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Cortical morphology is a key determinant of cognitive ability and mental health. Its development is a highly intricate process
spanning decades, involving the coordinated, localized expression of thousands of genes. We are now beginning to unravel the
genetic architecture of cortical morphology, thanks to the recent availability of large-scale neuroimaging and genomic data and the
development of powerful biostatistical tools. Here, we review the progress made in this field, providing an overview of the lessons
learned from genetic studies of cortical volume, thickness, surface area, and folding as captured by neuroimaging. It is now clear
that morphology is shaped by thousands of genetic variants, with effects that are region- and time-dependent, thereby challenging
conventional study approaches. The most recent genome-wide association studies have started discovering common genetic
variants influencing cortical thickness and surface area, yet together these explain only a fraction of the high heritability of these
measures. Further, the impact of rare variants and non-additive effects remains elusive. There are indications that the quickly
increasing availability of data from whole-genome sequencing and large, deeply phenotyped population cohorts across the
lifespan will enable us to uncover much of the missing heritability in the upcoming years. Novel approaches leveraging shared
information across measures will accelerate this process by providing substantial increases in statistical power, together with more
accurate mapping of genetic relationships. Important challenges remain, including better representation of understudied
demographic groups, integration of other ‘omics data, and mapping of effects from gene to brain to behavior across the lifespan.
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INTRODUCTION
The cerebral cortex, the outermost sheet of neurons of the
cerebrum, is responsible for processing and integration of
multimodal sensory information, higher-order cognitive functions
such as planning, and the execution of behavioral strategies
through the initiation of movement [1, 2]. As such, its functioning
determines much of an individual’s ability to reach life goals, with
its development having been named ‘the crowning achievement
of evolution’ [3]. Any structural abnormalities may convey
problems with sensory processing, impaired cognitive abilities,
and maladaptive behavior, covering many of the symptoms
associated with brain disorders. Indeed, all prevalent brain
disorders have been linked to deviant cortical morphology [4–8].
A more complete picture of the determinants of cortical
morphology is therefore essential to prevent or treat these
disorders as well as gain a better understanding of human
cognition and behavior in general.
The size and shape of the cortex changes significantly

throughout the lifespan [9], determined by tightly regulated
patterns of expression of thousands of genes, varying over
regions and over time [10]. Neuroimaging, in particular magnetic
resonance imaging (MRI), allows for a range of objective and
highly reproducible measures to be derived non-invasively from
an individual, allowing us to study cortical morphology in vivo. In

addition, enormous advances in genomics technology [11],
combined with large-scale biobanking efforts and a push towards
open science [12], have led to the availability of data that allows
us to start unravelling its complex genetic architecture, i.e., the
characteristics of the genetic variation responsible for its
heritable phenotypic variability [13]. Here, we review the progress
made in this field of research, with a particular emphasis on
findings from genetic studies of cortical morphology measured
through MRI that inform us on these characteristics. After a brief
introduction on the neurobiology of the cortex, we summarize
the current state of the art together with important theoretical
and methodological considerations, and end with thoughts on
future research directions.

CORTICAL ANATOMY IN A NUTSHELL
The cerebral cortex is a thin sheet of grey matter, containing
neuronal bodies, along the surface of the brain, making up 42% of
the total brain mass [14]. Cortical neurons, a mixture of long-range
glutamatergic projection neurons and short-range GABAergic
interneurons, are first generated from various subtypes of
progenitor cells in transient embryonic zones near the surface of
the lateral ventricles [15]. As these differentiate and migrate to
their final destination in the cortex, radially and tangentially, they
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become organized into ontogenetic columns perpendicular to its
surface [16]. According to the well-established radial unit model,
the number of columns determines surface area, while the
amount of cells within a column determines the thickness of the
sheet [16]. The large surface area of humans compared to other
species, without a concomitant increase in thickness, is thereby
explained by mutations that lead to a larger pool of neuronal stem
cells, causing an exponential increase in columns [3, 14].
Regionalization, organizing the cortex into histologically distinct
areas, takes place during embryonic and early life stages [16]. This
is accomplished through gradients in the expression of transcrip-
tion factors under the influence of morphogens released by
patterning centres organized along three principal axes, bringing
about areal fate by regulating the expression of cell-surface
molecules and synaptic organization [17]. The vast majority of the
developing cortex will become isocortex, also called neocortex
[18], consisting of six horizontal layers, known as laminae, while
the remainder becomes allocortex, located mediorostral, with
three or four laminae. Through mechanical forces, the cortex folds
into highly consistent patterns of gyri and sulci [19], allowing for
greater surface area to fit in the cranial vault while reducing
distance between neurons, enhancing signal transmission [20].
As a result of its intricate organizational processes, there are

widespread differences in cell type, number, and density across
the cortex, reflecting functional specializations [21]. Capturing the
corresponding regional differences in genetic architecture would
therefore bring about valuable information about their different
contributions to perception, cognition, and behaviour. This
requires us to differentiate between areas by devising borders
based on some micro- or macroscale organizational feature. See

Box 1 for an overview of commonly used parcellation strategies
for MRI-based studies.

GENETIC ARCHITECTURE OF CORTICAL MORPHOLOGY
The genetic architecture of a trait describes the characteristics of
the genetic variation that explain its broad sense heritability,
encompassing additive effects of common variants (primarily
single nucleotide polymorphisms; SNPs), rare variants, and non-
additive effects including gene-environment interactions [13].
Characteristics such as the number of genetic determinants,
known as polygenicity, and the effect sizes involved, also referred
to as a trait’s discoverability [22], are essential knowledge for
genetic studies as they dictate the required design and analysis
approaches.
A range of twin and family studies have proven conclusively

that all common metrics of cortical morphology are highly
heritable [23, 24]. Close to half of this heritability is due to
additive effects of common variants [25], similar to other complex
traits. The most general metric is cortical grey matter volume,
between the pia mater and the white matter, totalling approxi-
mately 0.35–0.5 litre in the average human brain [26]. This volume
is determined by the amount and size of neurons, dendrites, and
glial cells that make up the sheet. Pedigree studies have indicated
that cortical volume has a broad heritability of 0.7, with regional
measures ranging from 0.2 to 0.8 [24, 26], while its estimated SNP-
based heritability is 0.30 [27]. Common estimation approaches for
cortical volume have some notable issues [28]. Further, volume is
the product of the thickness of the sheet and its surface area,
suggesting that it is more informative to study these two
constituent metrics instead [29]. Cortical thickness, on average
about 2.6 mm across the brain [16], has a broad heritability of 0.8
[30], and a SNP-based heritability of about 0.26 [25]. The broad
heritability of surface area, in total about 0.15 cubic metre [26], is
estimated at 0.9 [30], with common variants explaining 0.34 of the
phenotypic variance [25]. Regional measures of heritability for
either of these metrics tend to be somewhat lower, as shown in
Fig. 1. Measures of cortical morphology that capture folding
patterns are less commonly investigated, despite associations with

Box 1. Parcellating the cortex

Cortical morphology is most commonly studied through T1-weighted MRI scans,
with research scanners typically providing a resolution of 1 mm3. Pre-processing of
these images is most commonly achieved through highly automated and
standardized pipelines provided by popular software suites such as FreeSurfer
[140], optimizing reproducibility and comparability between studies. These
pipelines capture inter-individual morphological differences by registering images
onto another, enabling group comparisons. Surpassing the initial voxel-based
morphometry approaches, current surface-based pre-processing approaches allow
for the cortical sheet to be reliably extracted and represented by hundreds of
thousands of data points known as vertices.
While vertex-wise studies take optimal advantage of the amount of information

provided by these images, most studies employ some form of data reduction to
lower computational burden or for ease of interpretation, aggregating over vertices
within a certain predefined area. Ideally, the borders of these areas are drawn in a
way that maximizes differences in some biological characteristic of interest, thereby
optimizing signal and interpretability. The enormous complexity of the cortex
makes this no easy task, with organizational properties stretching across multiple
levels and along multiple axes. Choice of feature, from micro- (e.g., cytoarchitecture)
to macrostructural (e.g., functional connectivity), and algorithm (boundary-based
versus clustering), as well as granularity (number of parcels) will each have
substantial impact on the delineation, and thereby on outcome of studies
employing a certain parcellation [141].
Study comparability and standardization promote the use of common parcella-

tions that are not necessarily optimal for individual study purposes. Currently, the
Desikan-Killiany atlas is the most common cortical parcellation strategy. It divides
the cortex into 34 regions per hemisphere, based on gyral and sulcal patterns [133].
A notable alternative is the Human Connectome Project atlas from Glasser et al.
consisting of 360 parcels, delineated by local changes in structure and activity,
derived from multiple data modalities [142].
Combining vertices with similar genetic architectures can capture the strong role

of genetics in regional differentiation, optimizing parcellations for genetic studies.
Using twin data, Chen et al. applied fuzzy cluster analysis to pairwise genetic
correlations across the cortex to make area- and thickness-specific atlases [96, 97].
While corroborating some lobar and regional borders from non-genetic parcella-
tions, this approach also suggested divisions clearly deviating from those based on
structure and function, and revealed a strong hierarchical and modular genetic
organization. Further, while area primarily showed differences along an anterior-
posterior axis with greatest similarity between clusters in the same lobe, thickness
differences were along a dorsal-ventral axis with closest relations between clusters
with similar maturational timing [96, 97].

Fig. 1 Regional SNP-based heritability across the cortex, with the
lateral (left) and medial (right) views for surface area at the top
and cortical thickness at the bottom row. The estimates are
calculated through LD score regression [132], applied to MRI data
from 33,735 White European individuals as described previously
[115], and parcellated according to the widely-used Desikan Killiany
atlas [133]. As indicated through the colour-coding, heritability
ranges from below 0.10 to above 0.30, with the regional estimates
for surface area showing a wider spread than cortical thickness.
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brain disorders and cognitive performance beyond those captured
by area and thickness [31–33]. The gyrification index, the ratio of
total area to exposed area (‘convex hull’), in humans averaging
about 2.5 [19], has an estimated broad heritability of 0.7 [34].
Sulcal depth is an inherently vertex-level measure, reflecting the
convexity of any given point on the surface [35]. Its broad
heritability varies widely across the cortex, ranging from 0 in
higher-order regions to 0.8 along the major sulci [36].
A major motivation for imaging genomics is that brain

measures are thought to capture processes mostly intermediate
on the causal path from genetics to brain disorders, i.e., more
proximal to genetic effects [37]. It is also plausible that the genetic
determinants of objective and reliable MRI-derived measures are
easier to find than ill-defined diagnoses based on subjective
measures. However, it is now clear that the genetic architecture of
cortical morphology is nearly as complex as that of brain
disorders, with high polygenicity and low discoverability [38].
These two fundamental characteristics, the product of which
corresponds to heritability, can be quantified based on the
distribution of genetic associations observed through GWAS, e.g.,
by applying Gaussian mixture modelling to the summary statistics
[22]. Using this technique, we have estimated that area and
thickness both involve several thousand causal variants, with each
individual variant on average explaining a small fraction of one
percent of the heritability [38]. This is about one order of
magnitude lower polygenicity than prevalent brain disorders, as
also confirmed through other approaches [39, 40], yet higher than
e.g., biochemical measures such as high-density lipoprotein [22].
Regional area measures are on average more heritable and
discoverable than regional thickness, which fits with the fact that
larger number of genetic variants have been discovered for area
than for thickness [25]. There is also more variation in discover-
ability between regions for area, i.e., its architecture appears more
region-specific than that of thickness [38], in line with the notion
that cortical columns are the functional units of the cortex [3]. The
polygenicity and discoverability of a trait determine the required
GWAS sample sizes to explain a given proportion of genetic
variance by whole-genome significant variants. From the data
shown in Fig. 2, we can extrapolate that explaining half of the
heritability of surface area will require half a million subjects, i.e.,
current imaging genetics studies are still grossly underpowered, as
also described in Box 2. Well-defined measures that capture the
effects of a limited set of biological processes should have
relatively low polygenicity and high discoverability, and therefore
require smaller sample sizes. As such, these estimates may guide

selection of metrics and parcellation schemes with greater
specificity, boosting the ability of genetics studies to find the
biological pathways involved. Corroborating these statements is
the fact that regional area estimates produced through the
genetically-informed Chen et al. parcellation had significant higher
discoverability than estimates following other parcellations [38].

FINDING THE GENETIC DETERMINANTS
Genetic architecture metrics, such as heritability, describe overall
characteristics of a trait, while discovery of the specific variants
involved provide more mechanistic insights. Evolutionary geno-
mics analyses have been instrumental in identifying the most
central genes and molecular pathways underlying cortical
development [3, 15]. An overview of the many components of
these pathways is beyond the scope of this review, and they have
been summarized elsewhere [41]. Generally, animal models
allowed for the identification of mammalian orthologs of
invertebrate development such as the homeobox and hedgehog
genes, found to regulate fundamental cortical developmental
processes [42]. In humans, early linkage studies of severe
malformations of cortical development, e.g., lissencephaly, further
implicated dozens of genes regulating neuronal proliferation,
migration and cortical organization [43]. The first imaging genetic
studies at the beginning of this century investigated polymorph-
isms in candidate genes, particularly those encoding neurotrans-
mitter receptors or transporters [44], e.g., COMT, 5-HTT or DAT1, or
known disease genes such as Apo-E4 [45] and DISC1 [46], finding
that these polymorphisms influence cortical thickness and area in
the general population.
Since its introduction nearly two decades ago, GWAS has

become the predominant approach to investigate complex traits
genetics [47, 48]. Contrary to candidate gene studies, GWAS is an
explorative mass-univariate approach, testing the individual,
additive effect of millions of common variants across the genome
on the outcome of interest. While this necessitates a harsh
multiple comparison correction that limits statistical power, it

Fig. 2 Relation between sample size and proportion variance
explained by genome-wide significant variants. This iss calculated
through MiXeR [93] applied to summary statistics of recently
conducted GWAS, with sample sizes indicated by stars [134–137].

Box 2. Overcoming low statistical power through collaboration

The small genetic effect sizes involved in complex traits, including cortical
morphology, necessitate large sample sizes for detection [143]. Exacerbated by the
multiple comparison correction for running a million independent tests [144],
GWAS requires tens of thousands of observations to identify even the most
impactful common variants (none of which explain individually more than 0.5%
variance in brain morphology) [145], and hundreds of thousands to capture a
substantial proportion of the total genetic variance, as evident from Fig. 2.
Analogously, finding reproducible associations between brain and behavior in MRI
studies, at high spatial resolution, has been shown to require thousands of scans
[146].
MRI data is relatively costly to obtain, with few individual labs able to collect more

than a few hundred scans. For this reason, researchers have started forming
consortia, pooling their data. Most notable in this context is the Enhancing
NeuroImaging Genetics through Meta-Analysis (ENIGMA) consortium, formed in
2009, bringing together an ever-increasing group of researchers from hundreds of
institutions across the world. ENIGMA has aggregated tens of thousands of scans,
using meta-analysis and harmonized processing protocols to overcome the large
between-site variability while allowing primary data analyses to remain on-site to
satisfy data protection regulations [145]. As such, this consortium has generated the
first successful, large-scale GWAS of cortical thickness and area [25].
Available sample sizes have increased enormously recently due to large-scale

biobanking efforts, combined with a push for open science. The UK Biobank is the
prime example of this, having genotyped and deeply phenotyped half a million
British volunteers, accessible for researchers all over the world [147, 148].
Multimodal MRI data collection is underway; at the time of writing, half of the
targeted sample size of a hundred thousand individuals has been scanned [149].
The Adolescent Brain Cognitive Development (ABCD) study is another valuable
resource, creating an American population-representative cohort of over ten
thousands genotyped children aged 9–10 at recruitment, undergoing MRI scans
every two year [150]. Initiatives such as the UKB and ABCD, therefore, promise
unprecedented insights into the development of the cortex and its genetic
underpinnings.
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better serves the ultimate goal of comprehensive genetic
mapping, given the involvement of thousands of variants. GWAS
output by itself carries little actionable information, yet the
summary statistics it produces enable numerous valuable post-
GWAS analyses [49]; the distribution of effect sizes informs us
about the genetic architecture of a trait, functional annotation
points to biological pathways involved, and comparisons with
other traits can indicate the strength and nature of their genetic
relationships.
Only recently have enough MRI scans become available to

allow for large-scale GWAS of cortical morphology
[25, 27, 40, 50]. Following early GWAS of single cortical measures
in small samples [51, 52], the ENIGMA consortium (see Box 2) has
published the largest such GWAS to date, including global and
regional measures from over fifty thousand individuals [25].
Analysis of total area plus 34 regional measures led to the
discovery of 187 unique loci, while mean and regional thickness
measures produced a total of 50 loci. Most of the 12 loci
identified for total area had been previously linked to
intracranial volume and brain disorders. Mapped genes and
pathway analyses further implicated primarily early neurodeve-
lopmental processes. The two loci associated with mean
thickness were similarly coupled to processes such as neurogen-
esis and neuronal migration. Most of the loci found to influence
the regional measures, correcting for the global measures, were
associated with only a single region, i.e., the findings corrobo-
rated the presence of regional specificity in genetic determi-
nants. Many regional loci were mapped to genes with known
roles in brain development, most prominently the Wnt signalling
cascade, which is central to progenitor cell proliferation and
areal identity [53]. Parallel to the ENIGMA study, the CHARGE
consortium conducted a GWAS on the same set of global and
regional measures, as well as cortical volume, with a discovery
sample size of 23 thousand individuals [27]. They reported the
same general patterns, with more loci discovered for area than
for thickness. The findings for area and volume mostly over-
lapped, and implicated genes involved in neurodevelopment.
Also notable is the GWAS statistics released by the UK Biobank
core neuroimaging team for nearly four thousand different brain
measures, across structural, functional and white matter
modalities [54]. While this broad approach limited the depth
of investigation and increased the multiple comparison burden,
it did provide a wealth of information, including insight into how
much signal each of these measures produce, relative to each
other. For instance, the results indicated that the relatively
understudied cortical grey-white matter contrast may be a
particularly interesting metric to study in greater detail, given it
had the highest heritability and highest locus yield. Last, we
have recently conducted a GWAS on twelve regional measures
of area and thickness, following the Chen et al. parcellation
strategy. Combining the adult UKB and adolescent ABCD cohorts
totalling nearly fifty thousand individuals, we found 467 loci
surviving multiple comparisons, achieving a substantially higher
yield than studies using other parcellations, demonstrating this
parcellation’s greater discoverability [38]. Generalization of
findings within the UKB cohort to ABCD was high, supporting
the notion of strong genetic control over cortical regionalization
early in life [40]. This is further in line with the pathways found to
be significant, similar to those found through the ENIGMA,
relating to early neurodevelopmental processes.
While ever-increasing sample sizes will move us along the

discovery curve shown in Fig. 2, openly available resources,
databases, and approaches for functional annotation truly
advance our understanding of the biological pathways shaping
cortical morphology. As the common variants included in GWAS
tag numerous other variants through complex patterns of
linkage disequilibrium, sophisticated fine mapping approaches
have enabled identification of variants within a genomic region

most likely to underlie functional consequences [55]. Gene
mapping has improved by integrating knowledge on associa-
tions with expression levels and chromatin interactions [56].
Coupling of mapped genes to previous GWAS findings, as well as
tissue-specific expression data and tests for overrepresentation
among a wide array of gene sets have firmly established that
morphology measures are primarily shaped by early neurode-
velopmental processes, as well as revealed the strength of
involvement of specific molecular pathways such as Wnt
signalling [25]. Implication of biologically informative genetic
pathways thereby requires less power than discovery of
individual variants [57], due to the aggregation of effects and
lower multiple comparison burden [58].
Beyond GWAS, rare genetic variants have been identified with

sizeable effects on cortical morphology. For complex traits, there
is an overall negative relation between frequency and effect size
of variants [59]. In that regard, copy number variants (CNVs), i.e.,
deletions or duplications of segments of the genome that often
span several genes [60], tend to have substantially larger effects
on morphology than any common variant [61]. Consequently,
whereas the most impactful common variants increase odds of a
brain disorder by no more than 25%, CNVs may convey over a
tenfold higher risk [61]. They are known to be important driving
forces in evolution, and appear especially relevant for explaining
the rapid expansion of the human cortex; compared to other
primates, humans have obtained multiple copies of genes that
regulate cortical neurogenesis and radial migration [62]. Further,
CNVs are like natural genetic experiments, deleting or duplicat-
ing genes, providing insights into the function of these genes
and eluding to mechanistic relationships between traits, given
carriers often suffer from a constellation of impairments.
Interestingly, with some CNVs, both deletion and duplications
are risk factors for the same disorder, while copy number effects
on brain measures follow a dose response [61]. For instance, we
have shown that 15q11.2 deletion carriers have thicker cortices
and smaller surface area, while duplication carriers showed the
opposite pattern, mediating the association of this CNV with
cognition [63]. It is further clear that CNVs are especially risk
factors for neurodevelopmental disorders [64, 65], once again
emphasizing the particularly strong role of genetics in early
cortical development.
Beside CNVs, rare variants may be investigated through whole-

exome (WES) or whole-genome sequencing (WGS). This is
important as the high penetrance of rare variants may explain
much individual variation, and a subset of common genetic
variant signals may result from synthetic associations with these
variants [66]. WES restricts sequencing to the 1% of the genome
that contains coding regions, thought to contain the majority of
disease-causing variants, making it substantially cheaper and
manageable than WGS data. However, the benefits of better
coverage by WGS are beginning to outweigh the continuously
dropping costs for sequencing and computation [67], with its use
further stimulated by numerous findings suggesting substantial
regulatory roles for non-coding regions [68]. Promisingly, in a pilot
study, Wainschtein et al. reported that nearly all of the heritability
of height and body-mass index could be recovered from WGS
data, with the majority being explained by variants with a minor
allele frequency between 0.0001 and 0.1 [69]. This type of data is
now rapidly becoming available, including for the half million UKB
participants [70, 71], suggesting that a WGS study in the near
future could provide a treasure trove of new information on the
genetic architecture of cortical morphology.
Non-additive genetic effects on cortical morphology, making up

the final component of broad heritability, have been scarcely
investigated. There have been findings of epistasis [72], i.e., a
genetic variant moderating the effects of other variants [73],
although their validity has been questioned, due to concerns
about inflated test statistics [74]. Age is a highly likely candidate to
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interact with genetic variation, given the trajectories of cortical
measures over the lifespan [9], together with substantial changes
in gene expression [10]. The rate of change of brain measures,
including global cortical area and thickness, derived from long-
itudinal MRI scans has been shown to be heritable, with a GWAS
on fifteen thousand individuals discovering several variants with
robust age-dependent effects [75]. Sex is another important
demographic with far-reaching impact on cortical morphology,
and the genetic underpinnings of brain disorders have been
shown to differ, somewhat, between men and women [76]. While
there is substantial evidence for widespread sex effects on cortical
gene expression [77], there are no major reports of gene-by-sex
interactions on morphology. Additionally, the central role of
environmental adaptation in evolution strongly suggests that
genetic variants regulate our response to a wide array of stimuli,
yet there is little overall evidence that gene-environment
interactions play a significant role in explaining the heritability
of complex traits, with only scattered reports of interactions
involving candidate genes impacting grey matter volume [78]. The
lack of robust findings may be in part explained by the fact that
the detection of statistical interactions is highly dependent on
model and measurement characteristics, making them notoriously
difficult to reliably detect and interpret [79], exacerbating the low
statistical power of current genetic studies. Of interest in this
context is a little-known strategy applied by our group to identify
variance-controlling loci; despite a limited GWAS sample size we
successfully discovered variants impacting phenotypic variability
of cortical thickness, not associated with mean thickness [80].
Ensemble-learning approaches such as random forest regression,
incorporating all higher-order interactions between predictors,

may further provide fruitful ways to explore the extent of non-
additive effects [81, 82].

GENE EXPRESSION MEDIATES GENETIC EFFECTS ON CORTICAL
MORPHOLOGY ACROSS THE LIFESPAN
Genetic variation forms the basis for interindividual differences in
cortical morphology; causal variants influence either the expres-
sion levels of genes or alter characteristics of their protein
products. Either way, the activity of molecular pathways is altered,
changing cellular functioning, which in turn influences neuronal
circuitry. The ultimate impact of genetic variants is therefore
mediated by multiple interacting layers of regulation, varying
across regions and time, further moderated by environmental
influences, see Fig. 3. This makes clear that knowledge of
functional genomics, charting the regulation and coordination of
genes that determine the activity of biological processes, is
needed to gain a more complete understanding of cortical
development.
Maturation of the cortex during neurodevelopment, generating

its intricate circuitry and regional functional specialization, results
from highly regulated patterns of gene expression [10]. Genetic
variation has been proven to contribute to the variability of
expression in the cortex [83, 84]. Approximately 82% of genes are
expressed in the cortex, of which 85% are differentially expressed
across time and/or regions [10], testifying to the importance of
adopting a lifespan perspective and local tissue samplings.
The difference in gene expression patterns between pre- and

postnatal cortical tissue is large [10, 85]. Prenatal changes in
cortical expression levels over time are an order of magnitude

Fig. 3 Visualization of the pathway from gene to brain to behaviour, reflecting how variation at each level influences the next. Biological
complexity increases as we move further down, away from the direct effects of genetic variation, given the accumulation of influences. The
wide range of measures we use to study complex traits, be it cortical morphology or behavior, can be further split into more fine-grained
measures capturing additional levels of organization, e.g., total surface area into regional measures, or diagnoses into symptoms. The complex
relations and hierarchical structure ensure there is extensive pleiotropy between such traits, horizontally and vertically [138].
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larger than postnatally, and between-subject correlations are also
much higher early in life [85], indicating that the tight regulation
of fundamental neurodevelopmental processes gives way for
individualization later in life [86]. The expression of genes involved
in cell division decreases from conception onwards, those related
to synaptic functioning increase throughout infancy, while genes
regulating axonal functioning increase prenatally and then
decrease after birth [85]. This matches well-known temporal
patterns of major neuron differentiation and pruning processes
[87], attesting to the fact that data on gene expression can be
queried to map intricate neurobiological mechanisms over time.
Expression across cortical regions is relatively homogeneous,

compared to the amount of differential expression over time or
between subcortical regions [10, 88]. Based on their expression
profiles, regions within the same lobe cluster together, i.e., there is
a smooth spatial gradient of expression across the cortex, with the
highly specialized primary visual cortex being most distinctive
[10, 88]. Correlations between regions further increase with age
[10], reflecting that transcriptional differences are most pro-
nounced when functional specialization is formed during early
development. Subsets of spatially co-expressed genes can further
be coupled to specific cell types, such as neurons, oligodendro-
cytes, astrocytes and microglia [89].
One of the key findings from the ENIGMA GWAS of cortical

morphology was that the common variation associated with either
total area or mean thickness was related to developmental phase-
specific gene regulation that contrasted the two measures [25].
Both showed enriched heritability in genomic regions regulating
brain tissue, yet area showed enrichment primarily within
progenitor cell types and mid-fetal–specific active regulatory
elements while thickness was enriched in adult-specific elements.
This reiterates the necessity for a lifespan perspective in genetic
studies as well, as the effects of genetic variation will depend on
when the genes are expressed.
Taken together, these findings indicate that gene regulatory

patterns are highly age- and region-specific, arising from complex
combinations of factors over time that cannot be fully explained
by simple additive effects as identified through GWAS on gross
morphological features. Studies of single-cell or nucleus RNA-seq
data can provide additional, more nuanced insights, by mapping
cell type-specific signalling and gene expression patterns that
explain important developmental processes [90]. Further, the use
of cortical organoids, modelling development across the lifespan,
allows for valuable transcriptomic and epigenomic data to further
enhance our understanding of these processes [91].

GENETIC RELATIONSHIPS BETWEEN METRICS AND REGIONS
Charting the shared and specific genetic influences on different
metrics of morphology, rather than studying them in isolation,
brings us a more complete understanding of how the cortex
produces human behavior. It is however crucial to consider the
assumptions and limitations of the statistical techniques
employed. The currently predominant approaches are geared
towards emphasizing the differences between measures, neglect-
ing the extent of shared information in these measures that may
be leveraged to improve our ability to uncover their genetic
architectures.
Surface area and thickness have been widely proclaimed to be

genetically independent of each other and therefore recommended
to be studied separately [26, 30]. These claims are based on a robust
negligible genetic correlation as calculated through tools such as
linkage-disequilibrium score regression [92]. While these metrics are
indeed likely to have a substantial non-overlapping genetic
component, as supported by the radial unit model, characterizing
them as predominantly independent may be misguided. The issue
here lies in the reliance on a global estimate of correlation as an
indicator of independence, summarizing the overall coherence of

the strength and direction of effects across millions of genetic
variants. Given high polygenicity, it is nearly certain that there is a
mixture of effect directions, with some variants having a significant
positive or negative effect on both metrics while others lead to
lower thickness and larger area or vice versa. This is confirmed by
approaches estimating genetic correlations between complex traits
for small chunks of DNA across the genome, consistently producing
a large number of both positive and negative local correlations,
even for pairs of complex traits assumed to be independent
[93, 94]. When aggregating, effects with mixed directions will cancel
each other out, ensuring global correlations will virtually always
underestimate the true amount of genetic overlap. By using
Gaussian mixture modelling to estimate the number of overlapping
causal variants regardless of directions of effects, we have shown
that the majority of variants influencing area and thickness are
overlapping [38]. It should be noted though that the higher degree
of overlap that can be detected by these and similar methods
comes at the cost of lower information about the nature of the
relationship between the traits studied, precisely because they are
agnostic about the directions of effects. These estimates may
therefore best be complemented with other metrics of (local and
global) overlap, each providing additional information (see Fig. 4).
Similarly, regional measures must share to a large extent the

same biology, being made up of the same overall cell types and
with the same gross laminar organization, reflecting they are
constituents of one overarching system. It is however common
practice to statistically correct for a ‘global’, e.g., total area when
studying regional area, thereby emphasizing regional differences.
Genetic correlations tend to closely match phenotypic correla-
tions, with neighbouring regions generally having positive
correlations while those further away are negatively correlated,
if corrected for the global measure. When uncorrected, these
estimates shift to being all positive [95]. The strength of
correlations thereby follow an anterior-posterior gradient for area,
and a dorsal-ventral gradient for thickness, as reflected in the
Chen et al. parcellations [96, 97].
Mixed effect directions and statistical corrections for global

measures thus obscure the large extent of shared biology between
different metrics and regional measures, with substantial implica-
tions for study design. The major GWA studies of cortical
morphology have investigated each measure individually
[25, 27, 50], necessitating a multiple comparison correction. This
may be complemented by a multivariate approach, leveraging the
shared information between all measures that together capture
cortical morphology. At the cost of lower interpretability and loss of
information about directions of effects, such an approach can boost
discovery of genetic variants threefold when jointly analyzing the
same sets of regional measures, identifying hundreds of loci with
half the sample size [98]. Discovery goes up tenfold when
aggregating even more information by studying vertex-wise data,
uncovering thousands of loci [99, 100], that also replicate better out-
of-sample than when employing univariate approaches [101]. A
computationally efficient multivariate approach further facilitates
the genetic study of vertex-wise cortical measures not well-captured
by parcellation into ROIs, such as sulcal depth. Indeed, this
understudied metric of cortical folding, linked to several brain
disorders and cognition [31, 102, 103], was found to be both more
heritable and discoverable than area and thickness [100], suggesting
it is a relatively untapped resource for understanding cortical
morphology. Each of these multivariate GWAS studies thereby found
5–10% of all genes to be significantly associated with cortical
morphology, while explaining 10–30% of genetic variance (cf. Fig. 2),
suggesting that with large enough sample sizes GWAS findings will
largely corroborate the omnigenic model of complex traits, positing
that all tissue-expressed genes contribute to a certain extent [104].
As such, aided by the power of multivariate approaches, focus will
shift from the dichotomy of discovery towards charting the strength
of contributions and how this varies across component measures,
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creating a more nuanced, comprehensive map of the genetic
architecture of cortical morphology.

GENETIC RELATIONSHIPS WITH CLINICAL AND COGNITIVE
TRAITS
One of the ultimate goals of imaging genomics is to uncover the
neurobiological pathways underlying brain disorders, to identify
biomarkers and facilitate the development of strategies to prevent
or treat disorders by manipulating these pathways [105, 106].
Generally, highly heritable psychiatric disorders [107] such as
schizophrenia, bipolar disorder, and major depression are associated
with smaller area and thinner cortices [4–6]. Cognitive ability is
associated with larger area and, somewhat less consistently, thicker
cortex, with regional patterns dependent on the specific task and
age of the participants [108, 109]. Trajectories of morphological
changes over time may thereby be better predictors than absolute
size [110], in line with the often-reported finding that the heritability
of cognitive performance increases with age [111]. Despite their
high heritability and strong associations with cortical morphology,
studies have reported little to no genetic correlation of these traits
with brain measures [112], with the largest point estimate, between
educational attainment and surface area, being 0.2 [25]. As with the
relation between surface area and thickness, the true extent of
genetic overlap will be underestimated due to mixed directions of

effects of genetic variants. (see Fig. 4). Estimates ignoring effect
directions indicate nearly all genetic variants underlying surface area
and thickness are involved in schizophrenia [113]. This genetic
overlap may also be leveraged to enhance the discovery of genetic
variants; [114] e.g., conditioning schizophrenia GWAS summary
statistics on brain morphology GWAS data through a Bayesian
framework enabled us to identify twice as many loci as the original
schizophrenia GWAS, with the mapped genes being highly
differentially expressed in brain tissue [115]. Ideally, the pathway
from gene to brain to behaviour is charted, e.g., through mediation
analyses [78], and tools now exist that can carry out such analyses at
the large-scale GWAS level [116]. Mendelian randomization analyses
have complemented the mediation framework by providing
concrete evidence that cortical morphology indeed is on the causal
path to brain disorders [40]. The possibility of reverse causation
should be kept in mind though, whereby disease processes or
environmental influences following a diagnosis explain a portion of
observed cortical differences [117], the extent of which remains
unclear.

GOING BEYOND ASSOCIATIONS: INDIVIDUALIZED PREDICTION
Another major goal of human genetics, distinct from attaining
mechanistic insights, is to be able to accurately predict traits.
Polygenic scores approximate an individual´s genetic propensity

Fig. 4 Genetic overlap of cortical measures with cognitive ability, measured through complementary approaches. At the top are the low
estimates of global genetic correlation, calculated through LD score regression [92], between GWAS of cognitive ability [139] and total surface
area (A) and mean thickness (B) [115]. The Venn diagrams below it reflect the amount of causal variants estimated to contribute to each of the
traits as well as their overlap, regardless of effect directions, calculated through bivariate Gaussian mixture modelling [93]. At the bottom,
volcano plots showing the results from Local Analysis of [co]Variant Annotation (LAVA) [94]. This explains the discrepancy between the two
global metrics of overlap, as a mixture of opposing directions of local correlations will cancel each other out at the global level.
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for a trait by aggregating the additive effect sizes of all significant
common genetic variants as determined through GWAS, multi-
plied by the individual’s allele count [118, 119]. These scores as of
yet do not allow for clinically relevant prediction of complex traits,
often explaining single digit percentages in phenotypic variance
[120], reflecting the fact that the current generation of GWAS is
underpowered [121], producing noisy effect size estimates for
genetically heterogeneous traits. Given their complex relationship,
with mixed directions of effects and negligible genetic correla-
tions, polygenic scores of cortical morphology are even more
unlikely to predict disorders and vice versa. However, these scores
may inform the genetic relationships between brain and
behaviour [122], distinguish biological subgroups, or serve as a
tool for risk stratification [119]. Further, prioritizing variants based
on the strength of evidence for shared effects on both the
disorder and cortical morphology may improve the performance
of these scores [115]. This prioritization is likely to weed out some
false positives as it requires evidence for the involvement of a
variant in two separate studies, plus it may create scores that tag a
more specific set of biological processes, those determining
overlap between traits.
Fundamentally, polygenic score performance depends on the

accuracy of the estimated effect sizes. While the increasingly
larger sample sizes will help with this, accuracy is ultimately
determined by the homogeneity and similarity of the composition
of the training sample with the test sample; differences in factors
that influence the relation between genetic variation and the trait,
such as ethnic background, will therefore lower performance
[120, 123]. The underrepresentation of non-White Europeans has
been receiving increased attention in psychiatric genomics in
recent years [124], but less so in imaging genetics. Performance
may further be boosted by including additional sources of
information when calculating these scores, such as comorbidities
as well as non-additive effects, e.g., with age. In that regard,
normative modelling approaches are notable, providing
individual-level statistics on deviations from a normative age-
trajectory for a population of interest [125]. Incorporating the
influence of rare variants is also likely to provide a substantial
improvement, as these are particularly relevant for the individual
[126]. Last, alternative prediction approaches better suited for
complex, noisy data than standard regression will be valuable as
they continue to be developed, improving their current low
reproducibility. This includes ensemble-learning approaches and
deep neural networks applications [127].

CONCLUSIONS
Our knowledge of the genetic architecture of cortical morphology
has increased enormously in the last decade, spurred on by ever-
increasing sample sizes and the development of more appro-
priate, powerful biostatistical approaches to match its complex
characteristics. It is now clear that all measures of cortical
morphology that can be accurately derived from MRI scans are
highly heritable and polygenic with low discoverability, making
them valuable but challenging intermediate phenotypes for brain
disorders.
Studies investigating its genetic determinants have only

scratched the cortical surface so far, with the ‘missing heritability’
still being substantially larger than the amount of explained
heritability. There is good progress in identifying additive effects
of common genetic variants, yet this is the most easily
discoverable tip of the iceberg. Together with better-powered
GWAS, the quickly upcoming availability of WGS data should
enable us to map the majority of variance explained by additive
effects on common MRI-based metrics of morphology before the
end of this decade, as has been achieved recently for other
complex traits [57]. A greater challenge lies in the detection of
non-additive effects, both between variants as well as effects over

the lifespan and interactions with demographics and environ-
mental factors. Interaction effects require substantially more
statistical power to detect, while data on most moderators will
only be available in a subset of current cohorts [79, 128]. Perhaps
most pressing here is mapping effects through longitudinal data
to capture cortical development. The near future looks promising
in this regard as well though; large ongoing initiatives such as
ABCD and UKB are collecting and releasing longitudinal MRI data
at a rapid pace, and powerful tools for large-scale brain-wide and
genome-wide analyses of data with dependency structures have
become available recently [116].
Future studies would do well to include multiple metrics to gain

a more complete picture of the genetic architecture of cortical
morphology, through appropriate analytical approaches. The vast
majority of studies only focus on area and/or thickness, neglecting
informative metrics such as folding and grey-white matter
contrast. Besides providing complementary information and
insight into genetic relationships, joint analyses benefit from
greater statistical power due to the large degree of shared
information missed by estimates of global genetic correlations
[114]. As illustrated by the findings from a series of recent studies
from multiple research groups showcasing a new generation of
biostatistical tools, leveraging genetic overlap has the potential to
substantially enhance both locus discovery and genetics-based
prediction [98, 129, 130].
Important challenges consist of combined analyses of metrics,

at a higher spatial resolution and over the lifespan. More
knowledge on the impact of demographics, particularly ethnic
background, is needed to ensure findings ultimately better benefit
those most in need [120, 123]. Last, uncovering genetic
determinants only solves one piece of the puzzle; A true
understanding of cortical development and its role in human
behavior will require a multi-omics approach, integrating geno-
mics with epigenomics, transcriptomics and proteomics to
discover how these regulate molecular, cellular, and neural
processes over time [131], fully characterizing the path from gene
to brain to behavior.
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