequency
across subjects, it is possible that the dominant frequency of
mood oscillations varies across subjects. Their study was
insufficiently powered to detect such differences after controlling
for multiple comparisons.
The second assumption tested by Cochran et al. [40]. was that

mood states in BD such as mania, depression, and euthymia are
themselves stable states (attractors) in which patients’ moods
become stuck, generating multiple modes in the distribution of
mood ratings [10, 38, 42]. Here, their data supported a unimodal
hypothesis, whereby mood episodes are likely best captured as
extremes of mood fluctuation.
The third assumption tested by Cochran et al. [40]. was that

mood is a one-dimensional construct with depression and mania
at opposite poles [10, 28, 34, 37, 39]. This hypothesis was
inconsistent with their data, given the occurrence of mixed

Fig. 2 Dendrogram-based depiction of paper clustering according
to results on the validity appraisal guide. Cluster 1 corresponds to
largely data-driven models that showed strong face validity. Cluster
2 corresponds to studies presenting theory-driven models with
predictive validity. Cluster 3 corresponds to studies presenting
theory-driven models that largely lacked face, predictive, and
construct validity.
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episodes. These findings led them to develop the affective
instability model, which assumes that mania and depression are
governed separately, but may be positively or negatively
correlated. Their model may thus account for mixed episodes
(positive correlation between mania and depression) or shifts
between exclusively manic or depressed states (negative correla-
tion between mania and depression). Their model assumes that
BD does not have intrinsic periodicity. Rather, they predict that
individuals can end up in pathological mood states for two
reasons: (A) a patient’s baseline mood is already close to
pathological levels, making a patient vulnerable to small mood
perturbations, or (B) mood is particularly sensitive and reaches
pathological levels easily.
Markov Chain models [43, 44] with finite states (either

observable or latent) identified discrete episodes (euthymia,
depression, and mixed states) in longitudinal continuous self-
report data [43], and that the pattern of mood state transition
probabilities across subjects may relate to suicide attempts,
disability, and disease chronicity [44].
One study used a van der Pol oscillator [45, 46] model to directly

explain the findings of Gottschalk, Bauer, and Whybrow [47] that
mood dynamics in BD are governed by a system that is more
deterministic (less random) than that observed in healthy controls
[11] (κ= 0.38). This model suggests that biological systems
governing mood in BD either lack internal randomness, or are
resistant to external sources of noise.
One study hypothesized that mood trajectories in BD are

generated by two separate oscillating systems that can be
coupled with varying degrees of strength [39] (κ= 0.54). This
model was fit to QIDS-SR data collected from 25 patients with BD,
ultimately predicting that if a system of neural oscillators
underlying mood dynamics can be identified, they will oscillate
independently of each other in the majority of BD patients. This
prediction may be supported by existing empirically-derived
models of hemispheric mood lateralization [48, 49].

Theory-driven models with predictive validity
The studies discussed in this section are primarily theory-driven
models with predictive validity, meaning the features chosen to
be modeled were operationalized and empirically identifiable. A
modified single neuron model was used to describe mood
episodes as binary events (see Supplemental Materials for details),
capturing phases of BD progression and the kindling phenom-
enon, whereby mood episodes become progressively autono-
mous and frequent (κ= 0.35) [21]. Illness progression was
modeled using a scalar parameter S monotonically representing
the illness stage. Early in the disease course (i.e., at low values of S),
the model’s inter-episode interval was highly sensitive to
exogenous noise, but gradually developed periodic and then
chaotic episodicity, independent of external perturbations. These
dynamics may predict that early in the BD disease course,
individuals with more stressful life events (e.g., external perturba-
tions) should show greater aperiodicity in episodes, compared to
individuals with few stressful life events. As time progresses, the
model predicts that most individuals will enter a stable periodic
regime with relative insensitivity to life events, followed by
multistable and chaotic regimes late in the illness.
Another study proposed a set of models assuming that mania

and depression were independent attractor states, between which
an individual’s mood could oscillate [38, 42] (κ= 0.65 and 0.43,
respectively). This model proposed by Goldbeter [38] predicted
that if a depressed patient were given a sufficiently high
antidepressant dose, the system governing mood oscillations
would enter the bistable region, in which a manic switch could
occur. The Goldbeter [38, 42] model makes a prediction that could
be experimentally scrutinized: that an individual’s risk of
antidepressant-induced manic switch in bipolar depression should
be dose-dependent.Ta
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Only one model in this review captured inter-episodic euthymia
along with mania and depression [10] (κ= 0.68). Steinacher and
Wright [10] modeled behavioral activation as a scalar value X
whose change over time is proportional to Xn, where n ≥ 0 is a
parameter governing “self-excitation” of the behavioral activation
system (BAS). When n= 1, the contribution of X to self-excitation
is linear. When n > 1, a phenomenon of synergistic activation will
be observed, where each additional unit increase of X will
disproportionately increase the amount of self-excitation (e.g.,
activation begets more activation). Finally, when n < 1, each unit of
increase in X produces marginally less self-excitation.
The Steinacher and Wright [10] model predicts that hypersen-

sitivity of the BAS, indexed by n, may relate to the propensity for
mood episodes [12]. The authors compared BAS recovery time in
their model to published data in which BAS recovery time is
prolonged in BD patients with more mood episodes [50]. Thus,
Steinacher and Wright [10] implicitly predict that their models, if
fit to longitudinal BAS recordings from BD patients, should recover
values of n in proportion to patients’ respective number of mood
episodes.
The studies described in this section shared the common

strength of building models to explain features of BD that were
cited from relevant literature. However, a common limitation is
that no model was designed with an architecture based on
biological or psychological substrates of BD, thus limiting
construct validity.

Theory-driven models lacking face, predictive, and construct
validity
Several models attempted to capture mood oscillations
[34–37, 41, 51] or circadian variations of activity in BD
[31–33, 52]. We will not review each study in detail, but rather
discuss common features that limit the achievement of face,
predictive, or construct validity. Most prominently, most studies
failed to clearly define features that would be representative of
the target condition (usually BD) or comparators being modeled.
Often, “mood oscillations” were presented as the sine qua non of
BD, without clear operationalization or differentiation from
patterns of mood fluctuation in other conditions or healthy
individuals. That is, many papers simply referred to “mood”
without operationalizing what “mood” is or why it fluctuates. Most
importantly, such studies did not provide empirical or theoretical
justification for why certain patterns of mood fluctuation are
characteristic of BD vs. other conditions.
The study by Chang and Chou [53] (κ= 0.38) may be an

exception to the other papers in this cluster. Their model was an
extension of existing reinforcement learning-based dynamical
systems models, which propose that mood variation relates to
discrepancies between the amount of value an individual receives
vs. how much is expected [13–16]. Using reinforcement learning
as the conceptual thrust behind their model architecture offers
some potential construct validity, since such models can be
compared to behavioral and physiological recordings simulta-
neously [14, 16]. Ultimately this study was rated low on the VAG-
CM construct validity subscale because aspects of their model
were justified based on mathematical convenience without
motivation by, or prediction of, theoretical or empirical observa-
tions related to BD. Furthermore, they provided little justification
for the assumption that “mood oscillation” is the defining feature
of BD, which by itself is not a well-defined concept.
That being said, let us, for the moment, accept the definition of

BD as the presence of self-sustained mood oscillations. Chang and
Chou [53] argued that such a situation would arise from
hypersensitivity to random external perturbations (noise) insofar
as this noise generates prediction errors (differences between
expectation and reality). They predict that self-sustained mood
oscillations are induced when mood sensitivity exceeds a critical
threshold, after which mood is excessively sensitive to random

noise in the environment. This model implicitly predicts that, in
patients with presumed unipolar depression, the rate of
antidepressant-induced manic switch should be proportional to
the increase in mood sensitivity experienced during the anti-
depressant treatment.

DISCUSSION
We have presented a critical review of dynamical systems models
of BD using a novel validity appraisal guide for computational
models inspired by the animal model literature [22]. While studies
did not yield a common unified perspective on the temporal
course of BD, a methodological theme emerged. Specifically, our
approach led us to identify a need to combine data-driven and
theory-driven approaches during the development of dynamical
systems models of BD. Future studies should (A) use data-driven
approaches to identify critical features of BD and relevant
comparators and (B) develop generative models to explain those
features. Preferably, the latter generative models should be
developed homologously to physiological or psychological
systems involved in BD. This need to align models with
experiment further highlights the need for longitudinal studies
of BD using multimodal data collection such as passive sensing,
mood ratings, physiological signals (e.g., heart rate and variability,
galvanic skin response), or ecological momentary assessment
methods [54]. In the remainder of this discussion, we present a
roadmap for this line of research.
Dynamical systems modeling studies in BD must clearly identify

the condition and comparators of interest and the features that
define them. That is, we must rigorously attempt to define some
notion of a “ground truth” concerning the nature of BD (at least
with respect to a subset of features; Fig. 1, Panels B1-2 and C1-2).
Accomplishing this will involve collecting relevant, high-quality
data from well-characterized and matched subject groups, such as
BD probands, unaffected relatives, and/or controls, as was done by
Ortiz et al. [27]. Unfortunately, many studies did not include
comparator states, which precludes any assessment of their
discriminant, and consequently face, validity. Future studies that
collect longitudinal time-series data from well-characterized BD
samples should also aim to capture relevant phases of the illness,
including the early high-risk period [55], illness onset [56, 57], and
long-term maintenance in naturalistic settings [58].
Features deemed central to the explanation of target and

comparator conditions must also be defined a priori. The
identification of multiple features would be ideal since this
contributes further to the convergent validity of an explana-
tory model. Studies employing AR models were generally
excellent in this respect, using multiple descriptive statistics to
identify features of BD time-series. For example, Ortiz et al.
[26]. showed that mood, anxiety, and energy self-ratings
during euthymia are Gaussian distributed, and that mood and
anxiety are negatively cross-correlated (increases in mood are
associated with reduction of anxiety). Using similar
approaches, Ortiz et al. [27]. found lower multiscale entropy
levels in mood and energy time-series from euthymic BD
patients and unaffected first-degree relatives, compared to
healthy controls. Interestingly, time-series entropy in mood
self-reports has been shown to increase in the 60 days prior to
a manic or depressive episode, compared to the 60 days prior
to a month of euthymia [59]. Future computational modeling
research should attempt to build mechanistic generative
models of mood dynamics that can explain these features.
Thus, longitudinal studies must collect sufficient data to
capture multiple aspects of BD, such as variations in activity,
cognition, emotion, and physiology [54]. Recordings must also
cover manic, depressive, and euthymic phases, as well as
longer-term illness progression. Designing and funding such
studies is a pressing challenge [60–63].
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After defining target and comparator conditions, along with
central features to be explained, future studies must ensure that
proposed models are appropriately fit to these data. The optimal
approach would be to fit the generative models to raw data, as
was done by several previous authors [26–30, 39, 40, 43, 44].
Alternatively, one may consider estimating the degree to which
generative models can produce behavior replicating the results of
data-driven studies in this review. We did not employ this
approach in the present study since our primary focus was
broader, and included an evaluation of biological or psychological
homology (construct validity), which is not always based on
statistical considerations. Furthermore, we do not believe that
statistically fitting a model to raw or summary data is always
necessary. Depending on the question, it may suffice to show that
a model generates behavior corresponding qualitatively to
empirical observations [64]. For instance, Steinacher and Wright
[10] showed that increasing the BAS self-activation parameter n
resulted in prolonged behavioral activation recovery times after
perturbation of their model, similar to that observed in BD
patients with many prior episodes. Although not fit statistically to
raw data, their model explained a clear effect from cited literature,
which is nonetheless useful.
The discussion up until now proposes an inductive approach to

model building, whereby data are collected first, and a model is
built to explain those data. We also believe that a deductive
approach is worthwhile, where a model is built first and its
predictions are subsequently tested through experimentation.
Indeed, in this paper, we recommend empirical testing of
predictions made by models from Chang & Chou [53] and Huber
et al. [21]. However, when modeling first, and testing predictions
second, we must remember that the assumptions underpinning
the model must be empirically supported. It may be tempting to
axiomatically presume that “mood oscillations define BD,” and
subsequently introduce any number of oscillating systems
[34–37, 41, 51] whose components could very well be labeled
with the names of brain areas [31–33, 52], despite no justifiable
architectural homology (i.e. no construct validity). Rather, we must
ensure that assumptions underlying theoretical models are
derived from known clinical characteristics (qualitative or quanti-
tative) about the natural system the model seeks to explain. We
believe this was best outlined by the late Robert Rosen in his
seminal text Anticipatory Systems [65].
“[A model] is a relation between a natural system and a formal

system. This relation [is] established through an appropriate
encoding of the qualities of the natural system into the propositions
of the formal system, in such a way that the inferential structure of
the latter correspond to the system laws of the former.”
In other words, if a model’s assumptions are not grounded in

reliable and relevant facts about BD, then the model’s ability to
capture the system laws underpinning BD is doubtful. Conse-
quently, we emphasize the importance of close collaboration
between computational researchers and clinical and basic
scientists, who ultimately pursue and provide necessary observa-
tions of the natural system of BD.
To this end, face validity need not be the first form of validity

established. A worthwhile and much-needed alternative approach
is to first build a model with construct validity: that is, to build a
model whose architecture captures the structure or function of
relevant biological or psychological systems in BD. For instance, it
would be interesting and useful to build a biologically detailed
model of the circadian system that includes exogenous inputs
simulating blue light [66] and objects representing key molecules
involved in both circadian rhythms and response to mood-
stabilizers [67, 68]. Such a biologically realistic model would have
construct validity based on its design being homologous to the
natural circadian system of interest. If a modeler were to clearly
articulate the importance of chronobiological mechanisms in BD
through citation or direct experimental observation [67], then the

predictions made by such a model would be worthwhile to verify
empirically.
That being said, establishing the homology and construct

validity of a computational model is insufficient to ascribe value to
its predictions. Those predictions are only valuable if they are
specific, operationalized, and ultimately testable. In other words,
modelers must specify how their simulation’s predicted behaviors
translate into defined observations of the natural system of
interest (here BD). For instance, even though second messenger
signaling systems are involved in BD [69–71], simply modeling the
behavior of these systems will tell us little about BD [41]. The
relevance of such a model’s behavior for BD requires a clear
understanding of how those behaviors translate into observable
phenomena in BD. Thus, if a model makes predictions about BD
that are meant to be tested empirically, then the modeler must
articulate those predictions in terms of what should be observed
in BD patients.
Finally, dynamical systems models of BD should strive to

achieve predictive validity. As an example, one may consider
modeling the results of Glenn et al.[59], who consider the change
in affective dynamics occurring in the lead-up to mood episodes.
One possible candidate for such a model is that of Chang and
Chou [53], which predicts that the increased entropy in the
60 days preceding a mood episode would be related to
heightened mood sensitivity. Since the architecture and dynamics
of the Chang and Chou [53] model are theoretically and
empirically motivated by reinforcement learning, one could
plausibly test this hypothesis in the laboratory by fitting the
model to behavioral and physiological signals simultaneously,
thereby enhancing both face and construct validity
[14, 16, 72–74].
A strength of the present review was the guided evaluation of

studies by multiple raters using an a priori-defined checklist based
on accepted criteria in the animal modeling literature [22]. We
must reiterate that this checklist is not intended, nor should it be
treated, as a validated measure of the absolute quality of a
computational model. Rather, it is intended to provide a
structured approach to the appraisal of computational psychiatric
models. The papers included in our review showed remarkable
heterogeneity in their methodology and reporting. Some papers
were clearly written primarily for applied mathematical audiences,
while others were geared toward clinical readerships. Without a
structured approach to appraising these studies, one could
speculatively attribute clinical relevance to mathematical papers
that claimed to model BD, but instead presented technical results
about general oscillatory dynamics [34–37, 41, 51]. Conversely, for
studies that focus on showing strong statistical descriptions of
time-series data from real patients, one may easily overlook the
lack of biological or psychological homology in the corresponding
dynamical systems model [26–30, 39]. Our VAG-CM was therefore
intended to ensure that (A) reviewers agreed a priori on what was
important to evaluate in a modeling study, and (B) disagreements
could be easily identified and efficiently discussed. Although we
applied the VAG-CM specifically to dynamical systems models of
BD, it would be of interest to evaluate its utility more broadly for
model appraisal in computational psychiatry. Furthermore, we
encourage developments to the VAG-CM that are practically
applicable for experimental and computational modeling
researchers, and that consider alternative perspectives on model
validity, such as those from philosophy of neuroscience [75, 76].
One limitation of our review is the inclusion of studies modeling

different measures, collected at different durations and frequen-
cies. This limited our ability to make direct comparisons of
predictions across papers. Another limitation of our review may be
that some included papers were evaluated with low inter-rater
reliability after initial screening. However, the poor inter-rater
reliability obtained for some studies may simply reflect that the
aims, design, and outcomes were reported in such a fashion that
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caused reviewers to draw different conclusions. Consequently, we
believe that those studies with the low inter-rater agreement may
also be interpreted differently by readers. It is also possible that
the VAG-CM is a poor appraisal tool in a general sense. However,
since there are currently no viable alternative methods for the
structured appraisal of the diverse computational modeling
approaches in psychiatry, we believe our VAG-CM is a pragmatic
and conservative approach. The development of reporting and
appraisal standards for computational modeling studies in
psychiatry is a priority in order to maximize the quality and
impact of this promising research area. Thus, we encourage future
studies to evaluate, extend, or revise the VAG-CM, with detailed
and extensive studies of its inter-rater reliability and general-
izability to other disorders and model types (perhaps using a
database of computational modeling studies such as CPSYMAP
[77]). Such an evaluation was beyond the scope of the present
study, as was a larger study of inter-rater reliability, since the VAG-
CM here served solely as a tool to approach our review.
In conclusion, by approaching our review of dynamical

systems models of BD in a structured fashion (using the VAG-
CM), we have identified a disconnect between the data-driven
and theory-driven approaches used in the BD modeling
literature. We argue that taking a blended approach that
combines the strengths of both data-driven and theory-driven
methods will ensure future models adequately explain behavior
in BD, generate results that can be empirically verified, and
provide mechanistic insights into BD through homology with
biological and psychological systems. By developing biologi-
cally or psychologically homologous models of the BD
phenotype, we will step closer toward understanding how the
brain generates this severe condition, and how its management
can be improved.
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