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Physical activity is correlated with, and effectively treats various forms of psychopathology. However, whether biological correlates
of physical activity and psychopathology are shared remains unclear. Here, we examined the extent to which the neural and
genetic architecture of physical activity and mental health are shared. Using data from the UK Biobank (N= 6389), we applied
canonical correlation analysis to estimate associations between the amplitude and connectivity strength of subnetworks of three
major neurocognitive networks (default mode, DMN; salience, SN; central executive networks, CEN) with accelerometer-derived
measures of physical activity and self-reported mental health measures (primarily of depression, anxiety disorders, neuroticism,
subjective well-being, and risk-taking behaviors). We estimated the genetic correlation between mental health and physical activity
measures, as well as putative causal relationships by applying linkage disequilibrium score regression, genomic structural
equational modeling, and latent causal variable analysis to genome-wide association summary statistics (GWAS
N= 91,105–500,199). Physical activity and mental health were associated with connectivity strength and amplitude of the DMN, SN,
and CEN (r’s ≥ 0.12, p’s < 0.048). These neural correlates exhibited highly similar loading patterns across mental health and physical
activity models even when accounting for their shared variance. This suggests a largely shared brain network architecture between
mental health and physical activity. Mental health and physical activity (including sleep) were also genetically correlated (|
rg|= 0.085–0.121), but we found no evidence for causal relationships between them. Collectively, our findings provide empirical
evidence that mental health and physical activity have shared brain and genetic architectures and suggest potential candidate
subnetworks for future studies on brain mechanisms underlying beneficial effects of physical activity on mental health.
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INTRODUCTION
Mental health and physical activity have both been linked to
emotion, cognition, and brain correlates [1–4]. Furthermore,
physical activity is known to improve various psychiatric condi-
tions [5–7]. Yet, it remains elusive whether mental health and
physical activity overlap in neural and genetic architectures. Here,
in a large population sample (n= 6389 from the UK Biobank [8]),
we estimate the extent to which physical activity and general
mental health share patterns of resting-state functional MRI
network measures and genetic architectures.

Potential overlap between mental health and physical activity
in neural networks
Functional alterations in large-scale brain networks have been
consistently implicated in a wide range of psychiatric disorders [9].
Dysfunctional configuration of neurocognitive networks such as the
default mode, salience, and central executive networks (DMN, SN,
CEN) has been hypothesized to characterize major psychiatric
disorders including depression and anxiety [10]. In line with this
hypothesis, findings from meta-analyses have shown that core
cognitive and affective abnormalities in major depression can be
accounted for by hypo-connectivity within the CEN and hyper-
connectivity within the DMN [11], together with hypo-connectivity

between the control systems (i.e., CEN) and salience, emotion
processing systems (i.e., SN) [12]. Similarly, a recent meta-analysis
suggests that anxiety disorders are characterized by hypo-
connectivity between subcortical limbic circuits that partially overlap
with the SN, CEN, and DMN, as well as decoupling between the CEN
and DMN [13]. Furthermore, the personality trait neuroticism, which
is considered a risk marker for psychopathology, has also been linked
to alterations in functional brain networks [14]. These same networks
have also been linked to physical activity. Evidence from fMRI studies
on physical activity demonstrated the changes in the activity of and
functional connectivity between these network hub regions includ-
ing the hippocampus, parahippocampus, dorsal anterior cingulate
cortex (dACC), and ventromedial prefrontal cortex (vmPFC) that
primarily subserve executive functions such as working memory,
attention, and inhibition [15–19]. At the more system level, a 12-
month aerobic walking intervention was found to increase resting-
state functional connectivity between subnetworks of DMN, and
between subnetworks of SN [20], whereas connectivity in the CEN
was found to increase after multiple sessions of high-intensity
interval training [21]. Interestingly, the intensity of physical exercise
appeared to modulate functional connectivity changes in the hub
regions of the CEN [22], as well as in the DMN subsystems acutely
and after 3 months of training [23].
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Additionally, although sleep might not be considered a type of
physical activity for its inactive nature, it is closely connected to
mental health such that sleep problems have been considered a
risk factor for subsequent development of depressive symptoms
[24, 25], and that disrupted sleep is often seen in patients with
various types of mood and anxiety disorders [26–28]. In relation to
physical activity, sleep disturbance has been shown to reduce
activity levels and increase the risk of exercise-related injuries [29].
Despite its close relationships with both mental health and
physical activity, sleep has been largely overlooked in the
literature for physical activity in relation to mental health.
Currently, sleep duration can be accurately measured with
ecological sampling approaches such as wrist-worn acceler-
ometers, which have been adopted in medical and mental health
research [30, 31]. At the neural network level, sleep deprivation
has been linked to a reduction in functional connectivity within
the DMN [32–34], whereas increased sleep duration has been
linked to strengthened connectivity within the DMN but reduced
connectivity between DMN and SN [35]. Fluctuations in arousal
(i.e., an indication of drowsiness) during resting-state scan
acquisitions have also been linked to the fMRI signal amplitude
in sensorimotor networks [36]. These studies together highlight
the engagement of the DMN, SN, and CEN in both mental health
and physical activity and demonstrate that the interplays between
these large-scale intrinsic networks and subnetworks are coupled
with changes in mental health symptoms and physical exercises.
Yet, it remains unclear whether similar connectivity patterns or
signal changes of these networks are shared by mental health and
physical activity.

Potential overlap between mental health and physical activity
in genetic variance
Physical activity is known to promote resilience to various
psychiatric conditions, alleviating symptoms of depression,
anxiety, and negative mood [37, 38]. This buffering effect may
be rooted in the shared genetic variance between mental health
and physical activity. For instance, recent research employing
summary statistics from independent genome-wide associate
studies (GWAS) showed that higher polygenic risk scores for
depression are associated with increased odds of incident
depression, whereas self-reported physical activities such as
walking, jogging, running, dancing and yoga appeared to reduce
the odds with similar magnitude [39]. This buffering effect has
also been observed using more objective measurement of
physical activity such that reduced activity levels measured by
accelerometer were found to associate with diagnoses of
schizophrenia, bipolar disorder, depression, or autism spectrum
disorders (ASD) and that healthy participants without disorder
diagnoses were observed to perform the less physical activity if
they had a higher polygenic risk score for schizophrenia,
depression, and ASD [40].
Additionally, overlapping genetic architectures may exist

across various psychiatric disorders including anxiety and
depression [41–43] as psychiatric phenotypes are highly poly-
genic [44]. Thus, latent genetic factors capturing shared variance
across clusters of psychiatric symptoms is hypothesized to
improve identification of associations between mental health
and physical activity. For instance, genomic contributions to
disorders such as depression and anxiety are captured by a
genetic factor for internalizing disorders that are primarily
characterized by these two disorders as indicated by confirma-
tory factor analysis, and this genetic factor is positively
genetically associated with various adverse health outcomes
and negatively genetically associated with physical movement
patterns [45]. These findings point to the possibility that the
genetic architectures of mental health and physical activity may
overlap and the degree and phenotypic specificity of overlap
remain to be tested.

Shared brain and genetic architectures?
Together, the studies reviewed above show that mental health
and physical activity both involve large-scale brain networks such
as the DMN, SN, and CEN. Additionally, mental health and physical
activity may have partially overlapping genetic architectures, with
evidence showing associations between genetic liabilities of
psychiatric disorders and physical activity, as well as genetic
associations between latent factors of psychopathology and
physical activity. As mental health and physical activity are also
tightly related at the behavioral level (e.g., emotion, cognition), it
is reasonable to speculate that these two constructs may partially
overlap in the underlying neurobiological mechanisms. In this
study, we aim to determine whether mental health and physical
activity have shared variance in the brain and genetic architec-
tures, using brain network measures and genomic summary
statistics.

METHODS AND MATERIALS
Participants
The UK Biobank (UKB) is an openly accessible population dataset with
neuroimaging data collection, in addition to extensive demographic,
behavioral, lifestyle, and cognitive measures [8, 46]. An initial sample of
N= 8378 participants from the UK Biobank was considered for this study.
These participants had participated in accelerometer-based physical
activity evaluations and visited the assessment center, where the resting-
state fMRI and mental health questionnaire data were acquired. Data
quality assurance resulted in exclusion of N= 64 participants for
insufficient accelerometer data (see details below in section 2.2.2), and
N= 1925 participants with considerable missing data in the mental health
questionnaire (see details below in section 2.2.1). The final sample had
N= 6389 participants with 2994 (46.9%) females (sample mean
age= 63.74 ± SD 7.53). All participants provided informed consent. UK
Biobank has ethical approval from the North West Multi-Center Research
Ethics Committee (MREC). Data access was obtained under UK Biobank
application ID 47267.

Data acquisition and preprocessing
General mental health measures. The UKB general mental health
questionnaire consisting of 41 items was conducted on the same day as
fMRI data acquisition (https://biobank.ndph.ox.ac.uk/showcase/label.cgi?
id=100060). This self-reported questionnaire primarily measured depres-
sion, anxiety, and neuroticism, as well as subjective well-being. These
variables had varying degrees of missing data points partly due to
responses such as “do not know”, “prefer not to answer”, or “none of
above,” and partly due to question dependencies. To ensure robust model
estimation while maximizing statistical power, individual variables or
questions that had >30% missing values were excluded (N= 10; see full
descriptions for each included an individual question in Table S1). A
multivariate imputation procedure was then leveraged to handle the
missingness in the remaining data. By default, this procedure implements
multiple imputations with separate imputation models for each incom-
plete variable [47]. The predictive mean matching (PMM) approach was
employed for imputing continuous variables, which first estimates a linear
regression model for the target variable (e.g., Y) from all other variables in
the data (e.g., non-Y variables) with complete observations. New
coefficients are then drawn from the posterior predictive distribution of
the estimated regression coefficients and used to calculate the predicted
values for the missing entries in Y. The predictive values for the observed Y
are also calculated using the estimated regression coefficients. Finally, a
small set of candidate donors is formed from the observed Y (i.e., usually
three or five donors) that have the closest predicted values to the missing
Y, and the observed value from one donor will be randomly selected to
replace the missing value [47]. Using PMM, 20 iterations were performed
for each incomplete variable of mental health, and the final imputed value
for any given missing entry was averaged across all iterations.
As the current mental health questionnaire covers a broad range of

multiple constructs, including depression and anxiety symptoms, neuroti-
cism, and subjective well-being, we performed data decomposition using
principal component analysis (PCA) on the imputed data to extract the
most relevant information about general psychopathology, using a R
package (see details below in section 2.4). We retained the top principal
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components that collectively explained >50% variance of the data in the
subsequent statistical analyses. PCA loadings of each individual question
per component can be found in Table 1.

Physical activity measures. Accelerometer data were acquired for a subset
of UKB participants during a seven-day monitoring period (https://
biobank.ndph.ox.ac.uk/ukb/label.cgi?id=1008). This enabled real-time
measuring of physical activity for the participants throughout the entire
week. Following a recommendation for quality control [48], data from
participants who had less than 72h device wearing time or had no data in
each one-hour period of the 24h cycle were excluded (N= 64). Using a
publicly available machine learning algorithm, we extracted measures of
five types of physical activity including sleep, sedentary, walking, light task,
and moderate activities [48]. This algorithm applied random forest and
hidden Markov models to a 126-dimental vector that represented a range
of time and frequency domain features for every non-overlapping 30-sec
epoch. The resulting probability of each physical activity was then defined
as the count of predicted activity type per 30-sec epoch divided by the
number of epochs [48]. In addition to these probability measures, the
average acceleration magnitude, and metabolic equivalents of task (MET)
were included to indicate overall activity intensity. The mean values of
these features were calculated across weekdays and weekends, respec-
tively, as well as across the entire monitoring period (i.e., average over
weekdays and weekends). To account for variation in each individual
physical activity measure at different time points, all mean values were
standardized by standard deviations for each participant. In total,
21 standardized physical activity measures were included in our analyses.

Resting-state fMRI data and brain network measure. Resting-state fMRI was
acquired using a multiband sequence with an acceleration factor of 8
(TR= 0.735; voxel size= 2.4 × 2.4 × 2.4 mm3). Preprocessing steps included
motion correction, grand-mean intensity normalization, high-pass

temporal filtering, unwarping and ICA-FIX denoising (Alfaro-Almagro
et al., 2018). Full details can be found in UK Biobank Brain Imaging
Documentation (https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_
mri.pdf).
For this study, we used IDPs (imaging-derived phenotypes) that were

generated and released by the UKB [46]. Specifically, partial connectivity
matrices and network amplitudes from ICA with dimensionalities of 100
(ICA100) were considered (see Supplementary Results for the comparison
with ICA25). ICA is a data-driven approach that can estimate the resting-
state brain networks reliably and reproducibly, including the three
networks of interest. It further helps eliminate noise in the data by
separating noise and signal components [49]. These advantages of ICA
make it an unbiased and powerful technique to study resting-state
networks. We mapped the DMN, SN, and CEN onto the ICA components
and then calculatied partial connectivity matrices and network amplitudes,
as described below.

Mapping the networks of interest: We used the Stanford FIND atlas
[50] to construct canonical spatial maps as the reference to identify the
three brain networks of interest, namely the DMN, SN, and CEN in our
sample. Notably, the FIND atlas is a functional connectivity-based
parcellation atlas, from which we selected seven functional parcels that
are all part of these three intrinsic networks, including dorsal (i.e., PCC and
medial prefrontal cortex) and ventral default mode networks (i.e.,
retrosplenial cortex and medial temporal lobe), precuneus network,
anterior (i.e., anterior insula and dorsal anterior cingulate cortex) and
posterior salience networks (i.e., posterior insula), as well as left and right
executive control networks (i.e., dorsolateral prefrontal cortex and parietal
cortex in the left and right hemispheres respectively). These selected
parcels well represent the subsystems of the three intrinsic networks that
have been associated with physical exercises (e.g., via cognitive and
interoceptive processing) [51, 52] and various psychiatric disorders

Table 1. Correlations between mental health and physical activity measures.

Physical activity Mental health

PC1 PC2 PC3 PC4 PC5 PC6 PC7

Overall

Sleep duration −0.08* 0.04* 0.01 0.00 0.04* −0.01 0.03

Sedentary −0.03* 0.07* 0.07* −0.02 −0.02 −0.03 0.03*

Light tasks 0.02 −0.02 0.01 −0.01 −0.04* −0.01 0.00

Moderate −0.02 −0.06* 0.02 0.01 0.03* 0.04* 0.01

Walking 0.01 −0.01 0.02 −0.03* −0.06* 0.00 0.04*

Overall activity −0.06* 0.04* 0.03* −0.02 0.04* 0.01 0.08*

MET −0.06* 0.10* 0.07* −0.03 −0.01 −0.05* 0.02

Weekdays

Sleep duration −0.08* 0.04* 0.02 0.00 0.03* −0.01 0.03*

Sedentary −0.05* 0.08* 0.08* −0.01 −0.04* −0.02 0.04*

Light Tasks 0.01 −0.02 0.03 −0.03 −0.03* −0.01 0.01

Moderate −0.02 −0.05* 0.03 0.01 0.02 0.03* 0.03

Walking 0.02 0.00 0.04* −0.04* −0.09* −0.01 0.04*

Overall activity −0.05* 0.04* 0.06* −0.04* −0.01 0.00 0.07*

MET −0.06* 0.11* 0.08* −0.03 −0.07* −0.04* 0.02

Weekend

Sleep duration −0.06* 0.04* 0.00 0.00 0.02 −0.01 0.02

Sedentary −0.02 0.05* 0.06* −0.02 −0.01 −0.02 0.02

Light tasks 0.02 −0.01 0.00 −0.01 −0.05* −0.02 −0.02

Moderate −0.02 −0.04* 0.01 0.00 0.01 0.04* 0.00

Walking 0.02 0.00 0.02 −0.03* −0.06* 0.00 0.04*

Overall activity −0.05* 0.04* 0.03 −0.02 0.03* 0.01 0.06*

MET −0.05* 0.08* 0.05* −0.02 0.01 −0.04* 0.02

Phenotypes of mental health were represented by the first seven principal components (i.e., PC1-PC7) that altogether explained 51.05% variance. Significant
correlations are indicated by * after FDR corrections (i.e., all corrected p’s ≤ 0.045), and negative correlation coefficients are highlighted with light gray shading.
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including depression and anxiety [53–55]. Therefore, we selected them as
our reference networks. To identify ICA components that can be mapped
onto these networks of interest, we examined fifty-five signal components
that were generated from ICA100 and detected the best matching
components corresponding to each of seven selected network parcels,
based on spatial correlations. Seven ICA components showing the highest
spatial correlations with the FIND atlas were identified (mean r= 0.37). We
refer to these ICA components as ‘subnetworks’ from the large-scale DMN,
SN, and CEN as they represented the subsystems of the three intrinsic
networks.

Extracting subnetwork edges: Dual regression was performed to
obtain timeseries for each ICA component or subnetwork at the individual
level [56]. These extracted subnetwork timeseries were then used to
calculate the partial connectivity matrix and amplitude measures of
interest. As described in Miller et al. [46], pairwise partial correlation
coefficient were estimated using L2-regularized partial correlations
between all 55 signal components from ICA100, which are deemed to
be non-artifactual. This analysis resulted in a 55 × 55 partial correlation
matrix, from which we selected the correlation coefficients corresponding
to our seven components of interest (i.e., subnetwork edges). In total,
21 subnetwork edges were extracted and included in the subsequent
analyses.

Calculating subnetwork amplitudes: In additional to pairwise partial
correlations between these seven subnetworks, we further considered the
signal amplitude of each subnetwork as the brain network variables. The
amplitude is defined as the standard deviation of the ICA component
timeseries [36]. Previous work has shown that amplitudes capture the
overall signal fluctuations within each subnetwork and can offer
complementary information in relation to behavioral measures. For
example, a recent study using the UK Biobank dataset demonstrated
independent associations between network amplitudes and behavioral
measures in addition to connectivity strength [46]. Thus, we also included
seven subnetwork amplitudes in the subsequent analyses.

Overview of resting-state measures: In summary, subnetwork edges
from the partial connectivity matrix indicate the connection strength
between each pair of seven subnetworks while controlling for all other ICA
components, whereas subnetwork amplitudes capture the variance of
signal changes within each subnetwork. In total, 28 brain measures
including 21 partial connectivity strength measures (i.e., subnetwork
edges) and seven amplitudes were included (see the overlayed subnet-
works in Fig. 1; also see subnetwork selection in Fig. S1). All of these

resting-state imaging measures are available from the UK Biobank
showcase (bulk field IDs 25753 and 25755).

Statistical analysis
Separate statistical analyses were performed to examine the shared brain
network architecture and genetic architecture between mental health and
physical activity (see Fig. 1 for an overview of the relevant variables and
analyses).

Shared variance between mental health and physical activity. Pearson’s
correlation was used to identify the shared variance between phenotypes
of mental health and physical activity. As we decomposed the data of
mental health into principal components, all correlations were performed
using the individual-specific component scores. We further calculated the
false discovery rate (FDR) to account for multiple testing on all pairwise
correlations between mental health and physical activity phenotypes.

Brain associations with mental health and physical activity. Canonical
correlation analysis (CCA) has been recognized as a key tool for population
neuroimaging that allows for investigating associations between imaging
and non-imaging variables [57]. Here in this study, CCA was performed to
investigate the associations of brain measures with physical activity and
with mental health separately (i.e., simple CCA models). Specifically, CCA
finds a linear combination of brain measures that is maximally correlated
with a linear combination of mental health or physical activity variables
respectively, as defined in Y * A= U ~ V= X * B [58] where Y is the set of
brain measures, X the set of mental health or physical activity measures, A
and B are the linear weights, and U and V the canonical variables or
canonical variate pair. The canonical correlation for each pair of canonical
variates is defined as the correlation between U and V. Canonical loadings
that indicate the shared variance between the original observations and
canonical variables are calculated as the correlations between Y and U, or
between X and V.
To further identify unique brain associations with physical activity and

with mental health respectively, variance in brain network data explained
by one set of variables was partialled out in the CCA model for the other
set of variables (i.e., the unique CCA model included physical activity
measures as covariates in the model for assessing brain-mental health
associations and vice versa). Confounding variables (see details below)
were included in all four CCA models and statistical inference for CCA
results was made via 1000 permutations (i.e., breaking correspondence of
participant identity with brain measures and mental health/physical
activity measures), as implemented in the permCCA package [57]. Notably,
the CCA model with the largest number of non-confounding variables

Fig. 1 Overview of variables and analyses. Separate analyses were conducted for brain (left panel) and genetic associations (right panel). For
brain associations, canonical correlation analysis (CCA) was employed for mental health (MH), and physical activity (PA) separately. Simple and
unique CCA models only differed in whether the shared variance between MH and PA was accounted for. For genetic associations, GWAS
summary statistics for five mental health phenotypes (MHP1-MHP5) and for five physical activity phenotypes (PAP1–PAP5) were leveraged into
pairwise linkage disequilibrium score regression (LDSR) analyses, in MHP and PAP models separately. Genomic structural equation modeling
(gSEM) was also employed to identify genetic associations between a latent factor from MH phenotypes and each PA phenotype, followed by
a latent causal variable analysis (LCV) that allows for inferring causal genetic relationships among MH and PA phenotypes.

W. Zhang et al.

4

Translational Psychiatry          (2022) 12:428 



included 28 brain measures and 21 physical activity measures, resulting in
a ratio of ~130 observations (i.e., individuals) per feature. This is expected
to ensure sufficient stability for our study [59].
To further investigate whether the patterns of brain measures in relation

to mental health and physical activity overlap, posthoc analyses were
carried out to test the significance of canonical loadings for each individual
brain variable. Specifically, we aimed to determine whether the same brain
measures contributed significantly to the canonical associations both with
mental health and physical activity, and thus could indicate a shared brain
basis. These analyses were conducted only for significant canonical
variates within each individual CCA model. Significance of canonical
loadings was inferred using permutation testing, where the correspon-
dence between brain measures and mental health/physical activity
measures for each individual participant is shuffled. Specifically, canonical
loading for each brain variable was recorded per permutation, which
resulted in separate null distributions of loadings for each brain variable.
The loadings from the true (unpermuted) CCA were then compared
against the matching null distributions for each individual brain variable.
Statistical significance was determined as the proportion of permuted
loadings equal to or higher than the observed loadings from the
unpermuted analysis, divided by the total number of 1000 permutations.
These permutation-derived p values were further corrected for the number
of significant canonical variates within each model (i.e., record the
permuted loadings across canonical variates). To compare brain variable
patterns across different CCA models, we matched the first significant
canonical variates from each model based on the correlations between the
canonical variate for the brain measures (i.e., correlating the vector U
obtained from the mental health CCA models with the vector U obtained
from the physical activity CCA models).
To characterize the individual mental health questions and physical

activity types in relation to the tested brain associations, we further
examined the loading patterns of each individual question and physical
activity type for the first canonical variate from all models, without testing
for statistical significance.

Shared genetic architecture between mental health and physical activity.
Genetic correlations between mental health and physical activity were
examined by leveraging GWAS summary statistics for the relevant
phenotypes.

Summary statistics: The mental health questionnaire used in this study
includes items that measure neuroticism, anxiety, subjective well-being,
depression, and risk-taking. We, therefore, sought to obtain summary
statistics for these psychopathological phenotypes. First, we extracted
summary statistics for Neuroticism from a GWAS meta-analysis of self-
reported neuroticism in the UKB (using the same questions as in our study)
and Psychiatric Genetics Consortium (using the NEO-FFI personality
inventory) [60]. For Generalized Anxiety Disorder, we leveraged summary
statistics from a GWAS of self-reported Generalized Anxiety Disorder 2-item
scale scores in the Million Veteran Program [61]. We further obtained
summary statistics for Subjective Well-Being from a GWAS meta-analysis of
life satisfaction, positive affect, or both life satisfaction and positive affect
across 59 cohorts [62]. For Major Depressive Disorder, we meta-analyzed
summary statistics from case-control GWAS in the UK Biobank and
Psychiatric Genomics Consortium [63] and the Million Veteran Program
[64] (see Supplementary Results for further details). Lastly, we obtained
summary statistics for Risk Taking from a GWAS study using the UKB data,
which included the same question of risk-taking as in our study [65].

Although these psychopathological phenotypes obtained from the
independent GWAS studies were not directly equivalent to the phenotypes
derived from the mental health questionnaire in our brain association
analyses due to different measurements, the underlying constructs of
depression, anxiety disorders, neuroticism, subjective well-being, and risk-
taking are identical. The phenotypes obtained to conduct genetic
association analyses are therefore similar to those in the brain association
analyses.
Summary statistics for accelerometer data-derived physical activity

phenotypes, including moderate activity, overall activity, sedentary activity,
walking, and sleep duration were derived from a GWAS of N= 91,105
participants of European ancestry in the UK Biobank [48]. The exact
phenotypes were also included in our brain association analyses.
Please refer to Table 2 for an overview of all the summary statistics used

in this study, including sample size and SNP heritability.

Genetic correlations: We used linkage disequilibrium score regression
(LDSR) and genomic structural equation modeling (gSEM) to test whether
the genomic architecture associated with general mental health is shared
with physical activity. LDSR leverages GWAS summary statistics to estimate
genetic correlations by regressing the SNP statistics on the SNP linkage
disequilibrium (LD) scores, or correlations between nearby genomic loci
due to population stratification (i.e., systematic differences in allele
frequencies due to differences in ancestry). gSEM characterizes the latent
genetic architecture across phenotypes based on the LDSR-derived genetic
correlation matrices [66]. To this end, we first applied LDSR to existing
GWAS summary statistics of psychopathological phenotypes (i.e., neuroti-
cism, generalized anxiety disorder, subjective well-being, major depressive
disorder, and risk-taking) and physical activity phenotypes (i.e., overall
activity, moderate activity, sedentary activity, sleep duration, and walking),
respectively, to estimate pairwise genetic correlations within each
construct (i.e., within mental health and within physical activity,
respectively). We also examined genetic correlations between mental
health phenotypes and physical activity phenotypes adjusted for sex and
BMI. We then applied gSEM to the covariance matrix of psychopathology
and that of physical activity separately, allowing one single latent factor to
load freely within each model. Metrics indicating model fit (i.e., CFI,
comparative fit index; SRMR, standardized root mean squared residual) and
factor loadings from each of these models were used to determine
whether one common genetic factor fit the physical activity and mental
health data well, respectively.
Because our results indicated a poor model fit for some gSEM analyses

(see details below in Results section 3.3), we focused on the model of
mental health, where “risk-taking” was excluded to generate a latent factor
of “negative affect” across other phenotypes. Specifically, we explored
genetic correlations between the latent factor of “negative affect” (i.e.,
without risk-taking) and each of the five physical activity phenotypes. In
addition, we examined genetic correlations between “risk-taking” alone
and each individual physical activity phenotype, using LDSR. FDR
correction was used to correct for multiple testing (N= 10 tests). We also
repeated analyses that returned significant results, with adjustment for sex
and BMI. Adjusted summary statistics from Doherty and colleagues (2018)
were used in these analyses.

Causal relationships: To examine plausible causal associations
between physical activity phenotypes and negative affect, we conducted
a Latent Causal Variable Analysis (LCV). This approach finds a latent
variable that mediates the genetic correlation between two traits, such as

Table 2. Summary statistics from GWAS studies.

Reference Phenotype Dataset Sample size SNP h2

Nagel et al. 2018 [60] Neuroticism UK Biobank & PGC 390,279 0.10

Levey et al. 2020 [61] GAD Million Veteran Program 199,611 0.056

Okbay et al. 2016 [62] SWB Meta-analysis across 59 cohorts 298,420 0.040

Howard et al. 2019 [63] MDD UK Biobank & PGC 500,199 0.11

Levey et al. 2021 [64] Million Veteran Program 250,215

Linnér et al. 2019 [65] Risk-taking UK Biobank 431,126 0.050

Doherty et al. 2018 [48] Physical activities UK Biobank 91,105 0.10–0.21

GAD general anxiety disorder, SWB subjective well-being, MDD major depressive disorder, PGC Psychiatric Genetics Consortium.
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negative affect and sleep duration. Generally, if the latent variable has a
stronger genetic correlation with trait 1 (e.g., sleep duration) than with trait
2 (e.g., negative affect), part of the genetic component of trait 1 is thought
to be causal for trait 2. This partial causality can be quantified using the
genetic causality proportion (GCP) of trait 1 (sleep duration) on trait 2
(negative affect), which can range between 0 (no partial genetic causality)
and 1 (full genetic causality) [67]. The advantages of using LCV over the
more traditional Mendelian Randomization for causal inference include
increased power by leveraging SNPs across the genome and less
susceptibility to confounding by horizontal pleiotropy [67].

Confounding variables
Based on the literature, BMI, smoking, and drinking status were included as
confounding factors in all statistical analyses for brain associations [68, 69].
Age, sex, head motion during rs-fMRI acquisition (i.e., mean frame-wise
displacement), time difference in days between accelerometer recording
(i.e., start date) and assessment center visit date (i.e., acquisition date for
both mental health questionnaire and rs-fMRI), as well as the scanning site
were further included. Due to varying degrees of missingness in the
confound variables (i.e., up to 22%), the same imputation procedure, as
described in Section 2.2.2, was performed except that additional usage of
multinomial logistic regression was employed to impute categorical data
with more than two levels (i.e., smoking and drinking status). Complete
observations from all variables including the confounding variables were
used in the imputation procedure. When calculating the final predicted
values to replace missing data, the predicted values for continuous
variables were averaged across 20 iterations and the level with the highest
count across iterations was selected. All categorical variables after
imputation were dummy coded for subsequent statistical analyses.
In the genetic correlation analyses, to ensure robust test effects, we

repeated models with significant results including sex and BMI as
covariates.

RESULTS
Correlations between mental health and physical activity
measures
In this sample, phenotypic measures of mental health and physical
activity demonstrated overall small but significant correlations,
with coefficients ranging between –0.08 and 0.11 (FDR-corrected p
values ≤0.045). As shown in Table 1, the mental health measures
(i.e., principal component scores of the seven principal compo-
nents) were broadly associated with all physical activity measures.
In particular, sleep showed the strongest association with the first
principal component (PC1) of mental health such that greater
sleep duration was associated with poorer overall mental health
(i.e., loadings of PC1 were mostly negative as shown in Table S1),
and walking had the greatest association with the fifth principal
component (PC5) of mental health such that higher depression
scores were linked to reduced walking time. The overall coefficient
patterns were largely consistent for correlations between physical
activity and mental health measures despite minor differences
across different time windows (i.e., overall, weekdays, weekend;
see full correlations in Table 1).

Shared neural correlates of mental health and physical
activity
Brain associations with mental health and physical activity. In
simple CCA models (i.e., without accounting for the potentially
shared variance in brain measures between physical activity and
mental health), 2 and 3 significant canonical variate pairs were
observed, respectively, for brain-mental health (r1= 0.16,
p1= 0.001; r2= 0.12, p2= 0.001) and brain-physical activity
associations (r1= 0.23, p1= 0.001; r2= 0.15, p2= 0.001; r3= 0.13,
p3= 0.047). When controlling for the shared variance in brain
measures between mental health and physical activity (i.e., unique
models), we found 2 significant canonical variates for both brain-
mental health (r1= 0.14, p1= 0.001; r2= 0.12, p2= 0.002) and
brain-physical activity associations (r1= 0.21, p1= 0.001; r2= 0.15,
p2= 0.001), with slightly decreased canonical correlation

coefficients comparing to those from the simple models. The
canonical variates for brain measures after accounting for the
shared variance (i.e., from the unique models) mapped well with
those from the simple models, as indicated by correlation
coefficients between brain canonical variables (i.e., U; all r’s
>0.96; see full results in Table S2). These results are in line with our
expectations that both mental health and physical activity are
closely associated with the functional networks under investiga-
tion and that mental health and physical activity have shared
variance in the functioning of these networks, as indicated by the
reduced canonical correlation coefficients from the unique
models.

Canonical loadings of brain measures. Findings from the post-hoc
analyses on the significant canonical variates showed considerable
overlap between the brain measures with significant loadings
associated with mental health and with physical activity. Overall,
the amplitude of subnetworks that indicates the overall signal
fluctuations in each subnetwork over time loaded higher than the
edges, with the highest loadings on the amplitude of dorsal DMN
or left CEN for the first canonical variates in both the mental
health and physical activity models (permuted p values ≤ 0.001;
Fig. 2). This suggested that the magnitude of fluctuations of intra-
network signal (i.e., amplitude) had higher contributions to the
observed canonical associations with both mental health and
physical activity than the inter-network connectivity strength. The
similar loading pattern of all brain measures was largely retained
even when the shared variance was partially out for mental health
and for physical activity, respectively, in the unique models
(permuted p values ≤ 0.035). In addition to amplitude, connectivity
between the dorsal DMN and left CEN (i.e., subnetwork edge) also
exhibited statistically significant loadings in the first canonical
variates of both the mental health and the physical activity models
(simple and unique models; permuted p values ≤ 0.001; Fig. 2). The
brain variable loadings for the second canonical variate were
highly similar between simple and unique models for either the
mental health or physical activity models, with the amplitude and
subnetwork edges showing evenly important involvement. Yet,
the patterns of these loadings differed between the mental health
and physical activity model (Fig. S2).

Canonical loadings of mental health questions and physical
activities. Canonical loadings of both individual mental health
questions and physical activity types for the first canonical variate
pair also exhibited similar patterns between the simple and
unique models (Fig. S3). In the models for brain-mental health
associations, “risk taking” and “ever irritable/ argumentative for
2 days” had the highest loadings in both simple and unique
models, whereas in the models for brain-physical activity
associations, “walking” in all time windows (i.e., overall, weekdays,
weekend) showed the greatest importance across models.
Interestingly, among all physical activity types, only “sleep”
showed the opposite direction in canonical loadings (Fig. S3).

Genetic correlations
Genetic correlations for individual phenotypes. Pairwise LDSR was
performed separately for psychopathological phenotypes and
physical activity phenotypes. All results were significant after
controlling for multiple comparisons, except for the genetic
correlations between neuroticism and risk-taking (rg= 0.039,
p= 0.075), and between subjective well-being and risk-taking
(rg= 0.054, p= 0.146; Fig. 3). Specifically, among psychopatholo-
gical phenotypes, the smallest significant genetic correlation was
observed for generalized anxiety disorder and risk-taking (rg=
0.151, p= 2.69e-05, FDR-corrected p value= 3.36e-05), and the
largest effect was observed for MDD and generalized anxiety
disorder (rg= 0.768, p= 2.62e-90, FDR-corrected p value= 1.31e-
89). For physical activity, genetic correlations ranged from −0.217
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(p= 1.03e-04, FDR-corrected p value= 1.03e-04) for sleep dura-
tion and walking, to 0.796 (p= 1.77e-31, FDR-corrected p value=
8.85e-31) for moderate and overall activity (Fig. 3). Physical
activity phenotypes adjusted for sex and BMI largely recapitulated
these results, with genetic correlations ranging from −0.209
(p= 2.49e-04, FDR-corrected p value= 2.49e-04) for sleep dura-
tion and walking, to 0.780 (p= 2.12e-23, FDR-corrected p value=
1.06e-22) for moderate and overall activities.

Genetic correlations for latent factors. Analyses using gSEM across
all mental health phenotypes returned results indicating

suboptimal estimations with a low factor loading on risk-taking
from the model for a general psychopathology latent factor
(standardized loading= 0.065), which likely reflected its concep-
tually distinct construct from all other phenotypes (i.e., depression,
anxiety, neuroticism, and subjective well-being). Additionally,
initial gSEM results for physical activity phenotypes indicated
overall poor model fit (CFI= 0.569, SRMR= 0.160; Fig. S4). Thus,
we performed gSEM for psychopathological phenotypes grouped
as one “negative affect” latent factor after excluding “risk-taking”,
with an effective sample size of 571,170 and good model fit
(CFI= 0.987, SRMR= 0.0535; Fig. S5). After correction for multiple

Fig. 2 Canonical loadings of brain measures on the first canonical variate pair. These loadings represent the linear correlation between the
original brain measures (Y) and the first canonical variate pair (U) per model. Color coding was made for brain variable names along the Y axis
(i.e., subnetwork edges in gray with “-” between subnetwork names and amplitude in orange), and for the bars representing canonical
loadings (i.e., significance in cyan, insignificance in yellow). Simple and unique models differ in whether the model accounted for the shared
variance in brain measures between mental health and physical activity. vDMN ventral default mode network, R/L CEN right/left central
executive network, PCu precuneus, a/p SN anterior/posterior salience network.
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testing, genetic variance in negative affect was significantly and
positively correlated with sleep duration (rg= 0.121, p= 1.25e-05,
FDR-corrected p= 1.25e-04), and negatively correlated with
moderate (rg=−0.117, p= 1.33e-03, FDR-corrected p= 4.43e-
03) and overall activity (rg=−0.085, p= 7.70e-04, FDR-corrected
p= 3.85e-03; Fig. 4; also see the results for a latent negative affect
factor including “risk-taking” in the Supplementary Results). No
significant genetic correlation was observed between negative
affect and sedentary activity or walking after multiple comparison
corrections (|rgs| ≤ 0.062, p values ≥0.036, FDR-corrected p
values ≥ 0.060; Table 3). Post-hoc analyses revealed that after
adjustment for sex and BMI, only the genetic correlation between
negative affect and sleep duration remained significant (rg=
0.122, p= 9.38e-06). Using LDSR, risk-taking was genetically
correlated with both overall activity and walking (|rgs| ≥ 0.074,
ps ≤ 0.020, psFDR ≤ 0.040) but not moderate or sedentary activity
or sleep duration (|rgs| ≤ 0.081, ps ≥ 0.092).

Latent causal variable analysis. Results from the LCV analyses did
not indicate causal relationships between any physical activity
phenotypes and negative affect, in either direction (|GCPs| <0.425;
ps > 0.163).

DISCUSSION
In this study, we investigated whether mental health and physical
activity have shared brain and genetic architectures using the UK
Biobank cohort. Our findings showed significant associations of
mental health and physical activity separately with a set of brain
measures that represent the connectivity strength and amplitude
of subnetworks from the DMN, SN, and CEN. Critically, these
significant associations exhibited highly similar patterns of brain
variable loadings across mental health and physical activity
models, even when the shared variance between these two
constructs was accounted for, suggesting a potential overlap in
brain network architecture between these two constructs. Further
analyses examining genetic correlations for mental health and
physical activity showed that negative affect exhibited significant
genetic correlations with several physical activity types, of which
sleep duration demonstrated the strongest genetic correlation
that remained significant after controlling for BMI and sex effects.
Together, these results support the presence of shared multi-
variate brain and genetic architectures between mental health
and physical activity.
The three intrinsic brain networks, namely the DMN, SN, and

CEN, have been consistently implicated in a wide range of

Fig. 3 Heatmap of bivariate genetic correlations. Pairwise genetic correlations were calculated separately for phenotypes of mental health
(A) and those of physical activity (B). rg genetic correlation coefficient, GAD generalized anxiety disorder, MDD major depressive disorder, Risk
risk tolerance, SWB subjective well-being.

Fig. 4 Genetic correlations between negative affect and physical activity phenotypes. Significant genetic correlations with negative affect
were observed for moderate (A), overall activities (B), and sleep duration (C). The latent negative affect factor loaded positively on neuroticism,
major depression disorder (MDD), and general anxiety disorder (GAD) phenotypes, but negatively on the subjective well-being (SWB)
phenotype.
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psychiatric disorders including major depression and anxiety [10].
Interestingly, connections between or the configurations of these
networks have also been associated with physical exercises
[71, 72]. The current study therefore focused specifically on the
subnetworks from these large-scale networks and used the
amplitude and connectivity strength (i.e., subnetwork edge) to
examine the associations of these networks with mental health
and with physical activity, respectively. In line with the literature,
we observed significant multivariate associations for all three
networks with either mental health or physical activity, and
significant loadings on most of the subnetworks. In particular, the
dorsal DMN and left CEN showed the greatest involvement in the
observed brain associations with both mental health and physical
activity (Fig. 2). In this study, the dorsal DMN subnetwork primarily
consisted of the PCC and the ventromedial prefrontal cortex
(vmPFC), the two brain areas that are commonly considered as the
core subsystem of the DMN [73]. Similarly, the subnetwork of the
CEN here included the two most typical hub regions: the
dorsolateral prefrontal cortex (dlPFC) and posterior parietal cortex
for each individual hemisphere (Fig. S1). These major hubs of the
DMN and CEN have been implicated in various mental illnesses
including depression and anxiety. For example, the PCC and mPFC
have been suggested to collectively support multiple cognitive
functions including decision-making and memory [74], the
impairment of which has often been reported in patients with
major depression and anxiety disorders [75–77]. Additionally, the
dlPFC is known to be involved in emotion regulation [78–80] and
dysfunction of this region is often seen in abnormal processing of
emotional experiences in patients with depressive and anxiety
symptoms [81, 82]. As for physical activity, increased dlPFC activity
has been observed after acute physical exercises in participants
with higher scores in the Stroop test [83], whereas the
involvement of the DMN subsystems in the medial temporal lobe
including the hippocampus and its connection with the medial
PFC is often observed in relation to enhanced memory after
physical exercises [20, 84, 85]. In our findings, the amplitude of
dorsal DMN and left CEN that indicated the magnitude of
fluctuations of intra-network signal (i.e., variance in the connec-
tions between PCC and vmPFC or between dlPFC and PCC), as well
as the connectivity strength between these two subnetworks,
showed significantly high loadings for the most critical association
between brain measures and mental health measures (i.e., the first
canonical variate). These observations are in line with separate
literature on mental health and physical activity, and provide
empirical evidence that mental health and physical activity may
share brain architecture involved in major cognitive functions.
Interestingly, mental health and physical activity also appear to

have partially overlapping genetic architectures. In line with previous

reports that internalizing problems are negatively genetically
correlated with physical movement [45], we showed that a latent
negative affect factor capturing genetic covariance between
subjective well-being, neuroticism, major depressive disorder, and
generalized anxiety disorder was negatively genetically correlated
with overall physical activity as well as a more fine-grained
phenotype of moderate activity, and positively genetically correlated
with sleep duration. Protective effects of physical activity on mental
health have long been documented, as have negative health
consequences of psychiatric disorders [5–7, 86]. Here, we demon-
strate that these relationships can be partially explained by shared
genetic predisposition, although results from our latent causal
variable analysis indicate that these associations do not reflect causal
influences. Interestingly, with the adjustment of sex and BMI, only the
correlation with sleep duration remained significant. Sleep duration
also showed the lowest loading onto a latent physical activity genetic
factor (Fig. S4). These results suggest that the sleep phenotype is
somewhat distinct from the remaining physical activity phenotypes
and that the shared genetic architecture between negative affect and
sleep duration is more pronounced than that between negative
affect and the degree of daily physical or sedentary activity. This is in
line with the frequent documentation of symptomatic sleep
disturbances across forms of psychopathology, including depression
and anxiety [87, 88], even in children [89]. This also aligns well with
the literature showing reduced sleep duration in older adults with
depression and anxiety disorders [90–92].
Despite being the first to jointly investigate the shared brain

network architecture and genetic basis of mental health and
physical activity in a large population cohort, our study has some
limitations. First, the brain measures in our study are derived from
resting-state fMRI measures. Although our choice reflected a rich
literature that has implicated these measures in both mental health
and physical activity, addressing smaller-scale brain structures (e.g.,
specific regions) with relevant hypotheses and inclusion of multi-
modal brain measures such as structural gray matter volume,
cortical thickness, and white matter integrity can provide comple-
mentary insights into brain architecture in relation to mental health
and physical activity, and thus may be of interest for future
investigations. Second, although the accelerometer recording took
place prior to the acquisition of resting-state fMRI and mental health
assessment for most of the participants in our study (i.e., 96%), the
degrees of the time difference between these measurements varied
greatly at the individual level (i.e., ranging between −473 and
2281 days). This time discrepancy was accounted for in all CCA
models as a covariate and caution should be taken when
interpreting the observed brain associations with reference to time
effects. It should also be noted that the mean age of the current
sample is relatively high as the UKB cohort comprises predominantly

Table 3. Genetic correlations between mental health and physical activity phenotypes.

Mental health phenotype Physical activity phenotype rg p pFDR

Risk tolerance Sleep duration −0.029 0.433 0.447

Sedentary −0.028 0.447 0.447

Moderate 0.081 0.092 0.131

Walking 0.115 4.95e-3 0.012

Overall 0.074 0.020 0.040

Negative affect Sleep duration 0.121 1.25e-5 1.25e-4

Sedentary −0.062 0.036 0.060

Moderate −0.117 1.33e-3 4.43e-3

Walking −0.029 0.383 0.447

Overall −0.085 7.70e-4 3.85e-3

Significant results after FDR corrections were highlighted in bold.
rg genetic correlation, pFDR FDR-corrected p value.
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middle-to-late aged individuals. Our findings therefore should be
interpreted carefully in the relevant context. Lastly, socioeconomic
variables including education attainment can be relevant to mental
health and physical activity phenotypes, and the inclusion of these
variables as confounding factors may be considered in future
investigations.
In conclusion, our study jointly analyzed resting-state network

measures and genetic correlations in a large cohort to test the
hypothesis of a shared neurobiological basis for mental health and
physical activity. Our findings revealed that multivariate patterns of
brain correlates were highly similar between mental health and
physical activity and highlighted genetic correlations between
mental health (negative affect) and overall physical activity, moderate
activity levels, and sleep duration. Taken together, these findings
point towards neural and genetic mechanisms that may subserve the
protective influence of physical exercise and sleep on mental health.

DATA AVAILABILITY
The UK Biobank data used in this study can be accessed by researchers upon
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data from statistical analyses and code for producing the figures on the Open Science
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lukejoconnor/LCV). The Matlab code for running permutation inference for CCA are
also available on github, including the new extension for testing canonical variable
loadings (https://github.com/andersonwinkler/PermCCA). We performed Pearson’s
correlations and imputations in R (version 4.1.0) [70], using basic stat function and
MICE package [47], respectively. Genetic analyses including LDSR and gSEM were
performed using the GenomicSEM package also in R [66], with code available on
github (https://github.com/GenomicSEM/GenomicSEM). All the code used for
statistical analyses and visualizations in this study is shared on the Open Science
Framework (https://osf.io/p3fzv/).
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