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Altered brain activation during reward anticipation in bipolar
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Although altered reward sensitivity has been observed in individuals with bipolar disorder (BD), the brain function findings related
to reward processing remain unexplored and inconsistent. This meta-analysis aimed to identify brain activation alterations
underlying reward anticipation in BD. A systematic literature research was conducted to identify fMRI studies of reward-relevant
tasks performed by BD individuals. Using Anisotropic Effect Size Signed Differential Mapping, whole-brain and ROI of the ventral
striatum (VS) coordinate-based meta-analyses were performed to explore brain regions showing anomalous activation in
individuals with BD compared to healthy controls (HC), respectively. A total of 21 studies were identified in the meta-analysis, 15 of
which were included in the whole-brain meta-analysis and 17 in the ROI meta-analysis. The whole-brain meta-analysis revealed
hypoactivation in the bilateral angular gyrus and right inferior frontal gyrus during reward anticipation in individuals with BD
compared to HC. No significant activation differences were observed in bilateral VS between two groups by whole-brain or ROI-
based meta-analysis. Individuals with BD type I and individuals with euthymic BD showed altered activation in prefrontal, angular,
fusiform, middle occipital gyrus, and striatum. Hypoactivation in the right angular gyrus was positively correlated with the illness
duration of BD. The present study reveals the potential neural mechanism underlying impairment in reward anticipation in BD.
Some clinical features such as clinical subtype, mood state, and duration of illness confound the underlying neurobiological
abnormality reward anticipation in BD. These findings may have implications for identifying clinically relevant biomarkers to guide
intervention strategies for BD.
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INTRODUCTION
Bipolar disorder (BD) is a severe psychiatric disorder, characterized
by depressive, manic, and mixed episodes with variable inter-
episode remission. Individuals with BD often show excessive goal-
directed and pleasure-seeking behavior during manic episodes
while decreased hedonic capacity during depressive episodes,
together with strong desires for goals and reward even in
remission [1–3], suggesting impaired reward processing through-
out BD. Moreover, altered reward processing is associated with the
severity of clinical symptoms in BD [4, 5], and influences the
development and course of BD [6–8]. According to the Behavioral
Approach System (BAS) dysregulation model, reward hypersensi-
tivity is related to both hypomanic/manic and depressive
symptoms in individuals with BD when they respond to reward-
relevant events [9, 10], and remains elevated in remission [11–13].
Hypersensitivity to reward-relevant stimuli may be a key
component of emotional dysregulation, vulnerability, and affec-
tive lability in BD [14–16]. Exploring the neurobiological basis of
impairments in reward processing in individuals with BD may thus
be helpful to improve treatment and prevention.
Clinical research works have reported altered anticipatory

processing in BD, which results in abnormalities in assigning the
motivational value to anticipated outcomes and impaired

decision-making strategies [17–19]. Reward anticipation is the
initial prospect of a reward encountered during reward processing
[20, 21], which motivates individuals to produce incentive
motivation and make efforts to achieve goals [22]. In healthy
individuals, reward anticipation processing such as signaling
about anticipated reward levels [21, 23], activating under
anticipated arousal and effort [24, 25], and processing outcome
predictability [26–28] depends on the function of the ventral
striatum (VS), the anterior cingulate cortex (ACC), and the parietal
regions, respectively. Existing studies have proposed that aberrant
responses in some reward-related brain regions, such as the ACC,
the orbitofrontal cortex (OFC), and the striatum, confer risk for the
development of bipolar spectrum disorders [29, 30]. Individuals
with BD present abnormal activation of the cortical-striatal circuit
during the performance of reward-relevant tasks [31–33]. For
example, some whole-brain studies found hyperactivation in the
prefrontal and cingulate cortex in euthymic individuals with BD
during reward anticipation [34–37], while others found hypoacti-
vation in the parietal lobe [31, 32].
The VS has been implicated as a key area coding reward

anticipation [38, 39], which encompasses the ventral part of the
caudate and the nucleus accumbens, and receives projections
from dopaminergic cells respond to reward-predicting cues and
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top-down regulation from cortical regions [40–42]. An electro-
encephalography study provides evidence of a top-down
regulation from the frontal area to VS during reward anticipation
[40]. It is clear that the VS participates in several extended
networks linked to a range of cognitive, affective, and social
behaviors [43]. And resting-state functional connectivity study
has reported this circuit-level alteration, which suggested
attenuation of functional connectivity between the OFC and VS
in BD [44]. However, a mixed pattern of VS activation was
reported in response to reward in BD, with hyperactivation in the
VS during reward anticipation in euthymic individuals with BD
[34, 37] or hypoactivation of this region in manic individuals
[45, 46]. From the above, there were no consistent findings
regarding the neural activation alterations during reward
anticipation in individuals with BD due to the small sample size,
the heterogeneity in sample characteristics, and methodology.
The heterogeneity reminds the necessity of further identifying
specific neural mechanisms of reward anticipation in BD.
The primary aim of the current study was to explore the neural

basis underlying impairment of reward anticipation in BD by
whole-brain- and specific VS ROI-based meta-analyses. Further-
more, separate analyses were performed for individuals with
different sub-types and clinical states of BD. Finally, the potential
effects of clinical features on functional activation in BD were
investigated using meta-regression analysis.

MATERIALS AND METHODS
Search strategies
A literature search of PubMed, Embase, ScienceDirect, and Web of Science
databases was conducted to identify original fMRI studies of BD individuals
performing reward-relevant tasks, which had been published in the English
language in peer-reviewed journals up to June 2021. The search strategy
included different combinations of the following terms: (‘bipolar disorder’
OR ‘manic depressive psychos*’ OR ‘mani*’ OR ‘bipolar depression’ OR
‘bipolar affective psychos*’) AND (reward* OR ‘risk’ OR ‘risk taking’) AND
(‘magnetic resonance imaging’ OR MRI OR fMRI OR ‘functional magnetic
resonance imaging’). The retrieved articles, including relevant reviews and
meta-analyses, were searched to identify original studies that were
potentially missed in the above searches.

Selection criteria
An fMRI study was retained if (1) a precise diagnosis of BD was made, (2)
brain activation during reward anticipation was compared between
individuals with BD and HC, (3) individuals were equal to or over 18 years
old, (4) whole-brain and/or ROI analysis was used, and (5) stereotactic 3D
coordinates of brain activation were reported.
Studies were excluded if (1) results were not based on the main

effects of the group, (2) subjects were under 18 years old, (3) only small
volume correction was used, and (4) the peak coordinates of effects
were unavailable even after the authors were contacted via e-mail. If
studies reported longitudinal experiments, only the baseline results
were included.

Data extraction and quality assessment
This meta-analysis followed the guidelines for a Meta-analysis of
Observational Studies in Epidemiology (MOOSE) (Supplementary Table
S1). The following information was compiled for all the included studies:
first author, year of publication, cohort size, age, sex, age at onset, illness
duration, illness subtype, mood state, Hamilton Depression Scale (HAMD),
Young Manic Rating Scale (YMRS), comorbidity, medication, task
paradigm, imaging parameters (slice thickness, magnetic field strength,
smoothing kernel, stereotactic template space, analysis software), and
statistical threshold.
The peak coordinates and corresponding t statistics of significant

differences in brain activation were extracted into a text file for each study.
The results of studies using whole-brain and ROI-based analyses were
retrieved and summarized, respectively. The literature search and data
extraction were independently conducted by two authors (XPL and XLW).
When extra information was required, a request was made to the
corresponding author by e-mail.

In addition, a quality assessment score was computed according to the
criteria modified from studies by Sanderson et al. [47] and Shepherd et al.
[48]. The relevant checklist included 15 items relating to, for example,
demographics, method of recruitment, task design, image acquisition and
analysis, and consistency of the conclusions (Supplementary Table S2).

Coordinate-based meta-analysis
Anisotropic Effect-Size version of Seed-based Signed Differential Mapping
(AES-SDM) software [49, 50], version 5.15 (https://www.sdmproject.com/),
was used to investigate brain regions that potentially show consistent
significant differences in brain activation between BD individuals and
controls during reward anticipation.

Main meta-analysis. For the whole-brain meta-analysis, effect-size maps
of differences between groups for each study were recreated to generate
Monte Carlo brain maps by randomly permuting voxels from these brain
maps. Then, estimated statistical maps were included in a random-effect
meta-analytic model that weighted the contribution of each study
according to its sample size. The threshold was set at p < 0.005 (voxel
level), with SDM-z > 1 (peak height) and a cluster size ≥10 voxels, since it
was found to be optimally balanced sensitivity and specificity in AES-SDM
meta-analysis and was adopted by most of the previous AES-SDM studies
[49, 51, 52].
For the ROI meta-analysis, we selected bilateral VS (including nucleus

accumbens) as the ROIs, which were defined based on the Harvard-
Oxford subcortical atlas [53]. We examined activation differences in left
and right VS between BD and HC at p < 0.005 separately.

Subgroup meta-analysis. Subgroup meta-analyses were performed for
studies that recruited individuals with BD type I (BD I) and individuals with
euthymic BD, respectively.

Reliability analysis. In order to assess the effect of an individual study on
the estimated pooled effect size, a whole-brain jack-knife sensitivity
analysis was performed in which each study was discarded at successive
repeat iterations in the meta-analysis.

Heterogeneity and publication bias analyses. The statistical heterogeneity
of individual clusters was examined using a random-effect model with
Q statistics (X2) distribution converted to z values and tested with a
permutation approach (p < 0.005, uncorrected; peak height z= 1;
cluster extent = 10). Publication bias was evaluated using Egger’s test
(p < 0.05) [54].

Meta-regression analysis. The potential effects of average age, male
percentage, age at onset, illness duration, HAMD score, YMRS score in the
BD cohort, percentage of medication-free individuals, and quality score
on the results were explored by meta-regression using a linear random-
effect model. As in previous meta-analysis, in order to minimize the
detection of spurious relationships, a threshold of p < 0.0005 was used
and only brain regions with significant results in the main meta-analysis
were considered [50, 52].

RESULTS
Sample characteristics of studies included in the whole-brain
meta-analysis
Fifteen studies (including 16 experiments) met the inclusion
criteria for whole-brain-based meta-analysis, with a total of 372 BD
individuals and 507 HC (Fig. 1). There were no significant
differences in mean age between individuals with BD and HC
(BD: 36.37 ± 9.73 years, HC: 34.76 ± 7.78 years, t= 0.60, p= 0.56).
BD individuals showed a lower percentage of males than HC (BD:
159/372= 42.74%, HC: 259/507= 51.08%, χ2= 5.99, p < 0.05).
The paradigms of reward-relevant tasks included Monetary

Incentive Delay (eight studies), Card Guessing (five studies), Social
Incentive Delay (three studies), and Lowa Gambling (one study).
Twelve studies reported no significant difference in task
performance or reaction time between BD individuals and HC,
with three studies [32, 33, 55] providing no relevant information.
The quality assessment scores ranged from 11.5 to 15 points with
an average of 13.4 points. More detailed information about the
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demographic and clinical characteristics and the quality assess-
ment score of all included studies are presented in Table 1. The
details of the imaging parameters, statistical threshold, and results
of the between-group analysis for each study are presented in
Supplementary Table S3.

Whole-brain meta-analysis
Main meta-analysis. Compared with HC, BD individuals showed
significant hypoactivation in the bilateral angular gyrus and right
inferior frontal gyrus, with no brain region showing significant
hyperactivation (Table 2 and Fig. 2a).

Subgroup meta-analyses. The first subgroup analysis including
11 studies observed hyperactivation in the left anterior cingulate
gyrus, and hypoactivation in the left middle occipital gyrus, right
inferior frontal gyrus, and right angular gyrus in individuals with
BD I compared to HC (Table 2 and Fig. 2b). The second subgroup
analysis including eight studies observed hyperactivation in the
left orbital frontal gyrus, left fusiform gyrus and left insula, and
hypoactivation in the right inferior temporal gyrus and right
striatum in individuals with euthymic BD compared to HC (Table 2
and Fig. 2c).

Reliability analyses. A whole-brain jack-knife sensitivity analysis of
the main meta-analysis showed that hypoactivation of the
bilateral angular gyrus was preserved in all 16 datasets, and the
right inferior frontal gyrus remains significant in fourteen datasets
(Supplementary Table S5).

Heterogeneity and publication bias analyses. There was no
significant between-study heterogeneity in the results for the
main and both subgroup meta-analyses. None of the clusters
reported above showed significant publication bias based on
Egger’s test (p > 0.05) in the main meta-analysis.

Meta-regression analyses. The meta-regression analyses showed
that the illness duration of BD individuals was positively correlated
with hypoactivation in the right angular gyrus (MNI coordinates:
x= 44, y= –60, z= 46; 19 voxels; SDM= –4.244; p < 0.001; Fig. 3).

The meta-regression analysis showed no effect related to the
average age, age at onset, HAMD score, YMRS score of the patient
cohort, percentage of medication free individuals, or quality
assessment score.

Sample characteristics of studies included in the ROI meta-
analysis
Seventeen studies (eleven from whole-brain studies) comprising
18 samples were included in the VS ROI meta-analysis, with a total of
348 individuals with BD and 443 HC (Fig. 1). There were no
significant differences in mean age (BD: 32.85 ± 6.51, HC:
33.44 ± 6.26, t= 0.68, p= 0.49) or male percentage (BD: 162/
348= 44.11%, HC: 204/443= 51.08%, χ2= 0.02, p= 0.89) between
individuals with BD and HC.
The paradigms of reward-relevant tasks included Monetary

Incentive Delay (ten studies), Card Guessing (four studies),
Probabilistic Reversal Learning (one study), Social Incentive Delay
(one study), and Incentivized Control Engagement (one study).
Nine studies reported no significant difference in task perfor-
mance or reaction time between BD individuals and HC, with one
study providing no relevant information [55]. Four studies
reported no significant difference in task performance between
BD individuals and HC, and three studies reported lower accuracy
[45, 46] and longer reaction times [56] in task performance in BD
individuals than HC. The quality assessment scores ranged from 9
to 14 points with an average of 11.2 points. More detailed
information about the demographic and clinical characteristics
and the quality assessment score of all included studies are
presented in Table 1. The details of the imaging parameters,
statistical threshold, and results of the between-group analysis for
each study are presented in Supplementary Table S3.

ROI-based meta-analysis
No significant activation difference was observed for bilateral VS
ROIs between BD individuals and HC (effect size for left VS: 0.96;
effect size for right VS: 0.97; p > 0.005).

DISCUSSION
The current study revealed hypoactivation during reward
anticipation in the bilateral angular gyrus and right inferior
frontal gyrus in individuals with BD relative to HC by whole-brain
meta-analysis, with no significant activation abnormality in
bilateral VS by whole-brain or ROI analysis. Anomalous function-
ing of the frontal-parietal is the most significant finding in BD
individuals. Hypoactivation in the right angular gyrus was
positively correlated with illness duration in individuals with BD.
Certain clinical characteristics such as illness subtype, mood state,
and duration of illness influenced the brain activation alterations
produced by BD during reward anticipation.

Hypoactivation of the prefrontal-parietal regions during
reward anticipation
Our findings are consistent with other studies which reported
hypoactivation in the right inferior frontal gyrus during reward
processing by positron emission tomography [57], and decreased
activity in the prefrontal cortex during Iowa Gambling Task by
near-infrared spectroscopy [58] in individuals with BD relative to
HC. Altered activation in the inferior frontal gyrus, an important
part of the frontal-striatal circuit, is associated with reward
hypersensitivity in BD [29, 30]. The inferior frontal gyrus is an
important part of the lateral prefrontal cortex, which upregulates
activity in the limbic and mesolimbic systems [59, 60]. Dysfunction
of the inferior frontal gyrus has been observed in individuals with
BD during executive control [61–63], and reward signals play a
crucial role during this process [64–66]. The angular gyrus, a cross-
modal integrative hub that converges multisensory information,
can detect discrepancies between predicted and actual action

Fig. 1 Flow diagram of the literature search in this meta-analysis.
ROI region of interest, VS ventral striatum.
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consequences for multimodal feedback [67]. Activation in the
angular gyrus during reward anticipation was correlated with
nucleus accumbens dopamine release [68], which supports the
hyperdopaminergia theory across mood states in BD [6]. The
hyperdopaminergia theory suggests that an increase in striatal
dopamine transporter levels may lead to a decrease in dopami-
nergic function and depression [69], while an increase in striatal
dopamine receptor levels may lead to an increase in dopaminer-
gic neurotransmission and mania [70, 71]. The disturbance in
dopamine system homeostasis may be one of the pathophysiol-
ogies of BD, which has been tested to be a close connection with
reward processing [72]. We also observed a positive correlation
between hypoactivation of the angular gyrus and illness duration
in BD individuals, which may suggest gradually impaired reward
function during the development of illness [7].
The inferior frontal gyrus and angular gyrus are key compo-

nents in the executive control network, which is assumed to
modulate reward systems [73–75]. An intact executive functioning
network may dampen an overactive reward system and therefore
promote adaptive functioning [76]. Higher executive functioning
was associated with increased activation in parietal areas during
reward anticipation and increased limbic connectivity with frontal
areas [77]. Decreased engagement of prefrontal-parietal regions
may reflect difficulties in inhibiting excessive pleasure-seeking,
increased impulsive behavior, and pronounced risk-taking ten-
dencies in BD [78, 79].

Subgroup findings in BD
Individuals with BD I showed hyperactivation in the left dorsal
ACC, and hypoactivation in the left middle occipital gyrus, right
inferior frontal gyrus, and angular gyrus compared to HC. The ACC
receives projections from the OFC, VS, and mesolimbic dopamine
system, and is implicated in risk decision and uncertainty
assessment [24, 80, 81]. The dorsal ACC plays a critical role in
forming associations between rewards and actions [82]. Hyper-
activation in the dorsal ACC may result in excessive stimulation of
mesolimbic dopamine release, manifested as exaggerated hedo-
nic responses and enhanced motivational drive [83]. Abnormal-
ities of the occipital gyrus have been observed in spontaneous
neural activities and emotional processing in BD [84–86]. The
frontal-striatal and occipital regions are reliably activated during
reward anticipation [87, 88]. Our results add to the evidence of
functional impairment during reward anticipation in prefrontal
and parietal-occipital regions in BD I.
Euthymic BD also showed hyperactivation in the left OFC,

fusiform gyrus and insula, and hypoactivation in the right inferior
temporal gyrus and striatum during reward anticipation. The OFC
involves the first stage of cortical processing that represents
reward value [89], and activation in this region updates rapidly
when reward value changes and sends this information to the
ACC for actions guided by outcomes [90]. The ventral temporal
cortex is a key structure in high-level visual processing [91–93] and
represents objects independently of their reward value [94].
Activation of the insula is correlated with subjective affective
experience of rewards since the insula plays an important role in
interoception [95]. The frontal-striatal circuit is a well-established
neural pathway in the reward system, which involves dopaminer-
gic projection from the midbrain nuclei to subcortical areas that
are central to processing the reward properties of stimuli, and to
cortical targets [96]. The nucleus accumbens, which is the center
of VS and receives projections from the OFC, ACC, amygdala, and
midbrain, can integrate incoming dopaminergic signals from
cortical and limbic regions to guide decision making, track the
outcomes of actions, and influence the direction of future ones
[97]. These regions are involved in the valuation/motivation
network [98] and salience/monitoring network [99, 100], which
play an important role during reward anticipation in BD. These
findings provide evidence that abnormal brain activation remainsTa
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in frontal-temporal-striatal regions during reward anticipation in
euthymic BD.

Null findings in VS
Despite negative findings during reward anticipation in BD by our
whole-brain and ROI analyses, the VS has a relatively specific role
in reward processing compared to other cognitive processes
[101, 102]. It seems premature to draw the conclusion of no

abnormal activation in VS in BD during reward processing,
especially in reward anticipation. First, the heterogeneity of
individuals in the included studies may bias the findings. For
example, our subgroup analysis found significant hypoactivation
in VS in individuals with euthymic BD. According to the BAS/
reward hypersensitivity model of BD, the VS has been engaged
contingent on mood, whereas elevated mood may increase the
expected value and elicit VS activity but low mood may decrease

Fig. 2 Results of whole-brain meta-analysis and meta-regression analysis. a Results of meta-analysis showed that BD individuals showed
significant hypoactivation in the bilateral angular gyrus and the right inferior frontal gyrus. b Illness duration of individuals with BD is
positively associated with activation of the right angular gyrus. Blue clusters represent hypoactivation in individuals with BD compared to
healthy controls. B bilateral, BA brodmann area, IFG inferior frontal gyrus, R right.

Table 2. Significant differences in brain activation between individuals with BD and HC.

Maximum Clusters

Brain regions (peak) MNI coordinate
x, y, z

SDM z-value P
value uncorr

No. of voxels Breakdowns (no. of voxels)

BD > HC

None

BD < HC

R angular gyrus, BA 7 32, –60, 52 –2.147 0.000005960 1709 R angular gyrus, BA 39 (255)

R superior parietal gyrus, BA 7 (250)

R angular gyrus, BA 7 (249)

R middle occipital gyrus, BA 19 (176)

R superior occipital gyrus, BA 7 (152)

R superior occipital gyrus, BA 19 (123)

L angular gyrus, BA 7 –38, –72, 42 –2.190 0.000003219 1072 L superior parietal gyrus, BA 7 (253)

L inferior parietal gyrus, BA 7 (233)

L middle occipital gyrus, BA 19 (123)

R inferior frontal gyrus, BA 48 60, 14, 6 –1.690 0.000495315 488 R inferior frontal gyrus, BA 45 (240)

R inferior frontal gyrus, BA 48 (110)

BA Brodmann area, BD bipolar disorder, HC healthy controls, L left, MNI Montreal Neurological Institute, R right, SDM seed-based d mapping.
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the perceived value and dampen VS activity [103]. Second, the
different processing types of the tasks also affected brain
activation. Besides reward anticipation, VS was also found to
have altered activation in reward receipt and loss anticipation in
BD [12, 37, 104–106]. Moreover, striatal activation to reward cues is
modulated by several factors involved in reward anticipation
including the magnitude of the reward, the probability of reward
receipt, the amount of time until the anticipated reward can be
obtained, and the effort required to pursue the reward [107].
These studies suggest a complex role of VS in reward processing,
suggesting the need for sophisticated fMRI protocols to separate
them at the brain level.
In addition, reward deficits in mood disorders were associated

with altered connectivity between VS and large-scale functional
networks [108]. Particularly, reward anticipation was character-
ized by dense connectivity in the frontal-parietal-temporal-striatal
network in BD [109]. Some studies have shown that individuals
with BD exhibited decreased dynamic functional connectivity in
frontal areas and increased VS and OFC functional connectivity
during reward processing [110, 111]. In this context, altered
activation in a selected region cannot fully explain complex
patterns of reward impairments in BD; therefore, it is important to
examine the functioning at the level of the brain network in
future studies.

Limitations
This meta-analysis has several limitations that should be
acknowledged. First, the number of studies included in the
meta-analyses was relatively small, which limited the statistical
power, especially in the case of different clinical sub-types and
mood states of BD. Second, the comparability of different task
paradigms’ difficulty and discriminability is an important question
that awaits further work. Third, this study focused on the brain
activation alterations of the reward anticipation phase during
reward processing in BD. Thus, the results do not represent the
full range of reward processing. It will be an interesting topic to
discover whether a functional abnormality in a particular brain
region may underlie impairment in loss anticipation, reward/loss
outcome, and prediction error in individuals with BD. Fourth,
only VS ROI meta-analysis was performed in BD due to the
limited number of studies. Finally, the possible effect of
medication on the findings in BD cannot be totally ruled out.
The potentially confounding effects of psychotropic medication
in bipolar neuroimaging research have been discussed pre-
viously, which found no or limited impact on fMRI results
[112, 113]. However, we cannot completely rule out specific
medication effects considering the evidence that psychotropic
medications might generally blunt neural responses to reward
anticipation [34, 35]. Further studies recruiting unmedicated
patients or studies with a longitudinal design controlling for
medication are needed.

CONCLUSIONS
The present study revealed significantly altered brain activation in
prefrontal and inferior parietal lobule regions during reward
anticipation processing in BD, suggesting the potential neurobio-
logical mechanism underlying impairment in reward anticipation
in BD. The clinical features of individuals with BD may affect the
neurobiological basis during reward anticipation. Future prospec-
tive studies, recruiting different subgroups of BD, focusing on
other phases of reward processing such as loss anticipation,
reward outcome and prediction error, and using multimodal
neuroimaging, are needed to better understand the longitudinal
neural trajectory underlying reward processing in BD.
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