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Clinical autism subscales have common genetic liabilities
that are heritable, pleiotropic, and generalizable to the
general population
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The complexity of autism’s phenotypic spectra is well-known, yet most genetic research uses case-control status as the target trait.
It is undetermined if autistic symptom domain severity underlying this heterogeneity is heritable and pleiotropic with other
psychiatric and behavior traits in the same manner as autism case-control status. In N= 6064 autistic children in the SPARK cohort,
we investigated the common genetic properties of twelve subscales from three clinical autism instruments measuring autistic traits:
the Social Communication Questionnaire (SCQ), the Repetitive Behavior Scale-Revised (RBS-R), and the Developmental Coordination
Disorder Questionnaire (DCDQ). Educational attainment polygenic scores (PGS) were significantly negatively correlated with eleven
subscales, while ADHD and major depression PGS were positively correlated with ten and eight of the autism subscales,
respectively. Loneliness and neuroticism PGS were also positively correlated with many subscales. Significant PGS by sex
interactions were found—surprisingly, the autism case-control PGS was negatively correlated in females and had no strong
correlation in males. SNP-heritability of the DCDQ subscales ranged from 0.04 to 0.08, RBS-R subscales ranged from 0.09 to 0.24, and
SCQ subscales ranged from 0 to 0.12. GWAS in SPARK followed by estimation of polygenic scores (PGS) in the typically-developing
ABCD cohort (N= 5285), revealed significant associations of RBS-R subscale PGS with autism-related behavioral traits, with several
subscale PGS more strongly correlated than the autism case-control PGS. Overall, our analyses suggest that the clinical autism
subscale traits show variability in SNP-heritability, PGS associations, and significant PGS by sex interactions, underscoring the
heterogeneity in autistic traits at a genetic level. Furthermore, of the three instruments investigated, the RBS-R shows the greatest
evidence of genetic signal in both (1) autistic samples (greater heritability) and (2) general population samples (strongest PGS
associations).
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INTRODUCTION
Autism is a common and complex umbrella diagnosis affecting 1
in 59 children in the United States [1], with comparable prevalence
worldwide [2]. It has a strong genetic basis, with pedigree
heritability estimated at 80% [3] and common genetic (SNP)
heritability estimated at 0.13 [4]. De novo [5], inherited rare [6, 7],
and inherited common genetic variation [4] can all contribute to
autism liability, with de novo/rare and common genetic variants
combining additively to increase risk [8, 9]. The DSM-5 defines
autism by two core domains of symptomatology: the social
domain, which includes social communication difficulties, and the
non-social domain, which encompasses restricted and repetitive
behaviors/interests [10]. However, other symptom domains are
also characteristic and clinically meaningful in autism, including
fine motor development [11], executive functioning [12], sleep
[13], eating [14], and sensory issues [15]. Impaired fine motor skills
are of particular interest due to being clinically detectable at
12 months, preceding deficits in the two core domains of autism,
which emerge around two years of age [16]. Together, these
multiple symptom domains imply that an accurate description of

autism would be inherently multidimensional, rather than a simple
binary diagnostic indicator. Because autism is strongly genetic, if
these multiple symptom domains surpass the binary diagnosis in
terms of their genetic signal, there may be broader implications
for issues ranging from nosology to early identification [17] and
individualized intervention [18].
However, most genetic research on autism has favored

diagnostic status as the target trait. This is to be expected due
to the relative ease of scaling a binary diagnostic phenotype to a
large sample collected over many sites worldwide. Still, the
traditional case-control approach in autism genetics is at odds
with observations established by psychiatry and epidemiology in
two major ways–first by treating autism as a binary and
homogeneous condition, and secondly by treating those without
an autism diagnosis as true controls, despite the fact that autism is
under-diagnosed (especially in females [19] and racial/ethnic
minorities [20]) and many individuals without an autism diagnosis
have autistic traits [21, 22]. While the case-control method has
been successful in identifying a number of genes and biological
processes associated with autism, variation in these genes has
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been found to represent broad neuropsychiatric risk with little
specificity to autism [23]. As a result, it is possible that studies are
losing statistical power to detect the genetic signal of core autistic
traits by collapsing the clinical heterogeneity within cases and
treating non-diagnosed individuals as true controls.
Across autistic individuals there is extreme variance in these

core autistic traits and comorbid symptom domains, manifesting
as heterogeneity in clinical presentation [24]. Clinical psychiatry
has responded to this heterogeneity by developing numerous
psychometric instruments to measure the social communication
difficulties, restricted and repetitive behaviors/interests, and motor
skills that are clinically relevant to autism. SPARK [25], a United
States-based study of autism with over 270,000 individuals,
collects a variety of information from participants, including
background history, psychometric instruments, and other pheno-
typic information through online surveys. In this online setting,
several clinically validated autism instruments, including the Social
Communication Questionnaire (SCQ) [26], the Repetitive Behavior
Scale-Revised (RBS-R) [27], and the Developmental Coordination
Disorder Questionnaire (DCDQ) [28], have been completed by
thousands of SPARK participants via self-report or parent-report.
All three of these instruments and their subscales measure
clinically relevant, quantitative traits that have important utility in
the diagnosis of autism. Further investigation into the genetic
characteristics of these clinical instruments could give insight into
their best use cases as well as their potential limitations,
potentially illuminating future autism diagnostic strategies and
inherent biology.
Somewhat ironically, genetic investigation of quantitative

autistic traits has gained the most traction in studies of the
general population, yielding important insights. Most prominent
are the recent genome-wide association studies (GWAS) of
systemizing behavior, an indicator of restricted and repetitive
behaviors/interests (N= 51,564) [29], and empathy, an indicator of
social communication abilities (N= 46,861) [30]. They did not
observe significant genetic correlations between systemizing and
empathy, but did find greater systemizing and lower empathy
were both significantly genetically correlated with autism case-
control [29]. Another study in a general population (N= 1981)
derived five autistic factors, three of which were significantly
associated with autism case-control polygenic scores (PGS) [31].
These results suggest common genetic variation does play a
significant role in quantitative autistic traits that case-control
autism studies are inherently overlooking. However, the inter-
changeability of autistic traits from general population samples to
autistic cohorts is unknown [32]. Results from genetic studies of
autistic traits in autistic cohorts are limited by sample size and the
availability of clinically validated instruments as phenotypes. One

study in N= 2509 autistic individuals found significant heritabil-
ities and autism case-control PGS associations with their autistic
traits, but the phenotypes were derived factors based on items
from the Autism Diagnostic Interview-Revised, not clinically
established subscales measuring distinct symptomatology [33].
Therefore, the genetic etiology of autistic traits in autistic
individuals is relatively indeterminate, especially with traits that
have established clinical, psychological, and epidemiological
usage in autism like the SCQ, RBS-R, and DCDQ subscales.
This analysis sought to investigate fundamental questions

regarding the genetic etiology of dimensional autistic traits
captured by twelve subscales from three of the primary autism
clinical assessments. First, these subscales are designed to
measure autistic traits that are meaningful at the clinical level,
but are they measuring signal that is also meaningful at the
genetic level in autistic individuals? Second, how heritable and
genetically distinct are these quantitative traits, especially in an all-
autistic cohort? Third, is the genetic signal discovered in this
autistic cohort generalizable to related traits in a general
population sample? Fourth, what are the pleiotropic relationships
of these subscale traits with neuropsychiatric conditions, cogni-
tion, and dimensions of personality? Last, considering the
observed sex differences that are pervasive in autism and other
neuropsychiatric conditions, how do sex and PGS interact? We
leveraged the SPARK autism cohort [25] to address these
questions in N= 6064 autistic children who all had the three
DCDQ subscales, six RBS-R subscales, three SCQ subscales, and
genetic data. An overview of our analyses is shown in Fig. 1.

MATERIALS AND METHODS
SPARK cohort description
SPARK [25] is a United States-based nationwide autism study. The parent
or legal guardian of the child with autism provided informed consent and
completed the psychometric instruments on behalf of their child. This
study was approved by the Western IRB (IRB# 20151664). The SPARK
Version 7 phenotype data release was used, and the Version 3 Freeze and
Version 4 genotype data releases were used. We restricted the individuals
in our analysis with the following criteria: has an autism diagnosis, is verbal
(based on response to the first item in the Social Communication
Questionnaire (SCQ)), was between the ages of 3 and 17 at the time the
instrument was completed, passed the SPARK validity check for each
instrument, and had full subscale scores for each of the twelve subscales.
The cohort was further filtered to individuals in which genetic data were
available that passed our quality control filtering, relatedness filtering, and
were identified as European ancestry based on SNPs (genetic quality
control, relatedness, and ancestry filtering described in further detail in the
later section). After this filtering, we confirmed that the remaining
individuals had unique family IDs. The final sample size of N= 6064 was
composed of N= 1177 females and N= 4887 males.

Fig. 1 Study overview. Twelve quantitative, clinical autism subscale traits were measured in N= 6064 autistic children in the SPARK cohort:
three DCDQ subscales, six RBS-R subscales, and three SCQ subscales. These subscales were investigated both at the phenotype and genomic
level, including SNP-heritabilities (h2), intra-cohort genetic correlations, genome-wide association studies (GWAS), and polygenic scores (PGS)
associations with 14 psychiatric, cognitive, and personality traits. In addition, the GWAS were used to calculate PGS in a general population
childhood cohort, ABCD (N= 5285). These PGS were then compared to the autism case-control PGS in association with two autism-related
quantitative behavior traits from the CBCL.
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SPARK measures
Primary phenotypes: clinical autism subscales. Developmental Coordina-
tion Disorder Questionnaire (DCDQ) [28]: a five-point questionnaire of 15
items that is used clinically to screen for developmental coordination
disorder. The DCDQ has three subscales: control during movement, fine
motor/handwriting, and general coordination. These three subscales were
calculated by SPARK and provided with the data release. The subscale
scores within these scales were calculated as recommended by the scale
publisher, including omitting the individual on a subscale due to
missingness of item-level data within the subscale. In addition, the DCDQ
was not completed if the participant was unable to move their hands. For
the sake of consistent interpretation across the scales, the DCDQ scores
were reversed so that higher scores indicated more coordination
problems.
Restricted and Repetitive Behavior Scale-Revised (RBS-R) [27]: a four-

point questionnaire of 44 items that has been shown to be associated with
several clinical features of autism [34]. The RBS-R has six subscales:
compulsive behavior, self-injurious behavior, restricted behavior, ritualistic
behavior, sameness behavior, and stereotyped behavior. These six
subscales were calculated by SPARK and provided with the data release.
Social Communication Questionnaire (SCQ) [26]: a yes/no questionnaire

of 40 items used as an autism screening tool in clinics [35]. We restricted
the cohort to individuals with a ‘yes’ for the item 1 gate question: “uses
phrases or sentences”. Item numbers 2, 9, 19, 20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, and 40 were reverse scored as
recommended by the scale publisher. This was done to ensure that a 1
indicated increased severity for all the items used to calculate the
subscales. The three SCQ subscales were calculated as outlined in [36]:
communication, reciprocal social interaction, and stereotyped behavior.
In the sample of N= 6064 individuals, the twelve subscale scores from

these three assessments were first residualized for age in months using
linear regression. Next, they were centered to have a mean of 0 and a
standard deviation of 1. Finally, the scores underwent a rank-based
normalization transformation [37] using the orderNorm() function from the
bestNormalize R package [38]. These normalized scores were used as the
phenotypes in all analyses.

Secondary phenotypes. Child Behavior Checklist (CBCL) [39]: a three-point
questionnaire of 119 items used to assess behavior problems. The CBCL
has eight syndrome subscales: anxious depressed, withdrawn depressed,
somatic complaints, social problems, thought problems, attention pro-
blems, aggressive behavior, and rule-breaking behavior. From the final
sample size (N= 6064), a subset of N= 1058 also had these subscale
T-scores available, which were calculated by SPARK and provided with the
data release. These CBCL subscales were first residualized for age in
months using linear regression, then centered to have a mean of 0 and a
standard deviation of 1, and then underwent a rank-based normalization
transformation [37] using the orderNorm() function from the bestNorma-
lize R package [38].

Phenotypic correlations and heterogeneity
The phenotypic correlations between each pair of subscales were
calculated by the Pearson method, and the p-values were corrected using
the Benjamini–Hochberg FDR [40] method. Cronbach’s alphas (a measure-
ment of internal consistency or homogeneity) between each pair of
subscales were calculated and then subtracted from 1 to represent the
heterogeneity.

SPARK genotype quality control and imputation
Version 3 Freeze (2019) and Version 4 (2020) genotypes were first merged
using PLINK [41]. The merged genotypes were then lifted from hg38 to
hg19 using the LiftOver tool [42]. The genotypes included 43,209
individuals and 616,321 variants that were then quality controlled using
the BIGwas quality control pipeline [43], which performed the genotype
quality control, sample quality control, and identification of population
stratification and sample filtering due to genetic ancestry. The BIGwas
default parameters were used, except for skipping Hardy-Weinberg tests
and keeping related samples due to the SPARK cohort being family-based
and not a general population sample (we later removed related individuals
with GCTA [44] within our SPARK sample of interest). The pre-QC
annotation step removed 21 variants (N= 616,299 variants remaining).
The SNP QC step removed 101,600 variants due to missingness at a
threshold of 0.02 (N= 514,699 variants remaining). The sample QC step
removed 1114 individuals due to missingness, 67 individuals due to

heterozygosity, and 176 due to duplicates (or monozygotic twins). The
population stratification step projects the remaining individuals onto the
principal components (PCs) from the combined HapMap and 1000
Genomes PCs and removed individuals who are not within median +/−
five times the interquartile range for PC1 and PC2. This removed an
additional 9533 individuals (N= 32,422 individuals remaining). The quality-
controlled set of N= 514,699 variants and N= 32,422 individuals were
then imputed to the TopMed [45] reference panel using the Michigan
Imputation Server [46] with the phasing and quality control steps included
and to output variants with imputation quality r2 > 0.3. After the genotype
imputation, the variants were filtered to only the HapMap SNPs (N=
1,054,330 variants) with imputation quality r2 ≥ 0.8 using bcftools [47].
Next, they were lifted over from hg38 to hg19 using the VCF-liftover tool
(https://github.com/hmgu-itg/VCF-liftover) and the alleles normalized to
the hg19 reference genome. Finally, the files were converted to PLINK files
with N= 1,018,200 final variants. This remaining set of quality controlled,
imputed SNPs in the 32,422 individuals were filtered to the phenotype
criteria as described in the above methods, and then removed for genetic
relatedness with an identity-by-descent cutoff of 0.05 with SNPs at a minor
allele frequency (MAF) ≥5% using GCTA [44], leaving the final sample size
at N= 6064.

SNP-based heritabilities and intra-cohort genetic correlations
GCTA [44] was used create a genetic relationship matrix for the N= 6064
individuals (SNP MAF ≥ 5%). GCTA REML calculated the heritability for each
subscale using sex as a covariate. GCTA Bivariate REML [48] calculated the
genetic correlation between each pair of subscales also using sex as a
covariate.

Genome-wide association studies and power
BOLT [49] version 2.3.5 was used to perform the genome-wide association
studies (GWAS) for each of the subscales using the BOLT-LMM option
–lmm with sex as a covariate. The summary statistics for each GWAS were
then filtered to only include SNPs in which the MAF ≥ 5%, leaving N=
941,385 SNPs. Lead SNPs (p < 5 × 10−4) were pruned using the PLINK [41]
command –clump with default parameters and 1000 Genomes European
as the LD reference. GWAS power was calculated using the genpwr.calc
function from the genpwr R package [50] at several sample sizes. The
average effect size (β estimate) and average MAF from the pruned SNPs for
each GWAS were used to calculate power under an additive model.

ABCD cohort description
The ABCD cohort [51] is a typically-developing cohort was not recruited on
the presence or absence of neuropsychiatric conditions. Release 2 data
was used. We restricted the individuals in our analysis to those in which
there were no missing data for the Child Behavior Checklist [39]. Syndrome
subscale T-scores. The cohort was then further filtered to individuals in
which genetic data were available that passed our quality control filtering,
relatedness filtering, and were identified as European ancestry based on
SNPs (genetic quality control, relatedness, and ancestry filtering described
in further detail in the later section). The final sample size of N= 5285 was
composed of N= 2459 females and N= 2826 males.

ABCD measures
Child Behavior Checklist (CBCL) [39]: a three-point questionnaire of 119
items used to assess behavior problems. The CBCL has eight syndrome
subscales: anxious depressed, withdrawn depressed, somatic complaints,
social problems, thought problems, attention problems, aggressive
behavior, and rule-breaking behavior. The two subscales items we used
in our analyses were social problems and thought problems. The baseline
intake year 1 scores were used. In the sample of N= 5285 individuals, the
CBCL subscales were first residualized for age in months using linear
regression. Next, they were centered to have a mean of 0 and a standard
deviation of 1. Finally, the scores underwent a rank-based normalization
transformation [37] using the orderNorm() function from the bestNorma-
lize R package [38]. These normalized scores were used as the phenotypes
in all analyses.

ABCD genotype quality control and imputation
The ABCD cohort was genotyped on the Affymetrix NIDA SmokeScreen
Array and was processed through standard QC steps before release,
including removing SNPs with low call rate and individuals with potential
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contamination problems or high missing data. The genotypes included
10,659 individuals and 517,724 variants that were then quality controlled
using the BIGwas quality control pipeline [43], which performed the
genotype quality control, sample quality control, and identification of
population stratification and sample filtering due to genetic ancestry. The
BIGwas default parameters were used, except for skipping Hardy-Weinberg
tests in order to maintaining consistency with the SPARK BIGwas
parameters (we also later removed related individuals with GCTA [44]
within our ABCD sample of interest). The pre-QC annotation step removed
4063 variants (N= 513,661 variants remaining). The SNP QC step removed
38,602 variants due to missingness at a threshold of 0.02 (N= 475,059
variants remaining). The sample QC step removed 434 individuals due to
missingness, 12 individuals due to heterozygosity, and 336 due to
duplicates (or monozygotic twins). The population stratification step
projects the remaining individuals onto the principal components (PCs)
from the combined HapMap and 1000 Genomes PCs and removed
individuals who are not within median +/− five times the interquartile
range for PC1 and PC2. This removed an additional 1806 individuals (N=
8115 individuals remaining). An additional N= 1008 individuals were
removed due to relatedness. The quality-controlled set of N= 475,059
variants and N= 7107 individuals were then imputed to the TopMed [45]
reference panel using the Michigan Imputation Server [46] with the
phasing and quality control steps included and to output variants with
imputation quality r2 > 0.3. After the genotype imputation, the variants
were filtered to only the HapMap SNPs (N= 1,054,330 variants) with
imputation quality r2 ≥ 0.8 using bcftools [47]. Next, they were lifted over
from hg38 to hg19 using the VCF-liftover tool (https://github.com/hmgu-
itg/VCF-liftover) and the alleles normalized to the hg19 reference genome.
Finally, the files were converted to PLINK files with N= 1,018,200 final
variants. This remaining set of quality controlled, imputed SNPs in the 7107
individuals were filtered to the phenotype criteria as described in the
above methods, and then removed for genetic relatedness with an
identity-by-descent cutoff of 0.05 with SNPs at a minor allele frequency
(MAF) ≥5% using GCTA [44], leaving the final sample size at N= 5285.

ABCD polygenic scores generation and statistical analyses
Polygenic scores (PGS) were calculated in the ABCD cohort using LDpred2
[52] and the bigsnpr tools [53] in R [54]. An external LD reference based on
362,320 European individuals of the UK Biobank (provided by the
developers of LDpred2) was used to calculate the genetic correlation
matrix, estimate heritability, and calculate the infinitesimal beta weights.
The PGS were calculated from the filtered summary statistics for the
subscale GWAS (MAF ≥ 5%) and the autism (PGC) [4] GWAS. The PGS were
filtered to only include our sample of N= 5285 and then the PGS were
centered to have a mean of 0 and standard deviation of 1. PGS association
with the CBCL phenotypes was assessed by a main effect linear model: lm
(trait ~ sex+ PGS)). The sex is male coded as 1 and female coded as 0.

SPARK polygenic scores generation and statistical analyses
Polygenic scores (PGS) were calculated in the SPARK cohort using LDpred2
[52] and the bigsnpr tools [53] in R [54]. An external LD reference based on
362,320 European individuals of the UK Biobank (provided by the
developers of LDpred2) was used to calculate the genetic correlation
matrix, estimate heritability, and calculate the infinitesimal beta weights.
Polygenic scores were calculated from the following genome-wide
association studies performed by the Psychiatric Genomics Consortium:
ADHD (2019) [55], anorexia nervosa (2019) [56], autism (2019) [4], bipolar
disorder (2021) [57], major depression (2019) [58], schizophrenia (2020)
[59], and Polygenic scores were calculated from genome-wide association
studies performed by the Social Science Genetic Association Consortium
for cognitive performance (2018) and educational attainment (2018) [60].
The public LDpred2 beta weights from the Polygenic Index Repository [61]
were used to calculate polygenic scores for extraversion [62], neuroticism
[63], openness [64], risky behavior [65], loneliness [66], and subjective well-
being [67]. The PGS were then filtered to only include our sample of N=
6064 and then the PGS were centered to have a mean of 0 and standard
deviation of 1.
PGS associations with the subscales were analyzed by two complemen-

tary methods: linear modeling and Pearson correlations. The linear models
tested for both main effects: lm(trait ~ sex+ PGS) and sex interactions: lm
(trait ~ sex+ PGS+ PGS: sex). The sex is male coded as 1 and female coded
as 0. The PGS: sex is the PGS by sex interaction term. Correlations were
tested within the entire sample (N= 6064) and sex-stratified (N= 1177
females and N= 4887 males). For the grouped difference in means (autistic

individual vs. parent) of the PGS, the cohort was filtered to autistic males in
which their father also had genetic data available (N= 2047 autistic males
and N= 2047 fathers) and autistic females in which their mother also had
genetic data available (N= 638 autistic females and N= 638 mothers). The
PGS of this subset were centered to have a mean of 0 and scaled to have a
standard deviation of 1.

RESULTS
Investigations of phenotypic correlations and heterogeneity
This study used the SPARK autism cohort [25], a United States-
based nationwide cohort of autistic individuals and their parents
and siblings. For our analyses of the autism subscales, we only
included autistic children. The autistic traits used as the
phenotypes were three subscales from the Developmental
Coordination Disorder Questionnaire (DCDQ): coordination (gen-
eral coordination), handwriting (fine motor handwriting), and
movement (control during movement), six subscales from the
Repetitive Behavior Scale-Revised (RBS-R): compulsive, injurious
(self injurious), restricted, ritualistic, sameness, and stereotyped,
and three subscales from the Social Communication Question-
naire (SCQ): communication, interaction (reciprocal social interac-
tion), and stereotyped behavior. The demographic summary of the
subset of SPARK used in this analyses and the raw subscales scores
are shown in Table 1. The phenotypes used for all analyses in this
study were these raw subscale scores that were residualized for
age, centered to have a mean of 0 and a standard deviation of 1,
and then normalized by rank-based normalization.
In order to assess the heterogeneity between subscales, we

computed Pearson correlations and Cronbach’s alphas, with the
results in Fig. 2A and Table S1. The Pearson correlations of the
twelve normalized subscales are shown in the red triangle in
Fig. 2A. All twelve of the subscales were significantly correlated
with each other after FDR correction, although most correlations
were modest. As expected, correlations were strongest between
subscales within the same core domain. The highest Pearson
correlation coefficient (r) was between RBS-R ritualistic and RBS-R
sameness: r= 0.73. The weakest correlation was between DCDQ

Table 1. Demographic and autism subscale summary of SPARK
individuals in this study (N= 6064).

Variable % or mean (SD)

% Male 80%

Cognitive imp. 10%

dx age 5 (2.7)

DCDQ age 9.8 (3.2)

RBSR age 9.7 (3.3)

SCQ age 9.2 (3.3)

DCDQ coordination 13.9 (4.3)

DCDQ handwriting 9.9 (4.4)

DCDQ movement 15.1 (5.9)

RBSR compulsive 5.3 (4.2)

RBSR injurious 3.4 (3.8)

RBSR restricted 4.1 (2.9)

RBSR ritualistic 6.2 (4.1)

RBSR sameness 9.5 (6.4)

RBSR stereotyped 5.3 (3.3)

SCQ communication 6.5 (2.4)

SCQ interaction 7.5 (3.7)

SCQ stereotyped 6.4 (2)

Ages in years.

T.R. Thomas et al.

4

Translational Psychiatry          (2022) 12:247 

https://github.com/hmgu-itg/VCF-liftover
https://github.com/hmgu-itg/VCF-liftover


movement and RBS-R injurious: r= 0.13. Cronbach’s alpha (a) is a
measure of internal consistency or homogeneity. While there is no
definite cutoff of an a that indicates sufficient consistency/
homogeneity, we considered any pair of subscales with an a < 0.7
to be heterogeneous [68]. Fifty-six of the 66 pairs of subscales
were heterogeneous at this a cutoff, with the lowest a= 0.24 for
DCDQ movement and RBS-R injurious. To represent the hetero-
geneity (instead of the homogeneity), the lower purple triangle in
Fig. 2A is showing 1 minus a. Figure 2B shows the pair of subscales
with the lowest correlation and highest heterogeneity (left panel)
and highest correlation/lowest heterogeneity (right panel).
Last, we correlated the twelve autistic trait subscales with the

eight syndrome subscales from the Child Behavior Checklist
(CBCL). The CBCL is a well-established tool that measures a range
of behavior problems in children, and we wanted to determine
which CBCL subscales were most correlated with the clinical
autism subscales in anticipation of our later use of the CBCL
subscales in our analysis the ABCD cohort. Therefore, in a subset of

our SPARK sample (N= 1058 of N= 6064) in which we also had
the CBCL subscales, we correlated the twelve autism subscales
with the eight CBCL subscales. Table S2 has the correlations
between the twelve autism subscales and the eight CBCL
subscales. For each autism subscale, we found either social
problems or thought problems to be the CBCL subscale most
strongly correlated, in agreement with [69]. DCDQ coordination
and DCDQ movement were most strongly correlated with CBCL
social problems (both r= 0.17). The other ten subscales were most
strongly correlated with CBCL thought problems, with the
correlations ranging from r= 0.18 for both DCDQ handwriting
and SCQ interaction to r= 0.41 for RBS-R injurious.

SNP-based heritabilities
Because our phenotypic analyses of the autism subscales
identified the presence of heterogeneity and low correlations,
we next wanted to identify the genetic factors underlying this
heterogeneity. We first calculated additive SNP-based heritability

Fig. 2 Phenotypic heterogeneity of the autism subscale traits. A The red triangle shows the Pearson correlation coefficient r between traits.
All traits were significantly correlated with each other after FDR correction. The purple triangle shows the heterogeneity (1 minus Cronbach’s
a). B The two subscales with the highest heterogeneity are on the left, and the two with the lowest heterogeneity are on the right. Individuals
in purple are those who are ≥1 standard deviation above the mean in one subscale and ≤1 standard deviation below the mean in the other
subscale.
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(h2) for each subscale, which is the proportion of variance in the
phenotype (subscale) that can be explained by the variance in the
measured genetic data (the SNPs). We calculated the heritabilities
using GCTA [44] and compared the heritabilities to the autism
case-control GCTA heritability from the Psychiatric Genomics
Consortium (PGC) [4]. Figure 3A shows the mean heritability
estimate (h2) with the whiskers representing the 95% confidence
intervals (CIs). Table S3 also includes the h2, standard error, 95%
CIs around the estimate, and p-values. The overall heritability
trend is that the RBS-R subscales have the highest heritabilities
ranging from mean h2 of 0.09 to 0.24, the DCDQ subscales have
moderate heritabilities from 0.04 to 0.08, and the SCQ subscales
have the lowest heritabilities from 0 to 0.12. Despite large CIs due
to the sample size, five of the six RBS-R traits were significantly
heritable: RBS-R compulsive h2= 0.21 (CI: 0.11–0.31), RBS-R
injurious h2= 0.20 (CI: 0.09–0.30), RBS-R restricted h2= 0.24 (CI:
0.14–0.33), RBS-R sameness h2= 0.21 (CI: 0.11–0.31), and RBS-R
stereotyped h2= 0.19 (CI: 0.10–0.29). SCQ stereotyped was also
significantly heritable: h2= 0.12 (CI: 0.03–0.22). Notably, these five
RBS-R traits has also have a mean h2 higher than the autism (PGC)
heritability h2= 0.13 (CI: 0.11–0.15) calculated by GCTA [4],
although the 95% CIs around our h2 estimates are substantially
larger due to much smaller sample size (the autism (PGC) sample
size is N= 46,350 individuals), and the RBS-R CIs overlap with the
autism (PGC) CIs.

Genetic correlations
After observing differences in heritabilities across the twelve
subscales, we next investigated the genetic correlations between
the subscales. The genetic correlations (rG), also calculated with
GCTA [48], are shown in Fig. 3B with the mean rG and 95% CIs.
Table S4 also includes the rG, standard error, 95% CIs around the

estimate, and p-values. The rG standard errors are dependent on
the heritability standard errors, and we did observe the more
heritable traits having more significant genetic correlations.
Therefore, only nominally significant (unadjusted p-value <0.05)
rG are reported in the figure. The overall trend was the strongest
genetic correlations being within the same psychometric instru-
ment/core domain. However, a few subscales in different domains
were significantly genetically correlated. DCDQ coordination was
positively genetically correlated with five of the RBS-R subscales,
and DCDQ handwriting was positively genetically correlated with
RBS-R sameness. SCQ stereotyped was positively genetically
correlated with five RBS-R subscales.

Genome-wide association studies
Genome-wide association studies (GWAS) were conducted sepa-
rately for the subscales using BOLT [49] and the SNPs were filtered
to a minor allele frequency (MAF) ≥5%. The SCQ communication
GWAS was unable to converge due to low heritability. The
Manhattan plots are shown in Fig. 4A. No SNPs reached genome-
wide significance (p < 5 × 10−8). We therefore conducted a power
analyses with the average effect size and MAF on a clumped set of
lead SNPs (lead SNPs defined as p < 5 × 10−4) for each GWAS at
five sample sizes: N= 6064 (actual), N= 7580 (actual times 1.25),
N= 9096 (actual times 1.5), N= 10,612 (actual times 1.75), and N
= 12,128 (double). Table S5 has the number of lead SNPs used, the
average β effect size, the average MAF, and the power at each N.
Figure 4B is showing the power at each sample size for the least-
powered GWAS from each of the three clinical instruments. At our
sample size of N= 6064, the power ranged from 16 to 26%.
However, with double the sample size (N= 12,128), 80% power is
reached or exceeded for all subscales, with power ranging from 81
to 91%.

Fig. 3 SNP heritabilities and genetic correlations. A SNP heritabilities (h2). The mean h2 estimate is plotted with the whiskers representing
the 95% confidence intervals. For comparison, the autism case-control (PGC) heritability is also shown. B Intra-cohort genetic correlations (rG).
The mean rG estimate is plotted with the whiskers representing the 95% confidence intervals. The rG value is plotted only if the correlation is
nominally significant (unadjusted p-value < 0.05).
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PGS estimations of subscale GWAS and their associations with
behavior traits in ABCD
Despite our GWAS of the subscales not sufficiently powered for
associations of individual loci, we calculated polygenic scores
(PGS) in the ABCD cohort (N= 5285) from each GWAS with
LDpred2 [52] in order to test the generalizability of the genetic
associations in a typically-developing sample. We tested the PGS
associations with subscales from the Child Behavior Checklist
(CBCL) [39], which measures behavior and emotional problems.
The CBCL has eight syndrome subscales, but we focused our
analyses on the two subscales we found to be most strongly
correlated with each autism subscale, which were social problems
and thought problems (see Investigations of phenotypic correla-
tions and heterogeneity and Table S2). In addition, these two
subscales have previously been shown to be three standard
deviations higher in autistic children compared to undiagnosed
children [69], providing further justification for selecting these two
CBCL subscales as being most indicative of autistic traits. As a
baseline comparison, we also calculated the PGS from the autism
(PGC) GWAS. We expected the autism (PGC) GWAS to outperform
the subscale GWAS because the autism (PGC) sample size of N=
46,350 is seven times greater than our sample (Fig. 4C).
The demographic summary of the ABCD cohort used for this

analysis and the raw subscale values are shown in Table 2. The two
CBCL measures were residualized for age using linear regression,
centered to have a mean of 0 and a standard deviation of 1, and
then normalized by a rank-based normalization. PGS performance
was assessed using the main effects linear model lm(trait ~ sex+
PGS), with the β estimate from this model shown in Fig. 4D along
with the 95% CI around the β. The autism (PGC) PGS β estimate is
shown with the dashed line. Table S6 has the β estimates,
standard errors, 95% CIs, and p-values for the twelve subscales
and autism (PGC) PGS associations with eight CBCL subscales.

The autism (PGC) PGS β estimate was significantly associated
with CBCL social problems: β= 0.04 (CI: 0.01–0.07) and CBCL
thought problems: β= 0.05 (CI: 0.02–0.07). Almost all of the RBS-R
subscales were significantly associated with both CBCL social
problems (compulsive β= 0.03, injurious β= 0.04, restricted β=
0.04, stereotyped β= 0.03) and CBCL thought problems (compul-
sive β= 0.05, injurious β= 0.06, restricted β= 0.06, ritualistic β=
0.05, sameness β= 0.05, stereotyped β= 0.06), with the RBS-R
associations stronger for thought problems than social problems.
PGS for SCQ interaction did not compute due to low LDSC
heritability (LDpred2 requires LDSC heritability >0), and no DCDQ
subscales nor SCQ stereotyped were significantly associated with
either CBCL subscale.

Polygenic scores main effects in SPARK
In order to assess pleiotropy of the autism subscales with
neuropsychiatric conditions, cognitive traits, and behavior, we
calculated polygenic scores (PGS) using LDpred2 [52] in the SPARK
cohort from 14 publicly available GWAS: educational attainment
(SSGAC) [60], cognitive performance (SSGAC) [60], ADHD (PGC)

Fig. 4 Subscale GWAS in SPARK and PGS estimations in ABCD associated with autism-related traits. A Manhattan plots for the GWAS of
the subscales. The dashed line is the genome-wide significance line at −log10(5 × 10−8). B Clumped lead SNPs (p < 5 × 10−4) for each GWAS
were used to calculate power at sample sizes ranging from N= 6064 (actual sample size) to N= 12,128 (double sample size). For each
psychometric instrument/core domain, the subscale with the lowest power at N= 12,128 is shown. C Sample sizes of the subscale GWAS in
comparison to the autism (PGC) cases and the autism (PGC) cases and controls. D PGS estimations from the subscale GWAS and the autism
(PGC) GWAS were calculated in ABCD and associated with two CBCL measures shown to be elevated in autistic individuals–social problems
and thought problems [69]. The β estimate from the linear model is shown with the 95% confidence interval. The dashed line is the β estimate
for the autism (PGC) PGS.

Table 2. Autism-related CBCL behavior traits and demographic
summary of ABCD individuals in this study (N= 5285).

Variable % or mean (SD)

% male 50%

Age 9.9 (0.6)

CBCL social problems 52.6 (4.6)

CBCL thought problems 54.1 (6)

Ages in years.
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[55], anorexia (PGC) [56], autism (PGC) [4], bipolar disorder (PGC)
[57], major depression disorder (PGC) [58], schizophrenia (PGC)
[59], extraversion (PGI) [62], loneliness (PGI) [66], neuroticism (PGI)
[63], openness (PGI) [64], risky behavior (PGI) [65], and subjective
well-being (PGI) [67]. PGS main effect analyses were performed
with two approaches: linear models of main effects lm(trait value
~ sex+ PGS) and Pearson correlations. The PGS main effects from
the linear models are shown in Fig. 5 with the β estimate and 95%
confidence intervals (CIs) around the β. Table S7 has the β
estimates, standard errors, 95% CIs, and p-values for PGS
associations with the subscales. The Pearson correlation coeffi-
cients for the entire cohort and also sex-stratified correlations are
in Table S8.
In general, the educational attainment, cognitive performance,

ADHD, and major depression PGS had the most significant
associations with the subscales. The strongest effects were seen in
educational attainment PGS negatively associated with eleven
subscales (FDR p < 0.05), including DCDQ coordination β=−0.03,
DCDQ handwriting β=−0.09, RBS-R compulsive β=−0.14, RBS-R
injurious β=−0.13, RBS-R restricted β=−0.15, RBS-R ritualistic β
=−0.10, RBS-R sameness β=−0.13, RBS-R stereotyped β=
−0.12, SCQ communication β=−0.04, SCQ interaction β=
−0.06, SCQ stereotyped β=−0.04. This effect was also seen in
most of the cognitive performance PGS as well, meaning higher
PGS for cognitive performance and educational attainment are
associated with reduced autistic traits. Surprisingly, the autism
(PGC) PGS only had only a slight positive association with DCDQ
movement β= 0.03 and a slight negative association with RBS-R
compulsive β=−0.03, neither of which was significant after FDR.
In contrast, ADHD PGS was positively associated with ten
subscales (FDR p < 0.05): DCDQ coordination β= 0.03, DCDQ
handwriting β= 0.06, RBS-R compulsive β= 0.08, RBS-R injurious
β= 0.11, RBS-R restricted β= 0.09, RBS-R ritualistic β= 0.05, RBS-R
sameness β= 0.08, RBS-R stereotyped β= 0.08, SCQ interaction β
= 0.03, and SCQ stereotyped β= 0.04. Likewise, the major
depression PGS was positively associated with two DCDQ
subscales and all six RBS-R subscales (FDR p < 0.05): DCDQ
coordination β= 0.05, DCDQ handwriting β= 0.04, RBS-R com-
pulsive β= 0.03, RBS-R injurious β= 0.08, RBS-R restricted β=
0.06, RBS-R ritualistic β= 0.04, RBS-R sameness β= 0.04, and RBS-R

stereotyped β= 0.04. The bipolar disorder PGS was positively
associated (FDR p < 0.05) with DCDQ movement β= 0.04.
We also found significant personality PGS associations with the

subscales. The neuroticism PGS was positively associated with six
subscales (FDR p < 0.05): DCDQ coordination β= 0.04, RBS-R
injurious β= 0.06, RBS-R restricted β= 0.04, RBS-R ritualistic β=
0.03, RBS-R sameness β= 0.04, and RBS-R-stereotyped β= 0.05.
The loneliness PGS was positively associated with all six RBS-R
subscales (FDR p < 0.05): RBS-R compulsive β= 0.05, RBS-R
injurious β= 0.06, RBS-R restricted β= 0.05, RBS-R ritualistic β=
0.03, RBS-R sameness β= 0.04, RBS-R stereotyped β= 0.03. The
risky behavior PGS was positively correlated with three RBS-R
subscales (FDR p < 0.05): RBS-R injurious β= 0.04, RBSR-R
restricted β= 0.04, RBS-R ritualistic β= 0.03.

Interaction of sex with polygenic scores in SPARK
In order to analyze sex interactions of the autism subscale traits
with neuropsychiatric, cognitive, and personality PGS, we first
formally tested for sex interaction effects by linear models with a
PGS by sex interaction term lm(trait ~ sex+ PGS+ PGS: sex). We
observed 11 nominally significant PGS by sex interaction effects.
Figure 6A is showing the β estimate from the PGS by sex
interaction term. Table S9 has the β estimates, standard errors,
95% CIs, and p-values for PGS by sex interaction terms. While this
interaction modeling allows identification of significant PGS by sex
interaction effects, it does not show how the interaction is
manifested within each sex. For example, a positive β estimate for
the PGS by sex interaction term (note that male was coded as 1
and female was coded as 0) can be indicative of one of three
possible mechanisms:
1. The PGS has a positive effect in males and no effect in

females.
2. The PGS has a positive effect in males and negative effect in

females.
3. The PGS has no effect in males and a negative effect in

females.
Likewise, the three possible interpretations of a negative β

estimate (female direction) for the interaction term are:
1. The PGS has a positive effect in females and no effect

in males.

Fig. 5 Main effects of polygenic scores in SPARK. The PGS β estimate from the main effects modeling is plotted with the 95% confidence
interval. Significant positive associations are in red, and significant negative associations are in blue, with a solid circle indicating significance
after multiple testing correction (FDR p < 0.05) and an open circle indicating nominal significance only. PGS names are cog perf= cognitive
performance, edu attain= educational attainment, MDD=major depression disorder, SCZ= schizophrenia, SWB= subjective well-being.

T.R. Thomas et al.

8

Translational Psychiatry          (2022) 12:247 



Fig. 6 PGS sex interactions and sex-stratified correlations with the autism subscales in SPARK. A The PGS β estimate from the sex
interaction modeling is shown with the fill color, with one dot indicating the PGS by sex interaction term was nominally significant. A positive
β (green) indicates higher PGS by sex interaction for males, whereas a negative β (purple) indicates higher PGS by sex interaction for females.
B Pearson r coefficient correlations for the female correlation (x-axis) vs. male correlation (y-axis) are plotted. The gray vertical lines indicate
the bounds of nominal significance for females, and the brown horizontal lines indicate the bounds for males. N= 1177 females and N= 4887
males. PGS names are cog perf= cognitive performance, edu attain= educational attainment, MDD=major depression disorder, SCZ=
schizophrenia, SWB= subjective well-being.
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2. The PGS has positive effect in females and negative effect
in males.
3. The PGS has no effect in females and a negative effect

in males.
Therefore, to further interrogate the sex interactions, we

performed sex-stratified Pearson correlations (Fig. 6B and Table
S8). The significance of these correlations are important to
understand in the context that there are four times as many
males than females in the cohort (N= 1177 females and N= 4887
males). Figure 6B shows the Pearson r for the females vs. the r for
males, with the dashed lines indicating the bounds of nominal
significance (p < 0.05) for each sex-stratified correlation (r=
+/−0.06 for females and r=+/−0.03 for males). The null
hypothesis is the PGS effect to be the same for males and
females, which is represented by the black diagonal line.
Overall, we observed several PGS having sex interaction effects

and sex-differential correlations. Cognitive performance and
educational attainment PGS did not have sex interaction effects,
except for cognitive performance with RBS-R injurious (β=−0.09),
with no correlation in females (r= 0.02) and a negative correlation
in males (r=−0.07). In general, the ADHD PGS had stronger
positive correlations in males than in females, e.g., RBS-R
sameness had no correlation in females (r= 0.02) and a strong
correlation in males (r= 0.10), interaction β= 0.08. Similar trends
were observed for RBS-R compulsive: female (r= 0.03) and male
(r= 0.09) and RBS-R restricted: female (r= 0.04) and male (r=
0.10). Surprisingly, we observed a negative correlation in females
and no correlation in males with several RBS-R subscales and
autism (PGC) PGS, meaning increasing PGS for autism had
approximately no association with RBS-R traits in males and is
actually associated with reduced RBS-R traits in females. The
strongest sex interaction effect was for RBS-R sameness (interac-
tion β= 0.07), with a negative correlation in females (r=−0.08)
and no correlation in males (r=−0.01). Similar trends were
observed for RBS-R compulsive (interaction β= 0.04): female
(r=−0.06) and male (r=−0.02), and also for RBS-R restricted
(interaction β= 0.04): female (r=−0.04) and male (r=−0.01).
While no significant sex interactions for bipolar and major
depression PGS, we did observe sex-differential correlations.
Bipolar PGS was positively correlated with DCDQ coordination in
females (r= 0.06) but the correlation was much less in males
(r= 0.02). The same trend was observed for major depression PGS
more strongly positively correlated in females for DCDQ
coordination (female r= 0.09 and male r= 0.04) and RBS-R
stereotyped (female r= 0.07 and male r= 0.04). For the schizo-
phrenia PGS, we observed a stronger positive correlation in
females (r= 0.07) than in males (r= 0.01) with SCQ
communication.
The extraversion PGS had significant sex interactions with

DCDQ coordination (β= 0.10) and DCDQ movement (β= 0.08),
with negative correlations in females and a slight positive
correlation in males. Interestingly, for RBS-R injurious and
extraversion PGS, higher PGS was positively correlated in females
(r= 0.06), but had no correlation in males (r= 0.01). We did not
observe any significant loneliness PGS by sex interactions,
although some showed sex-differential correlations. For example,
RBS-R stereotyped was positively correlated in females (r= 0.07)
but no correlation in males (r= 0.02). For the neuroticism PGS,
there was a significant sex interaction with DCDQ handwriting
(β= 0.08), with a negative trend in females (r=−0.04) and a
positive correlation in males (r= 0.03). The risky behavior PGS and
subjective well-being PGS had stronger correlations in females
than males. Risky behavior PGS and RBS-R compulsive were
positively correlated in females (r= 0.07) but not in males (r=
0.01), and likewise for RBS-R stereotyped (female r= 0.07 and
male r= 0.01). The subjective well-being PGS was negatively
correlated in females but not in males for RBS-R stereotyped

(female r=−0.07 and male r= 0.01) and RBS-R ritualistic (female
r=−0.07 and male r= 0).
Last, to further interrogate the complex relationship between

autism (PGC) PGS and sex, we analyzed the grouped means of the
autistic males for whom their fathers also had genetic data
available (N= 2047 autistic males and N= 2047 fathers) and
autistic females for whom their mothers also had genetic data
available (N= 638 autistic females and N= 638 mothers). We
expected autism (PGC) to perform well in predicting case-control
status in SPARK given that previous work performed an autism
case-control GWAS in SPARK and found the genetic correlation
with autism case-control (PGC) to be high [70]. Indeed, we found
that the autistic females had significantly higher autism (PGC) PGS
than their mothers, and likewise the autistic males had
significantly higher PGS than their fathers (Table 3), with the
mean difference between autistic females vs. mothers and autistic
males vs. fathers being similar at 0.15 for females and 0.17 for
males. However, the autistic females overall have higher PGS, with
the autistic female mean at 0.13 and the autistic male mean at
0.07. Likewise, the mother mean is −0.02 and the father mean is
−0.10.

DISCUSSION
Our central goal for this work was to begin to reconcile autism’s
strong genetic basis with its extensive phenotypic heterogeneity
by examining the genetic characteristics of twelve subscales from
widely-used clinical instruments (SCQ, RBS-R, and DCDQ). We
employed well-established approaches such as genome-wide
association studies, SNP-heritability estimations, and polygenic
score associations. The findings from our primary analysis of N=
6064 autistic children from SPARK and our generalization analysis
of N= 5285 children from the community-based cohort ABCD,
which are detailed below, show pronounced differences in genetic
signal underlying the three assessments we investigated. These
findings also underscore the limitations in signal strength
(heritability) and in generalizability of genetic associations that

Table 3. Difference in grouped mean PGS between the autistic
individuals and their sex-matched parent.

PGS Sex Role Mean Mean dif

ADHD F Autistic 0.05 0.03

Parent 0.02

M Autistic 0.03 0.08

Parent −0.05

Autism F Autistic 0.13 0.15

Parent −0.02

M Autistic 0.07 0.17

Parent −0.10

Edu attain F Autistic 0.01 0.13

Parent −0.12

M Autistic 0.04 0.04

Parent 0.00

MDD F Autistic 0.08 −0.01

Parent 0.09

M Autistic 0.03 0.1

Parent −0.08

The cohort was filtered to autistic males in which their father also had
genetic data available (N= 2047 autistic males and N= 2047 fathers) and
autistic females in which their mother also had genetic data available (N=
638 autistic females and N= 638 mothers).
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are based on a binary diagnosis. Taken together, our results show
that the future of autism genetics demands a focus on multi-
dimensional, quantitative phenotypes.
Our phenotypic analyses demonstrate the quantitative and

heterogeneous nature of core autistic traits in an autism-only
cohort. Some traits were only moderately correlated with each
other, especially subscales probing different core domains (Fig.
2A). In addition, at a Cronbach’s alpha cutoff of a= 0.7, 56 out 66
pairs of traits were heterogeneous. Autism is often described as a
heterogeneous condition [71], and these findings serve to
quantify that heterogeneity. More detailed phenotypic character-
ization and new methods for integrating these granular pheno-
types [72] into robust, interpretable traits are critical goals as the
field strives to develop a more actionable, mechanistic under-
standing of autism that is based on genetics.
Clinicians administering screening tools like the SCQ, RBS-R, and

DCDQ might well wonder to what extent these instruments are
detecting behaviors and traits that have bases in biology. Our
analysis of SNP-heritability of each of these scales sheds light on
such questions: a screen that is sensitive to relevant genetic
factors should have higher heritability than a screen that is more
environmentally influenced or more sensitive to state vs. trait
distinctions. We found that SNP-heritability varied widely across
the twelve subscales from 0 for SCQ communication to 0.24 for
RBS-R restricted (Fig. 3A). Five of the RBS-R subscales were
significantly heritable and more heritable than autism (PGC) case-
control at 0.13, although the confidence intervals around our
estimates are much greater and overlap with the autism case-
control confidence intervals (due to our sample size of N= 6064
being seven times smaller than the autism (PGC) sample size of N
= 46,350). SCQ stereotyped was also significantly heritable at 0.12,
while the DCDQ subscales ranged from 0.04 to 0.08 and did not
reach significance. Overall, these results suggest that the RBS-R is
more sensitive to relevant genetic factors than either the SCQ
or DCDQ.
Given the recent progress in parsing the genetics of latent

autistic traits in large undiagnosed samples [29, 30], we were
motivated to see if we could uncover evidence running in the
other direction: are PGS based on our analysis of the twelve
subscales in an autism-only cohort positively correlated with
autism-related phenotypes in a general population sample of
children? We calculated PGS in ABCD (the general population
sample) using our subscale GWAS, and correlated these estimates
with two quantitative behavioral traits from the CBCL that have
previously been demonstrated to have a strong association with
autism: social problems and thought problems [69]. Almost all the
RBS-R subscale PGS were significantly associated with both social
problems and thought problems, as was the autism (PGC) case-
control PGS (Fig. 4D), despite our GWAS sample size being much
smaller and underpowered for locus discovery. This is in line with
a previous study that also found an autism case-control PGS was
significantly associated with social communication difficulties in a
general population sample of N= 5628 [73].
In association analyses with the autism case-control PGS to the

subscales in SPARK, we hypothesized that the autism case-control
PGS would have a positive association with the subscales.
Surprisingly, we observed no significant associations after FDR
(Fig. 5). This may be due to the autism (PGC) GWAS collapsing the
heterogeneity in the autism cases, which has the effect of pooling
the autism risk alleles broadly. This is in agreement with previous
research, which observed the autism case-control PGS to not lack
significant association with IQ [9], the Autism Diagnostic
Observation Schedule, Autism Diagnostic Interview-Revised, RBS-
R, or Social Responsiveness Scale total scores in autistic individuals
[74]. Interestingly, we found that when stratified by sex, the autism
case-control PGS exhibits different associations with severity in
males and females (Fig. 6B), with the PGS having a correlation of
roughly zero in males and being anti-correlated with symptom

severity in females. This unexpected finding warrants some
discussion of potential explanations and, in particular, sex-
specific explanations. It has been previously established that
affected children (mostly sons) inherit more genetic autism risk
from their mothers [75]. Because the autism PGC cohort is heavily
male-biased, the subset of risk alleles identified using this cohort
can be seen as representing disproportionate “mother-to-son”
alleles or male-specific risk alleles. Alternatively, these may be
alleles that are female-benign, meaning they do not contribute to
female risk; or female-protective, diminishing risk in females. The
presence of these male-specific or female-benign/protective
alleles can provide one explanation for why the autism PGS is
correlated with lower symptom severity in females. On the other
hand, autistic females carry more rare variant burden than autistic
males [76]. It has been established that PGS and rare variants
interact additively in autism risk [8, 9]. It is possible that the most
severely affected autistic females in our cohort carry more rare
variants that impact their severity, as recent analyses by [77]
suggest. These two explanations are, of course, not mutually
exclusive. Together, they present a strong case that it is crucial to
consider sex in PGS applications, especially in sex-imbalanced
cohorts where a sex-biased trait is studied [78].
Finally, we found that beyond autism, other neuropsychiatric,

cognitive, and personality PGS were significantly associated with
autistic traits in autistic individuals (Figs. 5 and 6B). The strongest
PGS associations we found were educational attainment and
cognitive performance PGS being negatively correlated with
several subscales, meaning higher polygenic propensity for
cognitive abilities in autistic individuals is associated with reduced
autistic traits. Interestingly, this contrasts with numerous reports of
a positive genetic correlation between educational attainment
and autism case-control (PGC) [4, 79, 80], but it is in agreement
with previous work showing higher PGS for educational attain-
ment was positively associated with greater IQ in autistic
individuals [9]. The ADHD and major depression PGS were both
positively correlated with several subscales, which is in line with
previous work showing ADHD and major depression to be
positively genetically correlated with autism [4]. In addition, factor
analysis of genetic correlations across the major psychiatric
disorders identified major depression to have a strong loading
with the neurodevelopmental factor (ADHD and autism) [81], and
when including substance use disorders, ADHD, autism, and major
depression load onto the same factor [82]. This relationship of
autism with ADHD and major depression is also shown at the
epidemiological level, with ADHD and major depression being the
first and third most prevalent comorbidities among autistic
individuals, respectively [83]. Therefore, it is possible that the
ADHD and major depression PGS in our analyses are indexing the
autism phenotypic spectrum and/or subgroup comorbidities.
Beyond neuropsychiatric and cognitive PGS, we also wanted to
assess whether personality traits like extraversion, neuroticism,
openness, and risky behavior PGS were also associated with the
autism subscales. There is extensive research on the Big Five
personality measures and their relationship to autism [84] and
subtyping autistic individuals [85], but it is unknown if the genetic
signals of personality can also subtype autistic individuals. Indeed,
several personality PGS were associated with many of autism
subscales (Fig. 5). Among them, most prominently, several RBS-R
subscales were positively associated with neuroticism, loneliness,
and risky behavior PGS. Again sex was an important variable, with
significant PGS by sex interactions observed for eight of the
personality PGS (Fig. 6). Overall, these analyses suggest that
optimizing PGS as predictors, e.g., for eventual use in personaliz-
ing care, will require the utilization of several neuropsychiatric,
cognitive, and personality PGS, as well as consideration of
interactions with sex.
Our analyses have several limitations. First, our moderate

sample size of N= 6064 autistic children in SPARK is low for

T.R. Thomas et al.

11

Translational Psychiatry          (2022) 12:247 



common genetic variant analyses, specifically for estimations of
SNP-heritability, intra-cohort genetic correlations, and genome-
wide association studies. This is clear from the wide confidence
intervals for our heritability and genetic correlations (Fig. 3), as
well as the power analyses for our GWAS ranging from 16 to 26%
(Fig. 4B). This sample size limitation is especially important to
emphasize for the heritability estimations: while we found five
RBS-R traits to have greater heritability estimates than the autism
(PGC) case-control heritability, the confidence intervals around our
estimations overlap with the autism (PGC) heritability. Future work
with greater sample sizes is necessary for more precise estimates
of these common genetic effects, with our power analyses
indicating that doubling our current sample size to be sufficient
for 80% power. Second, the DCDQ, RBS-R, SCQ, and CBCL were
filled out by the parent or legal guardian on behalf of their child.
This leaves potential for several biases, including sex-specific
biases (mother vs. father reporting). Third, our analyses only
considered common genetic variants as measured by SNPs.
However, some de novo and/or rare variants (which were not
considered in our analyses) can have a strong impact on autism
risk [5, 6].
In conclusion, our results show that autistic traits (as character-

ized in an all-autistic cohort) are genetically heterogeneous: the
clinical autism subscale traits are variable in SNP-heritability, PGS
associations, and significant PGS by sex interactions. Furthermore,
of the three instruments investigated, the RBS-R shows the
greatest evidence of genetic signal in both (1) autistic samples
(greater heritability) and (2) general population samples (via
strongest PGS associations). Although historically the path for
increased power GWAS discovery has been a quest for ever-larger
case-control sample sizes, our results indicate that investing in
richer phenotypic characterization, even at the expense of sample
size, might be a better value proposition for psychiatric genetics
and autism research in particular.

Language choices
Many autistic self-advocates prefer identity-first language (i.e.,
autistic individuals), and some autistic individuals and their
families prefer person-first language (i.e., individuals with autism).
We chose to use identity-first language for this paper. Gender is
distinct from sex and has important variance, especially in the
autistic community [86, 87]. For language around sex and gender,
we exclusively considered sex (meaning sex designated at birth).

DATA AVAILABILITY
The SPARK data can be obtained at SFARI Base: https://base.sfari.org. The ABCD data
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subscale summary statistics, supplementary data, and the code for all analyses can be
found at https://research-git.uiowa.edu/michaelson-lab-public/autism_subscales
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