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The nucleus accumbens (NAc) is considered a hub of reward processing and a growing body of evidence has suggested its crucial
role in the pathophysiology of major depressive disorder (MDD). However, inconsistent results have been reported by studies on
reward network-focused resting-state functional MRI (rs-fMRI). In this study, we examined functional alterations of the NAc-based
reward circuits in patients with MDD via meta- and mega-analysis. First, we performed a coordinated-based meta-analysis with a
new SDM-PSI method for all up-to-date rs-fMRI studies that focused on the reward circuits of patients with MDD. Then, we tested
the meta-analysis results in the REST-meta-MDD database which provided anonymous rs-fMRI data from 186 recurrent MDDs and
465 healthy controls. Decreased functional connectivity (FC) within the reward system in patients with recurrent MDD was the most
robust finding in this study. We also found disrupted NAc FCs in the DMN in patients with recurrent MDD compared with healthy
controls. Specifically, the combination of disrupted NAc FCs within the reward network could discriminate patients with recurrent
MDD from healthy controls with an optimal accuracy of 74.7%. This study confirmed the critical role of decreased FC in the reward
network in the neuropathology of MDD. Disrupted inter-network connectivity between the reward network and DMN may also
have contributed to the neural mechanisms of MDD. These abnormalities have potential to serve as brain-based biomarkers for
individual diagnosis to differentiate patients with recurrent MDD from healthy controls.
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INTRODUCTION
Major depressive disorder (MDD) with heterogeneous symptoms
immensely impairs patients’ health and function, destroys patients’
occupations and life, and mounts a burden borne by the family
and society [1]. This disorder is characterized by a high recurrent
rate and a chronic deteriorating disease course. As high as 83.3%
(at least 33.5%) of patients with MDD may experience recurrence
within 6 months [2]. Each recurrence of MDD especially increases
the risk of becoming chronic. Up to 70% of patients with MDD may
suffer recurrences throughout their lifetime after the second major
depressive episode and by 90% after the third or more recurrence
[3]. Over the past decades, with the development of precision
medicine, more and more studies have focused on searching for
objective biomarkers and exploring subtle classifications to guide
clinical decision-making and facilitate individualized therapy.

Magnetic resonance imaging (MRI) is one of the noninvasive
neuroimaging techniques used extensively to elucidate the neural
basis of psychiatric disorders. This technique may be a critical step
toward differential diagnoses and treatment prediction. Previous
behavioral and MRI studies have implicated altered reward-related
processes (e.g., reward anticipation, acceptance, and motivation)
in patients with MDD [4–6]. Brain areas such as the putamen,
ventral tegmental area (VTA), ventral striatum, anterior cingulate
cortex (ACC), and medial prefrontal cortex (mPFC) are the
components of complicated reward network [7]. Notably, conver-
ging evidence has suggested that structural and functional
disruptions of the nucleus accumbens (NAc, a part of the ventral
striatum) might be a crucial culprit of reward-related abnormal-
ities. The NAc is a key component of dopamine-rich mesocorti-
colimbic pathways. This region is extensively connected with
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other brain regions and receives complex signal inputs from
various neurochemistry systems including glutamatergic, dopa-
minergic, serotoninergic, and histaminergic projections [8–10]. For
instance, the NAc volumes were smaller in patients with life-time
MDD than in healthy controls [11]. During a monetary incentive
delay task, individuals with MDD displayed significantly weaker
activations to gains in the left NAc and bilateral caudate regions
[12]. Generally, decreased activation within the ventral or dorsal
striatum, coupled with increased or decreased activation in other
areas (such as the mPFC and subgeneual ACC) was the most
consistent finding in adolescents with MDD in the reward-related
task studies using functional MRI (fMRI) [13–15]. Similarly, aberrant
functional connectivities (FCs) between the NAc and other regions
within the reward network, including the ACC, orbital frontal
cortex (OFC) and mPFC, have been reported in adult patients with
MDD in the resting-state fMRI (rs-fMRI) studies. These disruptions
have been associated with depressive severity, cognitive deficit,
and treatment response to repetitive transcranial magnetic
stimulation [16–19]. Intriguingly, some brain regions such as the
mPFC were also involved in the default mode network (DMN), a
network which plays a critical role in self-referential and internal
goal-oriented processes [20, 21]. The balanced activity between
the reward network and other networks, such as the cognitive
control network and DMN, was considered important for self-
regulation, emotional regulation and reward motivation, and
decision-making [22–24]. Gong et al. [25] reported decreased FCs
between the NAc and areas within the reward network (bilateral
caudate, hippocampus, left pallidum, etc.) and key hubs of the
DMN (inferior parietal lobe and dorsal mPFC) and cognitive
network (dorsolateral PFC). Furthermore, decreased inter-network
FC and diminished controlling of the cognitive network on the
reward network were documented in this study, and the
imbalance between these networks could predict the severity of
anhedonia in patients with MDD.
However, inconsistent results have been reported in these

reward network-focused rs-fMRI studies. For example, both
increased and decreased FCs have been observed between the
NAc and the precuneus and mPFC [16, 18, 25–27]. Diverse
demographic and clinical profiles of the subjects, analytical
methods, and limited statistical power may have contributed to
the inconsistencies. Therefore, in the current study, we examined
functional alterations in the NAc-based reward circuits in patients
with MDD via meta-analysis and mega-analysis. First, we
performed a neurofunctional meta-analysis of all up-to-date rs-
fMRI studies that focused on the reward circuits of patients with
MDD. Then, we tested the meta-analysis results in a large MDD rs-
fMRI database, that is, REST-meta-MDD (rfmri.org/REST-meta-
MDD). This project contains anonymous rs-fMRI data processed
using a standard pipeline built-in Data Processing & Analysis for
Brain Imaging/Data Processing Assistant for Resting-State fMRI
(DPABI/DPARSF) of 1,300 patients with MDD and 1,128 healthy
controls. With the use of these data, project initiators Yan et al.
found reduced DMN FC only in patients with recurrent MDD [28].
In the present investigation, we predicted decreased NAc FC in the
reward network and compromised relationships between the
NAc-based reward network and other networks (e.g., DMN), and
mega-analysis would replicate the meta-analysis findings. In
addition, we tested whether the altered NAc FC would serve as
a potential image feature to distinguish patients with MDD from
healthy controls.

MATERIALS AND METHODS
Meta-analysis
Search strategy, selection criteria, and data extraction. The meta-analysis
was prepared compliant with Preferred Reporting Items for Systematic
Reviews and Meta-analyses guidelines. A literature search of the PubMed
and Web of Science database was conducted in September 2021. The

following keywords and their combinations were used in [Title/Abstract]:
resting-state functional magnetic resonance imaging/rsfMRI, major
depressive disorder/MDD/depression/unipolar depression/depressive dis-
orders, and reward network/nucleus accumbens/NAc/ventral striatum/VS.
The reference lists of previous review articles were also manually searched.
All original rs-fMRI studies that compared patients with MDD with

healthy controls and investigated NAc/VS FC maps were included. Meeting
abstracts, study protocols, reviews, and animal studies were excluded.
Studies were also excluded if they used different thresholds in different
brain areas (e.g., region of interest) or recruited subjects with other major
psychiatric or neurological illness.
The following variables were extracted from included studies: sample

size, age, sex, education level of patients and controls, depressive severity,
type of analysis, statistical thresholds, effect sizes, and if available, the
Montreal Neurological Institute space (MNI) or Talairach space coordinates
of brain areas with significant group differences.

Statistical analysis. We used a new method, SDM-PSI, to conduct this
coordinated-based meta-analysis. This method was developed by Radua
et al., and they implemented the Permutation of Subject Images (PSI)
algorithm to an existing Anisotropic Effect-Size Seed-based d Mapping (AES-
SDM) method [29]. Based on the AES-SDM method [30, 31], a set of reported
peak coordinates and t-values were converted into Hedge’s g effect size
using standard formulas. This process imputes the slightly lower effect sizes
of surrounding voxels than those of the peaks, and until the voxels are far
enough from any peak it imputes the effect size as null. However, non-
negligible biases would be yielded in the progressive estimation of the
effect size of voxels farther from the peaks. To address this limitation, the
SDM-PSI method uses AES-SDM Gaussian kernels to calculate the effect-size
bounds, maximum-likelihood estimation to estimate parameters, and
multiple imputation techniques for each voxel to cover the uncertainty
linked to single imputation with a range of effect sizes a voxel may have
[29]. Importantly, the MetaNSUE (nonstatistically significant unreported
effects [NSUE]) method is adapted to avoid biases introduced by excluding
studies with non-significant results and unknown statistics [32, 33].
Age and years of education were included as covariates in the analyses.

Given the intra- and inter-study heterogeneities, random-effect models were
used and I2 statistic was applied to quantify heterogeneity (I2 ≥ 50%
indicates substantial heterogeneity). The threshold was set at p < 0.001
uncorrected and a cluster extent of ten voxels. According to previous studies
[29], this particular set of threshold was a conservative recommendation for
cases where the t-values were not reported by studies and simultaneously
has a remarkable sensitivity and controls the empirical family-wise error rate
below 5%. Funnel plots were used to detect whether results might have
been biased by small studies. In addition, meta-regression by the mean
MDD symptom severity and the percentage of male individuals in the
patient group were complemented to the main analysis. All analyses were
performed using the SDM-PSI version 6.21 (https://www.sdmproject.com/).
We also conducted a supplementary analysis for the studies only focused

on the NAc rather than VS, given possible inconsistency introduced by a
broader ROI selection.

Mega-analysis
Subjects. From the data of 2428 subjects provided by the REST-meta-
MDD consortium, we selected the data of 186 subjects with recurrent
MDDs and 465 matched healthy controls from eight sites across China (the
majority of patients included in the meta-analysis were recurrent MDDs.
Thus, we focused on recurrent MDDs). The sample were selected as shown
in Fig. S1. All individuals aged 18–65 years with complete information (i.e.,
age, sex, and educational level) were included. Subjects were excluded if
they (1) had poor imaging quality or poor spatial normalization (checked
by visual inspection), (2) were in remission stage (the score of the 17-item
Hamilton depression rating scale (HAMD) ≤7), or (3) had excessive head
motion (mean framewise displacement, FD >0.2mm). Among the 803
remaining patients with MDD, 186 were patients with recurrent MDDs.
Data on the duration of illness and 17-item HAMD scores were available for
165 and 143 patients with recurrent MDDs, respectively. Medication
information was provided by 126 patients with recurrent MDD, among
which 77 patients were taking antidepressants when receiving MRI scans.

Data acquisition, preprocessing, and FC analysis. MRI scans and data
preprocessing were performed independently at each site. The scanning
parameters of each site and preprocessing details are shown in the
Supplementary Materials. As previously described in refs. [28, 34], all
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preprocessing steps were completed with the DPARSF software, and
analysts from each site were able to use it skillfully.
After preprocessing, time series for the Harvard-Oxford Atlas were

extracted. We selected bilateral NAc as seed regions and calculated FC
(Fisher’s z-transformed Pearson’s correlation coefficients) between the
seeds and other brain areas.

Statistical analysis. Bilateral NAc FC maps of patients with recurrent MDD
and controls were compared by linear mixed models (LMM) to control for
potential study site-related effects, in which the group, age, sex, years of
education, and mean FD were included as independent variables: y~1+
group+ age+ sex+ years of education+ FD+ (1 | site)+ (group | site)
[28]. Then the yielded t and df values were used to calculate effect size
Cohen’s d= (t(n1+ n2)) ⁄ (√df)√n1n2) [35]. To further test the potential
effect of the depressive severity on the brain regions with significant group
differences, we replaced “group” in the LMM model with HAMD total score
or score of core depression subtype (item 1 and 7) [36]. The Pearson’s
correlation coefficient r= t / √(n – 2+ t2) [37]. The statistical significance
threshold was set at p < 0.05 with a false discovery rate (FDR) correction.

Machine learning analysis. We used brain areas which had significantly
disrupted FC with NAc as potential features and examined their ability to
discriminate patients with recurrent MDDs from healthy controls by using
a support vector machine (SVM) in Matlab. SVM could handle data in a
high-dimensional space and create a hyperplane that could best classify a
new target into predefined categories. A Grid search method was used to
obtain optimal values of hyperparameters (such as parameter C and
Gamma) of a model. A fivefold cross-validation method was employed to
assess the generalizability of classifier models. We trained those models
with a Gaussian kernel in 80% of participants and evaluated the models’
performance on the left-out data in the “testing phase” for each fold. This
method is good at handling high-dimensional data with optimal
boundaries constructed and misclassification error minimized and is less
likely to overfitting of the data [38, 39]. Finally, accuracy was calculated
based on the results of cross-validation:

Accuracy ¼ TP þ TNð Þ= TP þ FN þ TN þ FPð Þ

where TP and TN represent the number of patients and controls correctly
predicted, respectively; FP represents the number of controls classified as
patients and FN represents the number of patients classified as controls.

RESULTS
Meta-analysis
Characteristics of eligible studies. Twelve studies involving
1068 subjects (593 patients and 475 healthy controls) were
included in the meta-analysis. Figure S2 shows the flow diagram
of the identified, included, and excluded studies. The character-
istics of the included studies are shown in the Supplementary
Materials (Table S2). The majority of patients recruited in these
studies were patients with recurrent MDD and aged 18–60 years
old. Two studies have focused on adolescent (12–19 years) and
older adults (>60 years) patients with MDD [18, 40]. Nine of the
studies selected bilateral NAc as seeds, and the other three
selected bilateral inferior VS as seeds. Symptomatic severity was
not evaluated by HAMD in two studies, so they were not included
in the meta-regression analysis [18, 41].

Group differences and meta-regression analyses. As shown in Fig.
1, compared with healthy controls, patients with recurrent MDD
had decreased FC between the NAc and left ventromedial
prefrontal area (peak MNI=−28, 36, −14, z=−4.089, p < 0.001,
59 voxels). No increased FCs were reported. Slight but not
significant heterogeneity was found in this area (I2= 0.95%,
p= 0.968). No obvious publication bias was observed in the funnel
plot (Supplementary Materials and Fig. S3). When we adopted a
relatively lenient threshold at p < 0.01, significant results included
the left ventromedial prefrontal area (peak MNI=−28, 36, −14,
z=−4.089, p < 0.001, 205 voxels) and right ACC (peak MNI= 4, 36,
−6, z=−2.519, p= 0.006, 12 voxels).

The meta-regression analysis did not find any significant effects
of depressive severity or sex ratio on NAc FC maps.
Our supplementary analysis for studies only focused on the NAc

showed no significantly positive results at a threshold of p< 0.001
(uncorrected). When threshold was set at p< 0.01, decreased FC
between the NAc and left ventromedial prefrontal area (peak MNI=
−28, 36, −14, z=−3.219, p< 0.001, 115 voxels) was observed.

Mega-analysis
Group comparisons. The demographic and clinical characteristics
of the included subjects are shown in Table 1. No significant
differences were reported between patients with recurrent MDD
and healthy controls in age and sex ratio. Compared with healthy
controls, patients with recurrent MDD exhibited lower education
levels.
As shown in Table 2 and Fig. 2, compared with healthy controls,

patients with recurrent MDD mainly exhibited generally decreased
bilateral NAc FC in the reward network, including the left
hippocampus/parahippocampal gyrus (left NAc seed: t=−3.903,
p < 0.001, d=−0.340; right NAc seed: t=−3.705, p < 0.001, d=
−0.324) and left VTA (right NAc seed: t=−3.342, p= 0.028, d=
−0.292). A region within the DMN (right lateral temporal cortex,
t=−3.347, p= 0.037, d=−0.292) and a region involved in visual
processing (left fusiform gyrus, t=−4.507, p < 0.001, d=−0.393)
were also survived multiple comparison correction (The uncor-
rected results were showed in Supplementary Materials Table S3).
No significant associations were found between bilateral NAc FC
maps and HAMD scores or subscores in the patients.

Distinguishing patients with recurrent MDD from healthy controls.
Significantly abnormal bilateral NAc FCs returned by the former
step were used as potential features for subsequent SVM analysis.
As shown in Fig. 3, the combination of all significant NAc FCs as
features could discriminate patients with recurrent MDD from
healthy controls with an accuracy of 74.5%; when using significant
NAc FCs within the reward network as features, the discriminative
accuracy was 74.7%. The specificities of the two strategies were

Fig. 1 Group differences of meta-analysis. Compared with healthy
controls, patients with recurrent MDD exhibited decreased NAc
functional connectivity in the left ventromedial prefrontal cortex.
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high (100% and 98.7%, respectively), whereas neither of the
sensitivities were more than 20%.

DISCUSSION
Using a meta-analysis and a large MDD sample for mega-analysis,
we found decreased FCs within the NAc-based reward system in
patients with recurrent MDD compared with healthy controls as
predicted. In addition, reduced NAc-DMN FCs were prominent. No
significantly increased FCs between the NAc and other brain
regions were reported. Specifically, the combinations of the
disrupted NAc FCs within the reward network could discriminate
patients with recurrent MDD from healthy controls with an
optimal accuracy of 74.7%. Though the sensitivity was not
satisfactory, the high specificity could ensure the correct
identification of healthy individuals.
This study has two main novel aspects. First, we used a new

coordinate-based meta-analysis method, namely, SDM-PSI, to
statistically summarize up-to-date voxel-based rs-fMRI studies that
focused on the NAc and reward network in patients with MDD.
This method benefits from the control of family-wise error rate via
subject-based permutation test and the control of bias introduced
by exclusion of studies with non-significant results and unknown
statistics via multiple imputations algorithms-based MetaNSUE
method [29]. Second, we used a large rs-fMRI database of MDD
from 25 sites in China to cross-validate the findings of the meta-
analysis. These imaging data were all preprocessed in the same
protocol with the DPARSF software and thus eliminating analytic
heterogeneity. Furthermore, we employed SVM to test the
potential of the disrupted NAc-based FC map as a biomarker of
MDD in this database. The relatively high accuracy of our SVM
analyses indicated the important roles of the reward network and

its inter-network connectivity with the DMN in the pathophysiol-
ogy of MDD, and may have promising clinical implications to
provide helpful scaffolding in promoting objective diagnostic
tools for MDD and developing individualized treatment.
The most robust finding in this study was decreased FC within

the reward system, which was observed both in the meta-analysis
and mega-analysis. The ACC, mPFC, and hippocampus/parahip-
pocampal gyrus are important hubs in the reward circuit and play
critical roles in reward motivation and reappraisal, emotional
regulation, and reasoning along with the cognitive control
network [24, 42, 43]. Histopathological studies have reported
neuron size reduction and glia loss in the ACC and mPFC [44–46].
Mounting evidence from the fMRI studies has implicated
alterations of these regions in patients with different ages
[47–50]. Chen et al. found altered variability in the dynamic FC
between the inferior VS and mPFC in patients with MDD
compared with healthy controls and patients with bipolar disorder
II, which indicates an MDD-specific alteration [51]. Notably, a
negative association between the NAc-subgenual ACC intrinsic FC
and anhedonia severity has been reported in adolescent patients
with MDD [18]. Anhedonia, which reflects deficits in pleasure
feeling and reward processing, is a core symptom of MDD and
even persists after treatment [52, 53]. A previous meta-analysis
reported that decreased activation in the left ACC was associated
with consummatory anhedonia in patients with MDD [54].
Similarly, Rzepa et al. observed blunted neural responses in the
ACC and vmPFC during the consummatory phase of rewarding
stimuli in young people at risk of depression [55].
It is well established that the hippocampus/parahippocampal

gyrus and VTA have close connections with the NAc. The
hippocampus receives and sends inputs to the NAc and plays
critical and complex roles in the processing of reward valence [56].

Table 1. Demographic and clinical characteristics of the participants included in the analysis.

Recurrent MDDs HCs Group comparisons

Mean SD Mean SD p

Age 35.35 12.43 37.14 3.84 0.132a

Education 11.78 3.35 13.35 3.84 <0.0001a

Duration 88.44 85.22 - - -

HAMD 21.38 5.15 - - -

Sex Male Female Male Female p

81 105 180 285 0.288b

HAMD Hamilton rating scale for depression, HC healthy control, MDD major depressive disorder, SD standard deviation.
aThe p value was obtained by two-sample t-tests.
bThe p value was obtained by a chi-square test.

Table 2. The significant between-group differences in functional connectivity for the NAc (p < 0.05, FDR-corrected).

Cluster Location network MNI t d p

x y z

Seed: Left NAc

L_Parahippocampal gyrus, anterior division Reward network −21.68 −9.28 −30.7 −3.903 −0.340 <0.001

Seed: Right NAc

R_Inferior Temporal Gyrus, anterior division DMN 46.31 −2.16 −41.18 −3.347 −0.292 0.037

L_Parahippocampal Gyrus, anterior division Reward network −21.68 −9.28 −30.7 −3.705 −0.324 <0.001

L_Ventral tegmental area Reward network −7.49 −30.76 −33.99 −3.342 −0.292 0.028

L_Fusiform cortex, anterior division Visual network −32.3 −4.53 −41.6 −4.507 −0.393 <0.001

DMN default mode network, FDR false discovery rate, MNI the Montreal Neurological Institute space coordinates, NAc nucleus accumbens.
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The VTA is a heterogeneous brain region, which has dopaminergic
and GABAergic projections to the NAc [56]. Previous task fMRI
studies found decreased FC between the VTA and striatum in
patients with MDD during reward outcome in monetary

instrumental learning task compared to healthy individuals, which
indicated reward-related deficit in MDD and the underlying
disrupted VTA-NAc circuit [57]. Shi et al. reported increased
resting-state FCs between the bilateral VTA and ventral striatum in

Fig. 2 Results of mega-analysis. A The significant between-group differences in the NAc functional connectivity. B The box figures show the
distribution of significantly disrupted bilateral NAc functional connectivity in the group comparison. Fusi fusiform gyrus, HC healthy control, L
left, NAc nucleus accumbens, PHa parahippocampal gyrus, R right, Re recurrent major depressive disorder, ITG inferior temporal gyrus, VTA
ventral tegmental area.

Fig. 3 Visualization of classification by SVM analyses. A The accuracy, sensitivity, and specificity of the classifications of patients with
recurrent MDD versus HCs using all significant NAc FCs as features or using significant NAc FCs within the reward network as features.
B Parameter selection result for training set when using (1) all significant NAc FCs as features and (2) using significant NAc FCs within the
reward network as features. FC functional connectivity, HC healthy controls, MDD major depressive disorder, NAc nucleus accumbens, SVM
support vector machine.
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MDD compared to healthy controls using an ROI-to-ROI analysis,
but these results were not survived correction for multiple
comparisons [58]. Using the same ROI-based method, Wang
et al. observed reduced resting-state NAc FCs in the bilateral
hippocampus in MDD [25]. Intriguingly, our meta-analysis for all
up-to-date NAc-based whole-brain resting-state fMRI studies did
not find any significant positive results in the subcortical areas
within the reward network, which instead were the main findings
in the mega-analysis. Methodology differences may contribute to
the inconsistence. In addition to different data preprocessing and
analysis operations and diverse multiple comparison correction
methods, disparities in NAc definition may be one of the
meaningful factors. According to the results of supplementary
meta-analysis, the inclusion of ventral striatum in the meta-
analysis did not seem to contribute to the heterogeneity, instead,
the subregions of NAc are worth noting. The NAc has a core-like
and a shell-like subdivision, and the two parts have connections
with different regions associated with different reward-related
functions [59, 60]. Given the coordinates of bilateral NAc in the
Harvard-Oxford Atlas used in the mega-analysis and those used in
the meta-analysis, findings from the meta-analysis were more
likely to present an abnormal NAc shell-like subdivision-based FC
profiles in patients with recurrent MDD. Albeit the disparities, the
combination of meta-analysis and mega-analysis in this study
highlighted the disrupted NAc-centered reward network in MDD.
Abnormal inter-network connectivity between the DMN and

NAc (reward network) in the recurrent MDDs was another
prominent result in this study. The ventral mPFC, the significantly
positive result in the meta-analysis, was regarded as an important
part of the DMN [61], and the DMN was considered to be engaged
in reward processing. For instance, Olivo and colleagues reported
that connectivity in the DMN (such as lateral temporal regions)
was related to reward sensitivity [62]. Altered activation of the
DMN was observed in effort avoidance behavior, which suggested
that the DMN activity might be associated with reward processing
that predicts effort selection [63]. The reward network-DMN FC
deficits showed in our study indirectly corroborated previous
studies. Using the precuneus/posterior cingulate gyrus as a seed,
researchers found decreased DMN-bilateral caudate connectivity
in early depression [64]. Hwang et al. [65] found increased FC
between the DMN and ventral striatum in two cohorts of
subthreshold depression and the value of DMN-ventral striatum
FC was positively related to scores of depressive symptomatology
(measured by the Center for Epidemiologic Studies Depression
Scale). This result was regarded as compensation for the lowered
reward function in patients with subthreshold depression. Taken
together, our study and previous studies demonstrated disrupted
FC between the reward network and DMN in MDD, and such
abnormality may change at different stages of depression.
Unexpectedly, we found altered FC between the NAc and

fusiform gyrus (a region adjoins hippocampus/parahippocampal
gyrus and involves in visual pathways of recognition [66]) in the
mega-analysis. On the one hand, some studies have indicated a
possible role of the visual system in patients with MDD. Altered
blood-oxygenation-level-dependent signals in the occipital lobes
were found during the facial expression tasks [67], working
memory tasks [68], and reward tasks [69]. Reduced nodal
centralities in the occipital regions were documented in a study
that investigated the topological organization of brain networks
during the resting state in patients with MDD [70]. Processing
emotion- or reward-related visual stimuli in the task and eyes-
open status at rest may provide explanations for these findings
[69, 71–73]. In addition, mixed medication treatments and
different antidepressant responses in patient with recurrent
MDD may affect the activation of the occipital cortex. For
example, compared with non-responders, remitters had a more
obvious decrease in activation in the occipital cortex following
escitalopram treatment [74]. On the other hand, a significantly

positive result seen in the fusiform gyrus in our mega-analysis may
be a result of the extended effect of the hippocampus/
parahippocampal gyrus. Thus, it is still unclear whether inter-
network connectivities between the reward network and visual
system play roles in MDD due to limited evidence.
Several limitations of this study should be acknowledged. First,

most studies included in the meta-analysis and all patients
recruited in the mega-analysis were from China. Thus, the results
should be taken with caution when generalizing to other
populations. Data from other ethnicity/culture (such as the UK
biobank) should be analyzed and compared with our results.
Similarly, combined data from other international data-sharing
consortiums will help explore MDD subtypes (clinical-symptom
based or neurophysiological based). Second, medication details
are not available in our study and thus may confound the results.
As previously mentioned, antidepressants and response disparities
may have different effects on the brain function [74, 75]. Third,
permutation tests used in the SDM-PSI analysis were not entirely
free from bias. Images recreated from peak t values could not fully
duplicate raw images [29]. Finally, results of associations between
disrupted NAc-based reward network FC and HAMD scores were
mixed in the meta-analysis and mega-analysis. Whether illness
severity contributes to the abnormalities remains unknown. Future
studies need to focus on specific symptoms (such as anhedonia)
instead of using general rating scales.
In summary, by combining a meta-analysis and a large MDD

sample for mega-analysis, we confirmed the critical role of NAc-
based reward system in MDD. We identified decreased FC in the
NAc-based reward network in patients with recurrent MDD.
Disrupted inter-network connectivity between the reward network
and DMN may also have contributed to the pathophysiological
mechanisms of MDD. Moreover, a combination of abnormal NAc
FCs in the reward network can serve as potential brain-based
biomarkers for individual diagnosis to differentiate patients with
recurrent MDD from healthy controls.
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