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Objective measures, such as activity monitoring, can potentially complement clinical assessment for psychiatric patients. Alterations in
rest–activity patterns are commonly encountered in patients with major depressive disorder. The aim of this study was to investigate
whether features of activity patterns correlate with severity of depression symptoms (evaluated by Montgomery–Åsberg Rating Scale
(MADRS) for depression). We used actigraphy recordings collected during ongoing major depressive episodes from patients not
undergoing any antidepressant treatment. The recordings were acquired from two independent studies using different actigraphy
systems. Data was quality-controlled and pre-processed for feature extraction following uniform procedures. We trained multiple
regression models to predict MADRS score from features of activity patterns using brute-force and semi-supervised machine learning
algorithms. The models were filtered based on the precision and the accuracy of fitting on training dataset before undergoing external
validation on an independent dataset. The features enriched in the models surviving external validation point to high depressive
symptom severity being associated with less complex activity patterns and stronger coupling to external circadian entrainers. Our
results bring proof-of-concept evidence that activity patterns correlate with severity of depressive symptoms and suggest that
actigraphy recordings may be a useful tool for individual evaluation of patients with major depressive disorder.
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INTRODUCTION
Wrist actigraphy is a technique that allows long-term recording of
activity with minimal discomfort and safety challenges for the
subject. The availability of off-the-shelf medical or research grade
actigraphy devices has enabled larger scale collection of actigraphy
data [1], and there is increasing consensus around feature
engineering and biological interpretations of specific parameters
derived from analysis of actigraphic recordings [2–4]. Analyses of
rest and activity patterns have highlighted specific alterations in
psychiatric disorders as compared to healthy controls, as well as
among different disorders [5–8]. Patients suffering from an episode
of major depressive disorder (MDD) display globally lower levels of
activity [9], with shorter diurnal activity period and shorter bouts of
activity [6, 10], and flattened circadian fluctuations in activity levels
[1, 11–13]. In addition, symptom severity has been shown to
correlate with the amount of moderate intensity physical activity
[14] and with the number of sedentary bouts [15], while increasing
the level of activity by structured, supervised physical activity has
been proven to be an effective antidepressant intervention [16–18].
The mechanisms regulating circadian patterns of activity involve

complex interactions between environmental cues (i.e., light–dark
cycle, social interactions, meals, and physical activity) and the
internal clock (located in the suprachiasmatic nucleus of the anterior
hypothalamus). It has been shown that gene level alterations
intrinsic to the molecular clock mechanism (e.g., strength of
coupling in circadian oscillations in clock gene expression) are

associated with depression [19–21]. In addition, weaker coupling
between the central clock and peripheral oscillators has been
demonstrated in depressed patients and suicide victims [22], and
has been verified in experimental models of depression [23, 24].
However, correlations between activity patterns and symptom
severity in depression have hitherto received very little attention.
The aim of his paper was to investigate whether features of

activity patterns from actigraphic recordings correlate with the
severity of depression symptoms (estimated using the interview-
based Montgomery–Åsberg Rating Scale (MADRS) for depression
[25]) in adult patients with major depressive disorder before
treatment. To this end we have analyzed actigraphy data using a
battery of non-parametric and non-linear approaches for feature
extraction. We then trained and validated linear models to predict
symptom severity using the extracted features. Our data provide
proof-of-concept support for correlation between symptom
severity and activity patterns for patients with ongoing major
depression episode. Lastly, we discuss the biological significance
of the features with highest leverage in the models.

MATERIALS AND METHODS
Actigraphy data collection
Actigraphy data was collected in clinical trials approved by the Swedish
Research Ethics Committee (Dnr. 2017/799-31; Dnr. 2014/452-31). All
subjects provided informed consent before data collection. The training
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dataset was collected as part of the previously published study on
serotonin transporter availability in patients given cognitive behavioral
therapy (CBT) for the treatment of a major depressive episode [26].
Briefly, 17 subjects were recruited by advertisements in local news-
papers. Diagnosis of depression was established after full psychiatric
assessment by a psychiatrist or by resident physician supervised by a
senior psychiatrist. The study included patients with an ongoing major
depressive episode according to DSM-IV criteria, with a history of at least
one prior episode and that were not undergoing any psychopharma-
cological treatment for MDD. The included patients had a MADRS score
between 18 and 35. Activity was recorded in 12 subjects for at least 7
consecutive days immediately prior to starting the CBT treatment
program. Actigraphic recordings were acquired using GENEActiv Original
wrist-worn actigraphs (Activinsights, Cambs, UK). The devices use three-
dimensional accelerometers (up to 8×g; resolution of 3.9 mg) at 30 Hz
sampling rate to record wrist movement. The patients were instructed to
wear the actigraph continuously on the wrist of the non-dominant arm
and not remove it unless for personal safety reasons (e.g., sauna, or
contact sports such as martial arts, rock climbing, or volleyball). The raw
data was downloaded using proprietary software, then processed in
Matlab (The Mathworks, Natick, MD, USA), using a modified version
of the code (https://github.com/DavidRConnell/geneactivReader), as
described earlier [27]. Briefly, the Euclidean norm of change in
acceleration vector was first smoothed using a rolling Gauss window
spanning 30 consecutive datapoints (1 s), then a high-pass filter was
applied (threshold: 20 mg= 196 mm/s2) before computing the sum of
changes in acceleration vectors over 1 min epochs (1440 samples/24 h).
A total of 12 recordings spanning between 6 and 12 consecutive days
were included in the training dataset.
The external validation was performed on an independent dataset. The

test dataset consisted of actigraphy data recorded as part of a clinical
study addressing the effects of ketamine on serotonin receptor binding in
patients with treatment-resistant depression [28]. Briefly, the study
included 39 patients with an ongoing major depressive episode, with
MADRS ≥ 20, resistant to selective serotonin reuptake inhibitor (SSRI)
treatment in an adequate dose for at least 4 weeks. Ongoing
antidepressant treatment was discontinued and actigraphy data was
collected after a washout period of at least 5 times the half-life of the SSRI.
The patients were instructed to wear the actigraph continuously on the
wrist of the non-dominant arm and not remove it unless for personal
safety reasons. The recording started prior to the first ketamine infusion
and continued for the duration of the ketamine treatment program. For
the purpose of this study, we cropped the recordings to include the period
immediately prior to the first ketamine infusion (i.e., after drug washout
period). Actigraphic recordings were acquired using Actiwatch 2 wrist-
worn devices (Philips Respironics, Murrysville, PA, USA) set to record
activity only integrated over 1 min epochs. The raw data was downloaded
according to manufacturer’s instructions (Actiware 6.0.9, Philips Respiro-
nics) then exported as text files. The text file was imported to Matlab™
using a custom function designed to yield an output similar to the one
generated by the import function for GENEActiv devices. A total of 23
recordings spanning between 2 and 7 consecutive days were included in
the test dataset.

Quality control and inclusion criteria
The recordings in both train and test dataset underwent the same
screening procedure and were assessed by the same observer blind to the
recording conditions. All recordings were first inspected visually using a
standardized procedure designed to identify stretches of missing data,
artifacts, and gross abnormal circadian patterns of activity (e.g., shift-work).
Intervals containing suspected shift-work (not reported at the time of
recording), suspected artifacts, or missing data, were cropped out.
Individual cropped recordings were included if they fulfilled the following
requirements: mild to moderate symptom severity (recordings from
patients with MADRS > 40 were not included, given the MADRS range
was limited to 35 in the training dataset); minimum recording length
5 days; the recording did not include shift-work periods or other
exceptional events with potentially high impact on the subject’s circadian
patterns of activity (as identified on the actigraphy recording); the
recording was continuous and did not include stretches of missing data
longer than 2 h (e.g., due to not wearing the recording device for personal
safety reasons). In the train dataset, all recordings passed the quality
control procedure. In the test dataset, recordings were rejecting for the
following reasons: MADRS > 40 (1); recording length <5 consecutive days
(7); shift-work during recording time (2); missing data (2). This yielded a

total of 24 recordings to use for further analyses: 12 for train and 12 for test
datasets (see also Fig. 1 for description of workflow). All actigraphy
recording originated from different patients (i.e., no patient provided more
than 1 recording).

Pre-processing and feature extraction
All data processing was performed in Matlab using custom implementa-
tions of publicly available algorithms. The selection of features took into
account the fact that the training and test datasets were acquired using
different recording devices and required different pre-processing steps.
Therefore, we aimed to include primarily features independent from the
magnitude of the reported activity (average hourly activity level during the
most active 10 consecutive hours and least active 5 consecutive hours—
M10 and L5, respectively—depend on the output magnitude) and focused
on features describing the regularity, fragmentation, and complexity of
circadian patterns of activity. Feature extraction was performed on
recordings cropped between first and last midnight to yield an integer
number of 24 h periods. The following features were extracted: circadian
period; scaling exponent [4]; intradaily variability; interdaily stability;
circadian peak and trough; relative amplitude [1, 2, 27]. The features
extracted and included as predictors for model development are listed in
Table 1, and the correlation matrix for all predictors as well as outcome
variable (MADRS) is shown in Fig. 2A.
Circadian period was estimated using the Lomb–Scargle algorithm

optimized for Matlab implementation [29]. The Lomb–Scargle period-
ogram was preferred over the most commonly used Sokolove–Bushell [30]
algorithm because the latter has been shown to yield period estimates
biased towards periods below 24 h [31]. The circadian period was
calculated over the entire recording using an oversampling factor of 10
to yield a minute-range resolution of the estimate. The scaling exponent
for detrended fluctuation analysis was calculated for the magnitude of
measured activity in 1-min bins using boxes equally spaced on a
logarithmic scale between 4min (4 consecutive samples) and 24 h

feature extraction

raw actigraphy data:
12 recordings

raw actigraphy data:
23 recordings

training feature set

train MR models
(brute force or stepwise)

MR models

test feature set

QC passed:
12 recordings

QC passed:
12 recordings*

pre-processing - QC

- MADRS<40
- recording length >5 days
- no shiftwork during recording
- no artifacts or mising data >2h

filter models

validation of selected models on test dataset

proof-of-concept
MR models

training dataset test dataset

Fig. 1 Workflow for data analysis. All recordings were screened by
the same investigator, blind torecording conditions. MR - multiple
regression; * - see main text for details on reasons to not pass QC.
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(1440 consecutive samples) as described by Hu et al. [4]. The scaling
exponent is a feature of the intrinsic regulatory mechanisms controlling
the rest/activity patterns. It has not been shown to be sensitive to extrinsic
factors the subject is exposed to in normal daily activity, but is altered as a
result of disease [4, 6, 7]. Intradaily variability estimate the fragmentation of
activity patterns by calculating the ratio between mean squared
differences between consecutive intervals and the mean squared
difference from global mean activity per interval; it increases as the
frequency and the magnitude of transitions between rest and active
intervals increase, and decreases as the active and inactive intervals
consolidate [2]. Interdaily stability evaluates the coupling between
activity patterns and circadian entrainers as the ratio between variability
around circadian profile and global variability. High values indicate
consistent activity patterns across days, consistent with strong coupling
between activity and circadian entrainers. The relative amplitude of
circadian rhythms of activity (RA) estimates the robustness of average
circadian rhythms [1, 2]. The range of RA is bounded between 0 (no
circadian rhythms) and 1 (robust circadian rhythms, with consistent timing
of consolidated rest interval >5 h across days).

Model development and validation
To limit the risk of overfitting, the maximum number of predictors was
limited to 6, which corresponds to a ratio of minimum 2 subjects/predictor
[32]. First, we used a brute force method to explore all models possible in
the given feature space. Models based on 1–6 predictors were generated
using all combinations possible in the feature space. Second, we refined
the procedure of generation and selection of models by using machine
learning (ML) algorithms to train models of increasing complexity (forward
stepwise multiple regression). We started by using the entire feature space,
then we manually restricted the inclusion of features such as subject age
and circadian period in the model before running the ML algorithm again.
We iterated the entire procedure using F statistic or Akaike information
criterion (AIC) as criterion for inclusion of predictors in the model.
Next, the models were filtered using the following criteria: variable

inflation factor (VIF) < 5 for any single predictor; coefficient of determina-
tion (R-squared) > 0.5; and root-mean-square error (RMSE) < 3. The models
surviving filtering were then used for assessing the occurrence of
individual predictors.

We then performed an external validation of filtered models. To this end
we evaluated the performance of models validated as described above on
an independent (test) dataset. The performance of individual models was
assessed using the coefficient of determination (R-squared), and the RMSE
for predicted vs. observed MADRS to evaluate the precision and the
accuracy of the estimate (Fig. 2B). We filtered the models to be further
analyzed as follows: significant correlation between predicted and
observed MADRS (p < 0.05 corresponding to Pearson R > 0.576) and
RMSE < 3 for test dataset.
To provide an internal reference for model performance, we generated a

dummy model (predicted score= average score for the test dataset), and a
random prediction dataset (1 million simulated sets of random integer
values in the same range as the test dataset). The probability distribution
of prediction accuracy (RMSE) is depicted in Fig. 2C.
The frequency of occurrence for individual predictors in validated models

was calculated as the number of models including each unique predictor
divided by the total number of validated models for each level of complexity.
Average frequency for the most common predictors was calculated as the
average occurrence for each level of complexity. This approach compensates
for the fact that the number of validated models increases dramatically with
the numbers of predictors included. The leverage of individual predictors in
each model was evaluated using the standardized coefficients for each model.

RESULTS
Three features displayed significant correlation with the out-
come variable (MADRS): scaling exponent for full range
(4 min–24 h; alpha full, negative correlation), and intradaily
variability for 5 min and 30 min bins (IV5, IV30, positive
correlation) (Fig. 2A). The brute force approach generated
14,892 models, out of which 3837 survived the filtering for
internal validation. The average RMSE and R-squared in the
models surviving internal validation were 1.84 ± 0.35, and 0.67 ±
0.11, respectively. The frequency of occurrence of individual
predictors in models developed by brute force varies greatly
across levels of complexity. However, alpha full, IV5 and IV30
display consistent frequencies across complexity levels (Fig. 2A).

Table 1. Features extracted and comparison between datasets.

Train dataset (N= 12) Test dataset (N= 12)

Average SD Min Max Average SD min max p

MADRS 29.2 3.3 23 35 28.8 4.2 24 37 0.83

Rec. length 9.9 2.5 6 13 6.7 0.8 5 7 0.00

Age 48.1 14.7 25 78 42.1 12.1 20 63 0.29

Sex (M/F) 3/9 5/7 0.39

Period 24.0 0.1 23.9 24.2 24.1 0.6 23.5 25.4 0.53

M10* 9511 2771 4064 13,058 337 126 152 656 0.00

M10L 14.9 2.6 11.8 18.9 15.8 2.2 12.4 20.4 0.36

L5* 728 513 255 1673 25 16 8 62 0.00

L5L 3.8 1.0 1.6 5.7 5.3 3.3 0.9 11.2 0.15

RA 0.86 0.08 0.69 0.94 0.85 0.09 0.65 0.96 0.82

Alpha full 0.99 0.03 0.95 1.05 0.99 0.02 0.95 1.03 0.95

Alpha short 1.01 0.04 0.95 1.10 0.98 0.03 0.93 1.03 0.08

Alpha long 1.03 0.08 0.91 1.19 0.99 0.32 0.00 1.22 0.65

IV5 0.51 0.09 0.35 0.68 0.51 0.05 0.42 0.60 0.80

IV30 0.70 0.15 0.47 1.02 0.70 0.13 0.52 1.00 0.99

IV60 0.83 0.13 0.64 1.12 0.73 0.14 0.43 0.95 0.08

IS5 0.33 0.04 0.29 0.41 0.31 0.08 0.19 0.44 0.55

IS30 0.39 0.04 0.33 0.45 0.39 0.11 0.22 0.56 0.96

IS60 0.51 0.06 0.38 0.62 0.45 0.14 0.25 0.63 0.15

Asterisks indicate features dependent on data collection device, for which the magnitude depends on the output of specific sensors. p-values are calculated
using Student’s t-test (two-sided) for continuous variables, or chi-square for ratios as appropriate.
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Next, we evaluated the performance of models surviving
internal validation in predicting the MADRS score in an
independent population. The filtering criteria for external valida-
tion further reduced the number of validated models to 192
(Fig. 2B). The average RMSE and R-squared in the models surviving
external validation were 2.70 ± 0.24, and 0.59 ± 0.09, respectively.
In comparison with the simulated dataset, the average RMSE for
validated models corresponds to models with a probability of

occurrence below 0.001 (Fig. 2C). The analysis of standardized
coefficients for the models surviving external validation revealed
good consistency across models for most independent predictors
(Fig. 2D). We further found that alpha full, IS5, and RA were
included on average in >50% of the models (Fig. 2E).
These results indicate that depression severity scores correlate

with features extracted by analyzing the pattern of activity
recorded over several consecutive days. The brute force approach
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trains independent models and does not use information from
previously generated models to increase the accuracy in
subsequent steps. Therefore, we also used stepwise machine
learning (ML) algorithms to train models of increasing complexity.
This procedure yielded 18 models, which underwent internal and
external validation as described above. Fourteen models survived
the internal validation criteria and underwent external validation
(Fig. 3A). Eight models had better accuracy than the dummy
model, and 5 models survived filtering by external validation
criteria (Pearson R > 0.576; RMSE < 3).
We addressed the distribution of estimation errors for all validated

models and calculated the proportion of absolute residuals below 1
to 5 MADRS units in 1-unit increments (Fig. 3B). On average, the
models surviving external validation criteria predict MADRS score
within 2 units in 54% of the cases, within 3 units in 75% of the cases,
and within 4 units in 87% of the cases. The distribution of estimation
errors for the models trained by forward stepwise procedure was
similar to the outcome of brute force approach (Fig. 3B). Next, we
assessed the leverage of individual predictors in the models
developed by forward stepwise procedure (Fig. 3C). The scaling
exponent (alpha full) was present in all models surviving internal
validation and had the largest absolute standardized score in all
models, particularly in the models surviving external validation. In
addition, interdaily stability calculated on 5- or 30-min bins (IS5, IS30)
and the relative amplitude of circadian rhythms (RA) were included
in the models surviving external validation.
Lastly, we selected three models (best, intermediate, and worst

performance in test dataset) for evaluation of agreement between
observed and predicted MADRS scores (Fig. 4). The Bland–Altman
plots indicate good agreement between observed and predicted
score in both training and test datasets (Fig. 4).

DISCUSSION
Levels of activity and depression symptom severity are linked in a
bidirectional manner: on average, higher severity correlates with
lower levels of activity, particularly in the moderate activity band
[14]; and increasing the levels of activity by physical exercise may
in many cases reduce depressive symptoms [16, 18]. Here we
show that symptoms of depression correlate with features of
individual patterns of activity independently from actual activity
levels. In addition, we bring proof-of-concept evidence that
symptom severity can be predicted by analyzing the subject’s
activity recorded over several consecutive days. We developed
several multiple linear regression models which performed
satisfactorily on a dataset independent from the training
population. The models were generated using either a brute
force approach or using forward-stepwise semi-supervised proce-
dure. We also identified a number of features with frequent
occurrence in the models surviving the external validation
procedure. Our data supports the use of actigraphy recordings
as minimally invasive objective measurement for the evaluation of
depression patients.
Wrist actigraphy is a technique that allows long-term

recording of activity with minimal discomfort and safety
challenges for the subject. For major depressive disorder, the
heterogenous pathological mechanisms leading to depressed
mood as core symptom raise the challenge of finding objective
behavioral features that correlate with symptom severity as
measured by MADRS scale. The features we identified as
particularly relevant estimate the complexity of activity patterns
(scaling exponents); the strength of coupling between activity
and circadian entrainers (interdaily stability, IS); and the
robustness of circadian rhythms (RA). The coefficients point
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towards higher depression severity scores correlating with less
complex patterns of activity, stronger coupling of activity with
circadian entrainers, and less robust circadian rhythms. This is in
line with earlier reports on less complex patterns of activity in
patients suffering from depression [33], and with higher
likelihood to get diagnosed with depression in subjects
displaying blunted difference between day-time and night-
time activity levels [1]. Our results also indicate that higher
symptom severity is associated with higher IS, suggesting that
stronger coupling with circadian entrainers is associated with

more severe symptoms. Of note, stronger coupling with
circadian entrainers can account for less complex patterns
(estimated by scaling exponents), by reducing the contribution
of high-frequency fluctuations. At the same time, stronger
coupling with circadian entrainers does not warrant higher
amplitude of circadian rhythms (estimated by RA), if the
circadian fluctuations are of small amplitude (i.e., shorter, and
less robust bouts of activity, as described previously [6, 10]).
Taken together, our results point towards more severe
symptoms being associated with decreased internal drive to
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scores in train and test datasets to evaluate the agreement between observed and predicted values.
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steer one’s own activity in a circadian context, and instead
passively follow circadian entrainers.
For internal validation of models, we used a heuristic approach

considering the required accuracy of MADRS estimation. We
selected RMSE as measure of accuracy because it penalizes all
deviations and is sensitive to outlier values, and did not use
average deviation, where the leverage of large positive and
negative outliers can balance out and yield a misleading small
average. Reports available in the literature estimate 95% CI= 7
face-to-face vs. telephone interview [34] and up to 2.75 units
difference across testing occasions [35]. In our datasets, restricting
to RMSE < 3 yielded an average accuracy of 2.7, and an absolute
error below 3 in 75% of the cases. Another reference value we
considered is the minimum clinically important difference for
response to treatment, estimated to 2 units on MADRS scale [36].
Thus, the accuracy of the predicted score should be lower than
2 so that clinically relevant effects of antidepressant treatments
are not obscured by estimation error. Models developed by brute
force surviving external validation criteria approximate on average
54% of the case within 2 MADRS units, and in >90% of the cases in
the best models. Larger datasets are required for further refining
the model training approach, including internal validation prior to
external validation on independent datasets.
Notably, the features we have extracted are sequence-

dependent, and do not include summary statistics (e.g., total time
inactive, or similar). In addition, our analyses consider the 24-h
cycle as a continuum and do not ascertain crisp distinctions
between active and resting intervals, nor do we implement any
classification of samples or segments based on intensity of activity
recorded. Therefore, our results offer a novel perspective,
complementary to earlier reports on correlations between levels
of activity and symptom severity [14, 15]. From a clinical
perspective, our data may facilitate connections with molecular
mechanisms behind onset of depressive episodes or the changes
associated with response to treatment [26].

LIMITATIONS OF THE STUDY
All patients included in this study were diagnosed with a unipolar
major depressive episode, and the model was trained to predict
the MADRS score registered prior to the actigraphy recording,
under the implicit assumption that activity was recorded in a
stable state (i.e., no significant variations in symptom severity
expected during recording time). Therefore, correlations between
symptom severity and patterns of activity in other mood disorders
(e.g., bipolar disorder or cyclothymia), or dynamic changes in
response to treatment cannot be inferred from our results. In
addition, correlations between patterns of activity and symptom
severity in patients undergoing antidepressant treatment needs to
be investigated separately. The impact of psychoactive drugs
(acting on neurotransmitter systems which regulate circadian
activity, e.g., glutamate, serotonin, noradrenaline, acetylcholine;
reviewed in ref. [37]) on activity patterns of psychiatric patients is
not fully understood [38].
A potential limitation of our study is the essential difference

between inclusion criteria for train and test populations. Thus, the
training dataset was collected form patients recruited for a clinical
trial assessing the response to CBT. Implicitly, this leads to high
variability in symptoms and pathological mechanisms. In contrast,
the test dataset was acquired from patients included in the study
only if they did not respond to SSRI drugs and would be eligible for
ketamine treatment—hence a strong selection bias is expected.
However, the fact that models trained on an intrinsically more
variable population sample perform very well on the more strictly
selected population support the applicability of our approach.
The availability of only two independent datasets with relatively

low number of patients and narrow MADRS range further limits
the extent of analyses due to the risk of overfitting the available

pair of datasets. These limitations are particularly relevant when
evaluating the models trained using the brute force approach.
Nevertheless, the brute force approach highlighted the most
frequently occurring features in externally validated models. The
interpretation of the coefficients of individual predictors is
consistent with clinical observations of alterations characteristic
for depression. Further investigations focusing on increasing the
number of recordings within study population, as well as on
analyzing data from several independent populations are required
for strengthening the biological significance of specific features.
Lastly, actigraphy data was collected using different devices

between populations. This explains the significant between-group
differences for features describing the magnitude of activity levels
(M10; L5). This appears not to be a matter of concern, because
these specific features are not identified as most relevant in the
training dataset. This also implies that neither the actual peak of
activity (i.e., most intense peak of activity during active phase), nor
the trough of activity (typically associated with night-time activity
or insomnia) are significant predictors of depression severity in our
study populations. Interestingly, neither are the locations of the
circadian peak and trough significant predictors for symptom
severity. In contrast, these features appear relevant for distinguish-
ing between healthy control and MDD patients [8, 12]. These data
suggest that while the magnitude and location of circadian peaks
and troughs of activity may have diagnostic value, they do not
correlate with symptom severity.
From a clinical application perspective, our results indicate that

actigraphy could be a useful tool in the individual evaluation of
patients with depression. Larger confirmatory studies are needed
before clinical implementation.

CODE AVAILABILITY
The Matlab code used for feature extraction and model training is available upon
request.
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