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Epigenetic signatures relating to disease-associated genotypic
burden in familial risk of bipolar disorder
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Environmental factors contribute to risk of bipolar disorder (BD), but how environmental factors impact the development of
psychopathology within the context of elevated genetic risk is unknown. We herein sought to identify epigenetic signatures
operating in the context of polygenic risk for BD in young people at high familial risk (HR) of BD. Peripheral blood-derived DNA was
assayed using Illumina PsychArray, and Methylation-450K or -EPIC BeadChips. Polygenic risk scores (PRS) were calculated using
summary statistics from recent genome-wide association studies for BD, major depressive disorder (MDD) and cross-disorder (meta-
analysis of eight psychiatric disorders). Unrelated HR participants of European ancestry (n= 103) were stratified based on their BD-
PRS score within the HR-population distribution, and the top two quintiles (High-BD-PRS; n= 41) compared against the bottom two
quintiles (Low-BD-PRS; n= 41). The High-BD-PRS stratum also had higher mean cross-disorder-PRS and MDD-PRS (ANCOVA
p= 0.035 and p= 0.024, respectively). We evaluated DNA methylation differences between High-BD-PRS and Low-BD-PRS strata
using linear models. One differentially methylated probe (DMP) (cg00933603; p= 3.54 × 10−7) in VARS2, a mitochondrial aminoacyl-
tRNA synthetase, remained significantly hypomethylated after multiple-testing correction. Overall, BD-PRS appeared to broadly
impact epigenetic processes, with 1,183 genes mapped to nominal DMPs (p < 0.05); these displayed convergence with genes
previously associated with BD, schizophrenia, chronotype, and risk taking. We tested poly-methylomic epigenetic profiles derived
from nominal DMPs in two independent samples (n= 54 and n= 82, respectively), and conducted an exploratory evaluation of the
effects of family environment, indexing cohesion and flexibility. This study highlights an important interplay between heritable risk
and epigenetic factors, which warrant further exploration.

Translational Psychiatry          (2022) 12:310 ; https://doi.org/10.1038/s41398-022-02079-6

INTRODUCTION
Bipolar disorder (BD) is a highly heritable mental illness, for which
genetic factors explain ~60–85% of risk variance [1]; the remaining
variance is explained by non-genetic factors, including environ-
mental contributors. First-degree relatives of probands with BD
have 5–10-fold increased risk of developing BD themselves [1–3],
and are at increased risk of broader psychopathology [4, 5],
including major depression, anxiety, behavioural and substance
use disorders; therefore, young first-degree relatives of those with
BD are considered high risk (HR) for later mental illness. The
elucidation of clinical antecedents of the BD prodrome is an active
research area [6–10], but specific precursors are heterogeneous,
and biomarkers of risk trajectories are a research priority.
Genome-wide association studies (GWAS) have identified many

single nucleotide polymorphisms (SNPs) associated with increased
disease risk, each with small individual effect [11–13]. Many
disease-associated SNPs are shared amongst psychiatric disorders,

with substantial genetic correlation between BD and schizophre-
nia, and BD and major depressive disorder (MDD) [13–17]. GWAS
have demonstrated the polygenic nature of BD, where common
SNPs identified to date collectively account for ~25% of the
estimated heritability [12–15]. Indeed, individuals with polygenic
risk scores (PRS) at the extremes of a population distribution have
substantially altered risk of developing a psychiatric disorder—
those in the top 10% of the BD-PRS distribution have an odds ratio
of 9.3 of developing BD compared to the lowest decile [13]—yet
the predictive capacity of PRS is currently limited [18], with
inadequate sensitivity and specificity as PRS will only capture part
of the genetic contribution [19]. SNP-based heritability falls short
of heritability estimates from family, twin and epidemiologic
studies; [20] the latter approaches typically employ models that
include additive genetic and common/unique environmental
factors (and their interaction), whereas SNP-based heritability
estimates typically only model additive genetic variance [20].
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Moreover, some of the “missing heritability” may also reside in
rare variants not captured by GWAS [21–23], and/or relate to other
familial factors that are not encoded in nucleotide-level DNA
sequence variation.
Family history is the strongest current predictor of future BD [7]

and is sometimes posited as a proxy for genetic transmission, but
likely reflects dynamic gene-environment interplay from precon-
ception through the life span. Twin studies also indicate
environmental contribution to BD [24]. Several environmental risk
factors have been posited—including prenatal infections, child-
hood maltreatment, and psychological stress [25]—but the
attributable impact of such factors is small and not disease-
specific. Families that include a parent with BD have lower parent-
reported cohesion compared to families with no parental
psychiatric disorders [26], and while offspring-centred reports
are less common, child reports of lower cohesion and adaptability,
and higher conflict environments are also noted [27]; these factors
potentially confound family history with environmental elements.
Furthermore, children who experienced early maternal loss have a
four-fold increased risk of BD [28], suggesting that early trauma
and altered home-environment dynamics may influence disease
trajectory. Indeed, children are influenced by both genes and
environment provided by parents, which cannot be easily
disambiguated to apportion causation [29]. Moreover, environ-
mental effects are likely conditional on genetic factors, which are
only partially appraised by existing gene-environment studies [30].
Also, genetic nurture may include indirect genetic effects from
parental genes that are not transmitted [31]. Thus, there is
increasing interest in the role of specific gene-environment
interactions, as well as the mechanisms by which risk factors
interact in the development of BD [32].
Environmental factors can potentially impact gene expression

through epigenetic modulations [33]. One of the most studied
epigenetic processes is DNA methylation; the addition of a methyl
group to the 5′ cytosine of a cytosine-guanine sequence (CpG) [33].
To date, there are no large-scale epigenome-wide studies in BD [34],
although several candidate-gene epigenetic studies [35, 36] and
pharmaco-epigenomic studies of antipsychotic medicines [37] have
been performed. Furthermore, GWAS signals for schizophrenia—a
condition that shares genetic overlap with BD [17, 38]—are enriched
in human-specific methylated regions [39], implying mechanistic
overlap between genetic and epigenetic risk. Interestingly, a recent
epigenetic element-based transcriptome-wide association study
identified genes that contribute to BD heritability beyond those
explained by GWAS-associated SNPs [40], suggesting that epigenetic
regulation may further contribute to heritability. Epigenetic factors
may even contribute to transgenerational genomic regulation [41],
although this mechanism of genomic transmission in humans
remains controversial [42].
To identify biomarkers for illness-onset, a prospective long-

itudinal approach is required. One small prospective study that
compared HR participants who developed BD or MDD (n= 22) to
those who remained well (n= 23) identified 22,543 nominally
differentially methylated CpGs (p < 0.05) [43], although no probe
passed epigenome-wide correction for multiple testing. To date,
the characterisation of methylation differences relating to poly-
genic burden in individuals with familial risk for BD has not been
performed. Thus, we undertook the identification of differentially
methylated positions (DMPs) in young HR participants, stratified
by genetic burden of common BD-associated risk alleles, to
characterise epigenetic modifications operating beyond polygenic
additive risk. Methylation signatures derived from the cumulative
effect of multiple CpGs were then validated in independent
samples of BD cases, HR, and controls. Finally, the impact of family
environment measures on methylation signatures were explored,
to further understand relationships between familial and environ-
mental risk factors associated with the development of
psychopathology.

MATERIALS AND METHODS
An overview of the approach is summarised in Fig. 1.

Study participants
Australian participants were aged 12–30 years and recruited as previously
described [44, 45]. Briefly, HR and BD participants were recruited from
families who had previously participated in BD family studies, specialised
BD research clinics, mental health consumer organisations, or response to
public notices. BD cases met DSM-IV criteria for BD type-I (BD-I) or type-II
(BD-II). HR participants were the children or siblings of individuals with
DSM-IV diagnoses of BD-I, BD-II, or schizoaffective disorder–bipolar-type
(SABP), and did not personally have threshold diagnoses of these
conditions at baseline (participants with sub-threshold BD “not otherwise
specified” (BD-NOS) were not excluded). Control participants (CON) were
recruited via print/electronic media, and noticeboards in universities and
local communities. CON had no personal or familial (first-degree) history of
BD-I, BD-II, recurrent unipolar disorder, SABP, schizophrenia, recurrent
substance abuse or psychiatric hospitalisation, and no second-degree
relative with a past mood-disorder hospitalisation or history of psychosis.
Written informed consent was obtained from all participants, with
additional parental consent for participants aged <16 years. This study
was approved by University of New South Wales Human Research Ethics
Committee (HREC Protocol 09/097).
High-risk participants from the United States were aged 12–21 years,

and recruited from Indiana University, University of Michigan, Johns
Hopkins University, and Washington University in St. Louis (with site-
specific IRB approval), as previously described [46]. The US sites used
recruitment criteria and clinical assessments identical to those used at the
Australian site.

Clinical assessments
Structured interviews were administered by staff with extensive clinical
background and after specific training in each instrument, which
comprised a battery of structured clinical interviews, self-report ques-
tionnaires and clinician rated assessments. The Family Interview for Genetic
Studies (FIGS) [47] was administered to each participant or a member of
their family to determine family history of mood or psychotic disorder. To
determine psychiatric diagnoses for participants aged 12–21, both
participants and their parent/s completed the Kiddie-Schedule for Affective
Disorders and Schizophrenia for School-Aged Children–Present and Lifetime
Version (K-SADS-BP; v2, July 2009) [46, 48]. To determine psychiatric
diagnoses for participants aged 22-30 (including BD-probands), the
Diagnostic Interview for Genetic Studies (DIGS; v4.0/BP, July 2005) [49] was
administered. Consensus DSM-IV diagnoses were determined by two
clinicians (i.e., psychiatrists with child specialty training, clinical psychol-
ogists, or clinical social workers) using best-estimate methodology [50],
using the K-SADS or DIGS, FIGS, and medical records (where available).
Functional capacity was determined via Global Assessment of Functioning
(GAF) [51] or Clinical Global Impression (CGI) [52] rating scales.
A subset of participants completed the Family Adaptability and Cohesion

Evaluation Scales (FACES-II) [53], a 30-item questionnaire from which a total
score across the adaptability and cohesion subscales was used to represent
family environment (described in Supplementary Material).
One to four follow-up clinical interviews were performed on HR and

control participants to identify emergent psychopathology. Diagnoses
were assigned a confidence rating on a 4-point scale; only those that met
full DSM-IV criteria received a confidence rating ≥3. As previously
described by Frankland et al. [8], participants with a best-estimate
diagnosis of BD were categorised as either threshold converters (i.e. with
BD-I or BD-II; confidence level 3–4) or sub-threshold converters (i.e. with
BD-NOS; confidence level of 1–2); the latter diagnosis being made when
participants did not meet the minimum 4 day duration criterion, but
otherwise met full symptom criteria for hypomania. Participants (HR or
control) reaching threshold or sub-threshold criteria at follow-up assess-
ment for diagnosis of BD-I, BD-II, BD-NOS, with a confidence of ≥2 were
considered “BD-syndromic”, and those with no clinical diagnoses after
follow-up were considered “disorder-free”.

Genotyping and polygenic risk scores
Peripheral blood samples were collected, DNA extracted, and genotyping
performed on PsychArray-24 BeadChip as previously described [54] (details
in Supplementary methods). An independent sample of BD cases (n= 264;
described in [13] as “neuc1”) and controls (n= 1115) [55] were employed
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to infer optimal p value threshold for generation of PRS (pT; Supplementary
Methods, Fig. S1).
Polygenic risk scores (PRS) were generated using summary statistics

from the PGC GWAS for BD (n= 31,358 controls and n= 20,352 cases;
excluding 6,201 participants from GAIN, BMAU, FAT2, MICH datasets which
contained parents of some of the study participants) [12]. Data for MDD
(n= 561,190 controls and n= 246,363 cases) [56] and cross-disorder
(n= 494,162 controls and n= 232,964 cases with anorexia nervosa,
attention-deficit/hyperactivity disorder, autism spectrum disorder, BD,
MDD, obsessive-compulsive disorder, schizophrenia, and Tourette syn-
drome) [17] were also used. PRS were calculated in a single analysis for all
participants simultaneously using PRSice v2.2.13 [57], employing unrelated
individuals (identity-by-descent pi_hat < 0.1; Supplementary Methods)
identified as European-ancestry by multidimensional scaling analysis
(Supplementary Methods), and comparing BD cases to controls to define
optimal pT to explain the largest variance (Nagelkerke pseudo-R2);
phenotypes for HR were coded unknown/missing (-9). Polygenic scoring
employed linkage disequilibrium clumping, removal of strand-ambiguous
SNPs, and SNPs with MAF < 0.05 or low imputation quality (INFO < 0.8),
prior to PRS computation and use in subsequent analyses.

Demographic comparisons
Group differences were examined using univariate general linear ANCOVA
models, using SPSS Statistics for Windows v26 (IBM corp., Armonk, NY). For
PRS group level comparisons in the extended cohort, generalised
estimation equations (GEE) were employed to account for relationships
within families which contained multiple relatives, and included genotype-
derived MDS components (C1 and 2) as covariates.

Methylation analysis
Epigenome-wide methylation profiling. Methylation quantification was
performed on DNA derived from peripheral blood in four batches: batches
1 and 2 (both n= 96) employed the Illumina HumanMethylation450K
array, and batches 3 and 4 (n= 127 and 96, respectively) employed the
Illumina MethylEPIC BeadChip. The R package meffil [58] was used to

extract signal intensities and initial quality control (QC) within each batch
(Supplementary Material). The R package Shinymethyl [59] was used to
conduct principal component analysis and visualise outliers within each
batch. After removal of 11 technical replicates and 20 samples failing QC
procedures, 384 participants remained (round 1 n= 88, round 2 n= 96,
round 3 n= 118, round 4 n= 82) – 425,453 CpG probes that passed QC
and were represented on both 450k and EPIC chips then underwent
further filtering for EWAS as outlined below. To avoid potential bias in PRS
due to ethnicity [60], the cohort was restricted to unrelated European-
ancestry participants (Fig. S2), which were divided into Discovery and
Validation sets (described below and in Fig. 1). Normalisation of
methylation β values employed meffil, including technical covariates
(sentrix position and sentrix group; the latter unique across batches) [58].
Normalisation of batches 1–3 was performed simultaneously across all
three batches, and formed the Discovery Set and Validation Set 1, whereas
batch 4 was normalised separately as Validation Set 2.

Tissue source, smoking status and cell count estimates. DNA was derived
from three peripheral blood sources: whole blood, ficoll/buffy-coat, and
isolated lymphoblasts (details in Supplementary Material). To account for
inter-individual differences in cellular proportions, estimation of six cell
types (B cells, CD4T, CD8T, granulocytes, monocytes and natural killer) was
performed using meffil’s gse35069 profile [58]. Tissue source and cell count
estimates (Fig. S3) were included as covariates, as described below.
Lifetime tobacco use collected via KSADS was available for ~60% of

participants in this study, and current smoking status was available for
~16% (n= 36 out of 218 individuals; n= 5 current users, all in Validation
Set 2). To predict smoking status in all participants, normalised β values at
cg05575921 were used (Fig. S4), where β < 0.75 were classified as probable
smokers [61].

Discovery set: HR youth stratified by BD-PRS. To stratify HR participants on
the basis of their personal burden of BD-associated SNP variants, the
distribution of BD-PRS within the HR sample was divided into quintiles; this
stratification was undertaken on the basis that individuals with PRS in the
extremes of a population distribution have substantially altered risk of

Fig. 1 Schematic overview of methods and the derivation of discovery and validation samples. PRS polygenic risk score, PMPS poly-
methylomic profile score, HR high-risk individuals, CON control, BD bipolar disorder, HRunwell high-risk individuals who developed sub-
threshold or threshold BD at baseline or follow-up, HRwell high-risk individuals who remained well after follow-up, EA European ancestry
based on components from multidimensional scaling analysis of SNP genotype data.
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developing a psychiatric disorder [13]. Quintiles were chosen to balance
maximisation of the available sample, with exclusion of individuals with
intermediate scores reflecting ‘average’ SNP burden. Thus two comparator
groups were defined: the top two quintiles (40% of participants) formed
the High-BD-PRS group (n= 41) and the bottom two quintiles (40% of
participants) formed the Low-BD-PRS group (n= 41) (Table S1, Fig. 2).

Discovery EWAS: high vs. low-BD-PRS within HR youth
CpG selection: Probes were restricted to those which were: (1) variable
in our data (n= 249,436)—defined by >5% variability in the difference
between the 10th to 90th percentile range of β values across batches 1–3
[62], and (2) reported to be variable in blood (n= 244,724), as defined by
Edgar et al. [63], and 3) correlated between blood and brain (n= 42,364;
with mean r ≥ ±0.3 across prefrontal cortex, superior temporal gyrus and
entorhinal cortex) as defined by Hannon et al. [62]. Restricting the
discovery EWAS to variable blood-brain correlated probes had benefits in:
(1) reducing the EWAS search space, and (2) focusing on CpGs that are
likely to be functionally relevant in the primary disease-affected tissue.
Importantly, ‘probe SNPs’ as annotated in the Illumina manifest file were
removed prior to EWAS, to exclude direct effects of sequence variation out
to 50 bp (n= 6,455). The final probe set included 35,907 CpGs, and β
values for each probe were transformed into M-values using the ‘beta2m’
function in R package lumi [64].
Surrogate variable analyses: To identify and account for residual

unmeasured variation that was not corrected by normalisation of technical
covariates (sentrix position/chip/batch), the ‘be’ method in R package SVA
[65] was used to identify surrogate variables considering BD-PRS stratum
as the variable of interest (Low-BD-PRS= 0, High-BD-PRS= 1). Four
significant surrogate variables (p < 0.05) were identified and included in
downstream analysis.
EWAS: DMPs were identified using the R package limma [66], employing

a linear regression model, with normalised M-values as outcome and BD-
PRS stratum as predictor (Low-BD-PRS= 0, High-BD-PRS= 1). Covariates
included sex, age, two ethnicity components (MDS C1 and C2;
Supplementary Material), tissue source, blood-cell count estimates and
four surrogate variables.

Bias correction: The R package bacon [67] was applied to correct test-
statistic inflation, to minimise shift in distribution of effect sizes and risk of
false-positive findings. Empirical null estimates were generated using a
Gibbs Sampling algorithm in a Bayesian framework, based on 5000
iterations with burn-in period of 2000. DMPs whose inflation- and bias-
corrected p values exceeded p < 1.39 × 10−6 (Bonferroni adjustment for
35,907 tests at α= 0.05) were considered epigenome-wide significant.

Pathway analyses
DMPs at two p value thresholds (the Q–Q plot inflection point of p < 0.002,
and p < 0.05; uncorrected) were mapped to genes using two complemen-
tary methods: (1) physical mapping of probes based on UCSC hg19 base-
pair coordinates (as per Illumina manifest file), and (2) functional mapping
of cis-regulatory regions using the Genomic Regions Enrichment of
Annotations Tool (GREAT; v4.0.4) [68]. GREAT enables functional mapping
of DMPs in non-coding regulatory regions (i.e. outside coding-sequence
boundaries)—we employed ‘basal plus extension’ mode that includes
genes 5 kb upstream, 1 kb downstream, plus 5 kb distal binding. The
combined output of both methods created a gene list for pathway
interrogation.
Finally, Functional Mapping and Annotation of Genome-Wide Association

Studies (FUMA) [69] was employed with default parameters (i.e. not
excluding MHC region) to examine enrichment of genes harbouring DMPs
in biological function and pathway categories, and enrichment of gene
expression across tissues [70]. Enrichments were considered significant if
false discovery rate (FDR) q ≤ 0.05.

Supplementary EWAS: post-hoc sensitivity analysis for
interpretation of DMP functional enrichments
As the discovery EWAS employed a restricted set of 35,907 CpG probes
that were blood-brain correlated [62], we reasoned that probe pre-
selection might bias functional enrichments in genes mapped to DMPs.
Therefore, a supplementary EWAS was conducted using 214,352 probes
that passed QC and were variable in blood [63] and variable in our data
(but without applying the blood-brain correlation filter), employing
identical procedures as the primary EWAS. The multiple-testing correction
threshold was adjusted to p < 2.33 × 10−7 for 214,352 tests at α= 0.05 [71].

Validation using poly-methylomic profile scores
A ‘poly-methylomic profile score’ (PMPS) is a quantitative metric reflecting
the degree of methylation at multiple sites across the epigenome (similar
to calculating a PRS from GWAS summary statistics for genotypic data), as
previously described [72]. A PMPS was calculated for each participant using
effect sizes and p-values for DMPs from the discovery PRS-stratified EWAS,
and applied to two independent validation sets (Fig. 1), as described
below. Normality was assessed via Shapiro-Wilk tests in SPSS, and effect
sizes reported as partial eta squared (η2p).

Validation Set 1
To determine whether PMPS provided a replicable index of BD-PRS, we
employed 67 control participants [European-ancestry, unrelated (pi_hat <

Fig. 2 Violin plot of BD-PRS by clinical group in European-ancestry individuals. BD-PRS was standardised using the mean and standard
deviation of all participants with genotype data (including an independent sample of BD cases and controls) regardless of availability of
methylation data (n= 1699 controls, 354 HR, 355 BD; M= 0.0077695, SD= 7.543 × 10−5). The boxes and whiskers inside the violins indicate
the 25–75th percentiles, and 1.5 times the interquartile range, respectively. The dashed rectangles indicate the stratification of HR participants
into High-BD-PRS vs. Low-BD-PRS strata, as defined by the top and bottom two quintiles (i.e. 40% of the HR distribution), for the epigenome-
wide association study. HR high risk, BD bipolar disorder, CON control, PRS polygenic risk score.
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0.1)] derived from batch 1–3, thereby minimising technical variability
between the Discovery Set (who were all HR) and Validation Set 1. As
controls have an overlapping BD-PRS distribution to both BD and HR
(Fig. 2), we reasoned that methylation changes that reflect BD-PRS
variability should also be observable in controls.
Controls were divided into two strata based on their BD-PRS distribution:

the top two quintiles (High-BD-PRS; n= 27) and the bottom two quintiles
(Low-BD-PRS; n= 27). To obtain the optimal methylation signature, PMPS
were calculated utilising three p value thresholds from discovery EWAS
summary statistics (pT < 0.002, pT < 0.01 and pT < 0.05; representing n= 72,
n= 389 and n= 1957 CpGs, respectively). Association with PMPS
(dependent variable) was examined using univariate GLM, including BD-
PRS strata as factor, with age, sex, tissue source, and blood-cell counts as
covariates.

Validation Set 2
To determine whether the PMPS indexed effects related to the development
of psychopathology, 82 independent unrelated individuals of European
ancestry were selected from batch 4. BD cases were recruited in Australia, and
68% of HR and controls were from US sites. A ‘BD-syndromic’ group (n= 44)
comprised BD cases (n= 20) plus HR individuals who developed BD-related
psychopathology (n= 24), and a ‘disorder-free’ group (n= 38) comprised
controls (n= 26) plus HR who remained well (n= 12).
PMPS were generated using pT < 0.05 (n= 1,891 CpGs, after QC

exclusions), and compared between clinical groups: BD vs. CON, and
extended ‘BD-syndromic’ vs. ‘disorder-free’ groups, using univariate GLM,
as described above. BD-PRS and a BD-PRS×Group interaction term were
also added to the model.
Sixty-six individuals in Validation Set 2 (80%) completed the FACES-II

scale [53]. Exploratory regression analysis evaluating the impact of family
environment, BD-PRS and psychopathology-group (and their interaction
terms) on PMPS, employed a general linear model including age and sex as
covariates.

RESULTS
Polygenic risk scores
BD-PRS at pT= 0.105 optimally distinguished the independent BD
group (n= 264) from controls (n= 1115), with p= 5.36 × 10−12

and R2= 0.057 (n= 214,928 SNPs; Fig. S1). The optimal MDD-PRS
(for BD vs. controls) was at pT= 0.017 (n= 187,029 SNPs,
p= 1.89 × 10−8, R2= 0.037), and the cross-disorder-PRS was
optimal at pT= 0.229 (n= 269,339 SNPs, p= 1.76 × 10−10,
R2= 0.049). At a group level, BD-PRS distinguished HR (n= 355)
from both BD and control groups, where HR had higher mean BD-
PRS than controls (n= 1699; GEE p= 0.0003) and lower BD-PRS
than BD (n= 319; GEE p= 0.0006). The BD-PRS exhibited an
overlapping population distribution across clinical groups (Fig. 2).

Group comparisons: High vs. Low-BD-PRS strata within HR
participants
Within the HR group, the High-BD-PRS stratum had significantly
higher mean MDD-PRS (ANCOVA F= 5.32, p= 0.024, η2p= 0.064)
and cross-disorder-PRS (ANCOVA F= 4.57, p= 0.035, η2p= 0.055)
than the low-BD-PRS stratum. Epigenetically inferred smoking
status analysis identified only two probable smokers, and these
were equally represented in PRS group strata (Fig. S4). There was
no difference in global functioning (GAF) between High-BD-PRS
vs. Low-BD-PRS groups (M ± SD= 86.0 ± 9.3 vs. 84.8 ± 8.4,
p= 0.54) (Fig. S6).

Differentially methylated positions: high vs. low-BD-PRS strata
within HR
EWAS was performed using a linear regression framework, using
the final probe set of 35,907 variable CpGs that were blood-brain
correlated. Following minor correction for bias and inflation
(−0.0022 and 0.97, respectively; corrected to −0.00049 and 1,
respectively), one probe (cg00933603, p= 3.54 × 10−7) exceeded
the epigenome-wide association threshold (pT < 1.39 × 10−6;
FDR= 0.026) (Fig. 3). The quantile-quantile inflection point was
defined at p < 0.002. Post-hoc adjustment for epigenetically-
inferred smoking exposure (using βcg05575921 as a covariate) did
not substantially alter the findings (cg00933603, p= 3.10 × 10−7;
Table S2, Fig. S5).

Putative biological impact of differentially methylated genes
The DMPs above the inflection point (p < 0.002; n= 82; Table S2)
and nominally significant DMPs (p < 0.05; n= 1957) were physi-
cally and functionally mapped to 66 and 1260 genes, respectively.
Genes with DMPs above the inflection included MLC1, ESR1 KCKN5,
L1CAM, CPEB1 and GABBR2, previously associated with BD [73]
(Table S2; Fig. S7). EWAS-significant probe cg00933603 lies in exon
2 of VARS2, and has a cis-mQTL SNP rs2532928 (formerly known as
rs116537083) [74], that correlates with VARS2 cortical expression
(GTEx v8; [75] p= 9.1 × 10−29; Fig. S8).
In FUMA analyses, the 1183 DMPs were enriched in genes

previously associated with several relevant neurobehavioral pheno-
types in the GWAS catalog, including schizophrenia, chronotype and
general risk tolerance, which were represented in the top 15
enrichments (adjusted p < 0.01; Table 1 and Table S3). The genes that
mapped to DMPs were mostly upregulated in brain regions,
including the hypothalamus, anterior cingulate cortex and amygdala
(adjusted p= 4.40 × 10−16, 7.08 × 10−16 and 1.69 × 10−15, respec-
tively; Fig. S9). Top gene ontology enrichment categories from FUMA

Fig. 3 PRS-stratified EWAS in high-risk participants. A Quantile-Quantile plot, indicating observed vs. expected p values from 35,907 probes.
Bias and inflation corrected to −0.00049 and 1, respectively. The dashed line indicates the inflection point at p < 0.002. B Manhattan plot
indicating the genomic location of differentially methylated probes. The vertical line indicates the multiple-testing correction threshold at
α= 0.05 for epigenome-wide association, based on 35,907 probes (p < 1.39 × 10−6). The location of the top DMP, cg00933603, is indicated.
Covariates included age, sex, MDS C1 and C2, tissue source, six blood-cell components, and four surrogate variables. log logarithm; P p value.
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included synaptic and neuronal cellular components; canonical
pathways involving synaptic function/interactions and signal trans-
mission; and biological processes relating to cell-cell adhesion and
signalling functions (Table 2, Table S4).

Supplementary EWAS: post-hoc sensitivity analysis for
interpretation of DMP functional enrichments
No DMP survived multiple-testing correction in the supplementary
EWAS using 214,352 probes regardless of blood-brain correlation
(Fig. S10). The top DMP from the primary PRS-EWAS (cg00933603;
p= 3.54 × 10−7) was the third top DMP (p= 4.38 × 10−6) in this
secondary EWAS (Table S5).
Pathway analysis in FUMA showed that brain tissues continue to

exhibit the strongest enrichment with an equivalently-sized gene
list derived from DMPs regardless of blood–brain correlation. The
top brain regions were cortex, anterior cingulate cortex and
amygdala (p= 1.58 × 10−14, p= 1.35 × 10−11 and p= 2.39 × 10−11,
respectively; Fig. S11). Gene ontology enrichments implicate
neuronal-related functions and GWAS catalog overlaps, with
chronotype represented in the top 15 enrichments (Tables 1
and 2, Tables S6 and S7).

Test of generalisability of epigenetic signature using poly-
methylomic profile score
Validation Set 1. PMPS calculated using three p value thresholds
(pT) were normally distributed (Shapiro–Wilk p > 0.05). At the most
stringent threshold (pT= 0.002), no association between PMPS

and BD-PRS strata in controls was observed (F= 1.00, p= 0.323,
η2p= 0.023). However, the PMPS at pT= 0.05 (n= 1,891 CpGs)
showed stronger associations with BD-PRS strata (F= 11.57,
p < 0.002, η2p= 0.212) than the PMPs at pT= 0.01 (F= 7.11,
p= 0.011, η2p= 0.142); PMPS was higher in controls with High-
BD-PRS (pT= 0.05; M ± SE= 11.84 ± 1.27) compared to low BD-PRS
(M ± SE= 8.17 ± 1.34). Thus we considered pT= 0.05 to be optimal
for use in Validation Set 2 (Table S9).

Validation Set 2
Associations between PMPS and PRS or clinical status in BD and
CON groups: PMPS at pT= 0.05 was normally distributed within
each clinical group (Shapiro-Wilk p > 0.05). PMPS did not differ
between BD and control groups in a basic model that did not
covary for BD-PRS (F= 2.39, p= 0.131, η2p= 0.066; Table S9).
Following the inclusion of BD-PRS and BD-PRSxGroup term in the
model, a significant association between PMPS and BD group was
observed (F= 7.20, p= 0.011, η2p= 0.184; Table S9), in conjunc-
tion with a significant BD-PRSxGroup interaction (F= 7.07,
p= 0.012, η2p= 0.181) and a suggestive effect of BD-PRS
(F= 3.99, p= 0.054, η2p= 0.111).

Associations between PMPS and PRS or clinical status in ‘BD-
syndromic’ and ‘disorder-free’ groups: Extended-clinical group
definitions were utilised based on BD-psychopathology in HR
(Table S8). HR meeting threshold or sub-threshold diagnoses
(HRunwell) demonstrated lower functional capacity (CGI scores)

Table 1. Summary of neurobehavioral phenotypes within the top 50 ranked enrichments from FUMA GWAS catalog.

Gene set N genes N overlap P adjP RANK

Primary EWASa 1183 DMP p < 0.05

Schizophrenia 827 52 6.63E−06 0.0012 10

Chronotype 556 39 8.22E−06 0.0013 11

General risk tolerance (MTAG) 248 22 2.52E−05 0.0030 15

Hippocampal sclerosis 9 4 1.26E−04 0.0094 24

Feeling nervous 40 7 2.84E−04 0.0191 27

Late-onset Alzheimer’s disease 53 8 3.06E−04 0.0198 28

Response to antidepressants (symptom improvement) 30 6 3.65E−04 0.0229 29

Depression (quantitative trait) 12 4 4.56E−04 0.0267 31

Cognitive ability, years of educational attainment or schizophrenia (pleiotropy) 197 16 8.08E−04 0.0396 37

Risk-taking tendency (4-domain PCA) 92 10 8.56E−04 0.0409 38

Feeling worry 48 7 8.95E−04 0.0417 39

Anger 24 5 9.37E−04 0.0425 40

Bipolar disorder 656 37 1.05E−03 0.0443 43

Psychosis (atypical) 15 4 1.16E−03 0.0459 45

Response to anti-depressant treatment in major depressive disorder 15 4 1.26E−04 0.0459 46

Supplementary EWASa 1157 DMP p < 0.008

General risk tolerance (MTAG) 248 26 1.66E−08 2.16E−06 13

Chronotype 556 42 1.78E−08 2.16E−06 15

Hippocampal atrophy 33 8 3.34E−06 2.19E−04 27

Morning person 202 19 6.83E−6 3.54E−04 35

Bipolar disorder 656 40 8.60E−06 4.34E−04 36

Major depressive disorder 210 19 1.19E−05 5.41E−04 40

Response to antidepressants (symptom improvement) 30 7 1.82E−05 7.15E−04 46

Late-onset Alzheimer’s disease 53 9 1.85E−05 7.15E−04 47

N genes number of genes in category, N overlap number of DMP genes in category, P p value, adjP adjusted p value, DMP differentially methylated probe, RANK
rank of enrichment category on the basis of adjusted p value.
aData are presented for an equivalent number of genes in both primary and supplementary EWAS that map to differentially methylated probes (DMPs) at
specified thresholds. Full outputs of GWAS catalog enrichments are provided in Supplementary Tables S3 and S6.
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than HR who remained well (HRwell) (Fig. S12). Overall, the ‘BD-
syndromic’ group had poorer global functioning (GAF) than the
‘disorder-free’ group (M ± SD= 74.0 ± 14.7 vs. 92.7 ± 6.0,
p= 2.75 × 10−6) (Fig. S6).
PMPS was not associated with psychopathology-group without

BD-PRS in the model (F= 0.39, p= 0.533, η2p= 0.006). Following
the inclusion of BD-PRS and BD-PRS × Group term in the model, a
significant association between PMPS and BD group was observed
(F= 5.55, p= 0.021, η2p= 0.076; Table S9), in conjunction with a
significant BD-PRS × Group interaction (F= 5.52, p= 0.022,
η2p= 0.075) and a non-significant effect of BD-PRS (F= 2.33,
p= 0.132, η2p= 0.033).
A post-hoc sensitivity analysis of the impact of psychiatric

medication use on PMPS was conducted within the BD-syndromic
group, which showed no evidence of medication effects on PMPS
(Supplementary Results). Exploratory regression analysis in the
subset of participants with FACES data (n= 66; omnibus model
p= 0.013), showed that PMPS was not associated with FACES
(Wald-χ2= 0.671, p= 0.413), but BD-PRS, psychopathology-group,
and BD-PRS × Group were significant predictors of PMPS (Wald-
χ2= 9.55, p= 0.002; Wald-χ2= 9.29, p= 0.002; Wald-χ2= 10.17,
p= 0.001; respectively), while the FACES × Group interaction was
non-significant (Wald-χ2= 3.24, p= 0.072).

Sensitivity analysis for population stratification
To ensure our results were robust to residual population
stratification within our selected study samples, the most
divergent four ‘nearest neighbour’ individuals were identified by
pairwise IBS distances, and excluded if Z > 4 (n= 5 individuals
total; n= 1 discovery EWAS, n= 3 validation set 1, n= 1 validation
set 2). Removal of one participant from discovery EWAS with
outlier values on C4 did not substantially alter the findings (effect
size r= 0.9999; absolute β difference ~1.43 ± 1.49%). For valida-
tion set 1, three ‘nearest neighbour’ exclusions resulted in a slight
attenuation of association between PMPS at pT= 0.05 and BD-PRS
strata (F= 8.946, p= 0.005, η2p= 0.183). For validation set 2,
‘nearest neighbour’ exclusions (n= 1) revealed almost identical
results and effect sizes (η2p ± 0.001).

DISCUSSION
After stratifying HR individuals based on their personal burden of
BD-associated common genetic variants indexed by BD-PRS and
restricting the epigenome search space to variable probes with
blood-brain correlation, we found a single epigenome-wide
significant differentially methylated probe (cg00933603), located
in an active regulatory element in exon 2 of the VARS2 gene,
which lies in the major histocompatibility complex region (hg19/
chr6:25–34 Mb). VARS2 encodes a mitochondrial aminoacyl-tRNA
synthetase involved in mitochondrial protein synthesis. Mitochon-
drial abnormalities are evident in BD [76] and other psychiatric
illnesses [77], and loss-of-function mutations in VARS2 have been
previously associated with mitochondrial encephalopathies [78],
epilepsy [79], and schizophrenia [80]. Furthermore, an EWAS of
depressive symptoms in 724 monozygotic Danish twins identified
a differentially methylated region in a putative active enhancer of
VARS2, which spanned 9-probes including cg00933603 [81]. In our
study, VARS2 was hypomethylated in individuals with a high
polygenic burden for BD. Hypomethylation in the 5′ region of a
gene can promote gene expression [82], which in the case of
VARS2, might play a role in phasic dysregulation of mitochondrial
bioenergetics associated with BD [83]. Further characterisation of
this ubiquitously expressed functionally relevant gene in the
pathophysiology of BD is required.
Beyond the top DMP, disease-associated genetic variants may

broadly impact epigenetic processes, supporting the supposition
that DNA methylation may mediate genetic risk [84], potentially
via long-range epigenetic networks [85]. Of 1,183 genes that

mapped to nominally significant DMPs, some were previously
associated with BD or schizophrenia, including MLC1, ESR1, KCKN5,
L1CAM, CPEB1 and GABBR2 [73]. In addition, 693 of these genes
contained CpGs independently nominally associated with later
development of BD and MDD in individuals at high familial risk of
mood disorder [43]. Although overlap between the specific DMPs
implicated in that prior study and our present analysis was low,
gene-level convergence provides supporting evidence for specific
differentially methylated genes in developing affective
psychopathology.
While the subgrouping of HR participants was primarily focused

on genetic predisposition to BD, the BD-PRS strata did not
exclusively index BD-associated risk—a higher burden of cross-
disorder and MDD-associated variants was observed—which
supports a relative lack of specificity of PRS. It is therefore
possible that the methylation signatures identified herein may
show pleiotropic effects across these related psychiatric disorders.
Functional analyses indicated that genes differentially

expressed in the brain were over-represented amongst the
differentially methylated genes, particularly in the hypothalamus
and anterior cingulate cortex (ACC). The hypothalamus is part of
the hypothalamic-pituitary-adrenal (HPA) axis, the key stress-
response system, which has been shown to be dysregulated in
mood disorders [86]. In addition, the ACC plays an important role
in cognitive functions and emotional regulation. Structural
imaging meta-analyses have shown grey matter reduction in
ACC [87], and smaller hippocampal volumes associated with BD
[88, 89], thus methylation changes impacting these tissues are
potentially of relevance. Overlap between genes mapped to DMPs
and genes implicated in relevant phenotypes via GWAS—
including BD and schizophrenia, chronotype, and risk tolerance
—suggest convergence of epigenetic and genetic signals. Sleep
disruption and chronotype have long been posited as hallmark
features of BD [90], as well as targets of psychiatric medication
[91], and may influence medication response [92]. Risky behaviour
is a common symptom in manic phases and is genetically
correlated with BD [93], highlighting relevant pathways within our
defined epigenetic signals.
Restricting the discovery EWAS to putatively functionally

relevant CpGs that reflect methylation status in the primary
disease-affected tissue [62, 63] enabled reduction of the EWAS
search space and application of a more permissive epigenome-
wide significance threshold than previously modelled [71], but
may consequentially bias enrichment analyses. Our secondary
EWAS employed all variable CpGs, regardless of blood-brain
correlation, and revealed similar over-representation in brain
tissue, pathway enrichments, and overlap of top DMPs with an
equivalent-sized gene list; supporting the primary methodological
approach.
Utilising nominally differentially methylated CpGs from PRS-

stratified EWAS in generating a poly-methylomic profile score
(PMPS) [72]—akin to calculating PRS from GWAS summary
statistics for genotypic data [14]—we validated the impact of
BD-PRS on methylation signature. We found significant associa-
tions between BD-PRS and PMPS in controls, demonstrating the
generalisability of the PMPS as an index of PRS, regardless of
family history of BD. Consistent with the dependency of the PMPS
on PRS background, when BD-PRS was included in the statistical
models testing differences between groups in PMPS, a higher
mean poly-methylomic profile score was observed in those with
BD-symptomatology compared to disorder-free individuals. This
highlights the important interplay between environmental,
epigenetic and genetic risk factors, which may lead to the
development of psychopathology, and is consistent with a
multifactorial liability model [94].
While there was no significant effect of FACES on PMPS in our

exploratory analysis, this study cannot rule out the potential
influence of family environment on methylation signature, given
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the small sample size with available FACES that was used. The
PMPS appears to at least partially reflect environmental differ-
ences related to the burden of BD-associated variants, however,
increasing the sample size for discovery EWAS may further
elucidate the mechanisms underlying the development of
psychopathology. Longitudinal investigation of epigenetic mar-
kers in HR individuals based on their clinical status over time may
also reveal useful epigenetic signatures of the BD prodrome.

Limitations
This study was restricted to participants of European-ancestry, due
to substantial ethnicity-specific effects on PRS [60]. We note that
residual population substructure not indexed by the covariates we
employed (i.e. the first two MDS components or four surrogate
variables of methylation data) may influence the results reported
herein. However, expanding the existing 15 essential covariates to
include additional MDS components would further reduce the
‘subjects per variable’ ratio, and compromise model stability and
accuracy of estimation of regression coefficients [95]. This trade-
off in design of our statistical model for analysis of this cohort may
lead to under-correction of fine-scale population structure that is
evident in European population [96, 97], although sensitivity
analysis showed little effect of excluding potential outliers. To
permit the study design to include both discovery and validation
samples, sub-setting of the cohort was required, which limited
sample size. While we employed a Bayesian method to reduce
potential for EWAS bias [67], the methylation effects reported
herein require validation. We mapped DMPs both physically and
functionally [68], to comprehensively define genes associated with
DMPs in both coding and non-coding genomic regions. However,
genes were not prioritised for inclusion in enrichment analysis
based on the number nor location of DMPs within each mapped
gene, nor was the list restricted to one gene per DMP, thus
enrichment signals may have been impacted by inclusion of
genes whose expression was not affected by DMPs. Furthermore,
in silico mapping of potentially cross-reactive CpG probes to
homologous genome locations [98] may impact gene annotations
and enrichments. Moreover, FUMA does not account for the
number of CpGs per gene, therefore enrichment results may be
biased towards categories with larger genes that contain more
probes (i.e., with greater stochastic chance to be differentially
methylated) [99].
One universal limitation of epigenome-wide studies in psychia-

tric disorders is the accessibility to brain tissue, as there is
considerable variation in DNA methylation across tissues and cell
types [100, 101]. We addressed this design limitation by covarying
for inter-individual variability in blood-cell components, and
focusing on CpGs which are blood-brain correlated [62]. However,
use of blood-derived DNA may exclude relevant brain-specific
CpGs that are not variable in this surrogate tissue. We acknowl-
edge that: (1) participants were at different follow-up points, with
potential limitations on capacity for defining ‘syndromic’ status
that is dependent on length of clinical follow-up, and (2) PMPS
reflects baseline methylation signatures, and timing of emergence
of symptoms in relation to proximity to blood draw is not
accounted for. Furthermore, while only two participants in the
discovery EWAS were epigenetically inferred to be probable
smokers (and were equally represented in PRS strata), smoking
exposure may be a relevant confounder for future replication.
Finally, psychiatric medication use was not controlled for due to
the small numbers of individuals exposed, and although sensitivity
analysis indicated non-significant effect of medication on PMPS,
this remains an important caveat.
Although discovery EWAS in HR participants stratified by BD-

PRS can reveal epigenetic markers associated with genetic risk for
developing BD, many genetic variants that may impact BD risk are
not indexed by PRS [18]. Indeed, familial risk encompasses all
classes of genomic variation—including structural and rare

variants—which may track more closely than PRS with disease-
status in families with strong family history [21]. While we
excluded annotated ‘probe SNPs’ from our analysis [102], the
existence of polymorphic genotypes (e.g., rare or recently
discovered DNA variants) that are present in our cohort and
underlie CpGs could potentially lead to bias [103]. Conversely, we
note that standard clumping procedures employed herein (based
on r2) for generation of PRS included multiple MHC variants, thus
PRS group differences may be inflated by multiple genetic effects
from this region, which may amplify apparent effect sizes of
methylation differences in the MHC region. The MHC region was
also not excluded in FUMA enrichment analysis. Finally, limited
availability of family environment data impacted power to detect
effects, which require larger samples to definitively characterise.
Thus extension to larger cohorts, and potential examination of the
impact of other environmental factors, including stressful life-
events, should be considered in future.

CONCLUSIONS
To our knowledge, this is the first report to investigate DNA
methylation differences amongst individuals at high risk of BD, in
the context of their personal polygenic background for BD. While
only a single site in the VARS2 gene exceeded epigenome-wide
significance, many CpG sites were nominally differentially
methylated, which related to neurological pathways and func-
tions associated with risk of psychopathology. Methylation
profiling in independent validation sets confirmed the relation-
ships between methylation signatures and genetic background,
finding that methylation profiles may also partially reflect
differences in family environment. Further larger-scale studies
are needed to examine the impact of environmental factors in the
relationship between familial risk and development of
psychopathology.
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