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The hippocampus and amygdala limbic structures are critical to the etiology of major depressive disorder (MDD). However, there
are no high-resolution characterizations of the role of their subregions in the whole brain network (connectome). Connectomic
examination of these subregions can uncover disorder-related patterns that are otherwise missed when treated as single structures.
38 MDD patients and 40 healthy controls (HC) underwent anatomical and diffusion imaging using 7-Tesla MRI. Whole-brain
segmentation was performed along with hippocampus and amygdala subregion segmentation, each representing a node in the
connectome. Graph theory analysis was applied to examine the importance of the limbic subregions within the brain network using
centrality features measured by node strength (sum of weights of the node’s connections), Betweenness (number of shortest paths
that traverse the node), and clustering coefficient (how connected the node’s neighbors are to one another and forming a cluster).
Compared to HC, MDD patients showed decreased node strength of the right hippocampus cornu ammonis (CA) 3/4, indicating
decreased connectivity to the rest of the brain, and decreased clustering coefficient of the right dentate gyrus, implying it is less
embedded in a cluster. Additionally, within the MDD group, the greater the embedding of the right amygdala central nucleus (CeA)
in a cluster, the greater the severity of depressive symptoms. The altered role of these limbic subregions in the whole-brain
connectome is related to diagnosis and depression severity, contributing to our understanding of the limbic system involvement in
MDD and may elucidate the underlying mechanisms of depression.
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INTRODUCTION
Major depressive disorder (MDD) is one of the most prevalent
health problems, it affects almost 7% of the United States adults
and is associated with significant day-to-day life issues, disability,
and heavy social and economic burden [1]. It is a complex disorder
with heterogeneous clinical manifestations involving affective,
cognitive, and somatic symptoms. Currently, the underlying brain
pathology remains largely unclear. Accumulating evidence from
the last decade suggests that the complex etiology of psychiatric
disorders such as MDD are not localized to a single brain region’s
morphology, but rather are manifested as aberrant brain circuit
structure or function [2–6].
Numerous neuroimaging studies suggest that specifically

disrupted connectivity within the cortico-limbic system which
consists of the amygdala, hippocampus, anterior cingulate cortex
(ACC) and dorsolateral prefrontal cortex (DLPFC) [7] plays an
important role in the pathogenesis of depression, presumably due
in part to its importance in emotion generation and regulation
processes [8–10]. It is also known that the hippocampus and
amygdala subcortical limbic structures are imperative in depres-
sion [11–13]. According to both animal and human studies both
the amygdala and hippocampus comprise anatomically and
functionally discrete subfields [14–18]. The hippocampus is

comprised of the dentate gyrus (DG), cornu ammonis (CA) 1–4,
and subiculum [19]. The amygdala is known to be comprised of
multiple nuclei which exhibit unique connectivity and molecular
profiles [16, 19, 20]. Postmortem and animal studies indicate that
depression is linked to morphological changes in the CA
hippocampus subfields [21] and in the central and basolateral
amygdala nuclei [22–26]. However, due to past technical
constraints such as MRI spatial resolution and time-consuming
manual tracing of the small subregion, in vivo studies considering
the amygdala or hippocampus in depression have often treated
them as single unified structures in analyses.
The emergence of automated segmentation techniques

allowed for a feasibile and much improved investigation of
subcortical substructures. There have been several studies on
hippocampal subfields volumetrics in MDD, both manually and
automated segmentation, some of which have reported reduced
volumes in the dentate gyrus and CA (mainly CA3) [27–30], while
others have found no significant differences between MDD
subjects and healthy controls (HC) [31–33]. A previous study
examining hippocampus subfields and amygdala nuclei volu-
metric differences between MDD and HC found no significant
group differences, yet, reduced volumes of the amygdala’s right
lateral nucleus (LA), left cortical nucleus (CoA), left accessory
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basal nucleus (ABA) and bilateral corticoamygdaloid transition
area (CAT) were associated with depression severity within the
MDD group [34]. However, in-vivo structural connectivity
characterizations of the amygdala or hippocampus subregions
in humans are challenging due to technical barriers in discerning
these nuclei with the relatively low spatial resolution of diffusion-
weighted imaging.
Ultra-high field 7-Tesla (7T) MRI allows imaging with higher

signal-to-noise and contrast-to-noise ratios for improved spatial
resolution [35]. Our recent ultra-high resolution 7T diffusion MRI
studies on a subset of the current sample found reduced number
of streamlines (i.e., white matter connections as reconstructed
using probabilistic tractography) emerging from the hippocampal
left DG subfield among MDD patients compared to HC [36], and
that the right LA, basal nucleus (BA) and central (CeA) amygdala
nuclei exhibited significantly increased connectivity to the rest of
the brain, whereas the left medial nucleus (MeA) demonstrated
significantly lower connectivity [37]. While these studies add to
our understanding of the morphometric and structural connectiv-
ity differences of these small limbic structures that exist in MDD,
they do not provide critical information about their role or
hierarchy within the whole-brain network.
A network-based perspective is needed to study the topology

or hierarchy of regions within the whole brain system. The
mathematical field of graph theory offers a flexible way to model
whole-brain connectivity, known as the connectome [38–40]. The
structural brain network graph is composed of nodes, representing
anatomical regions of interest (ROIs), and edges, representing
connections. Local nodal features (e.g., node strength, between-
ness centrality, and clustering coefficient) are used to depict the
network regions’ hierarchy in the network and identify hubs that
are critical for an efficient information flow [39]. To account for the
hippocampus and amygdala small subregions function in the
network we apply a graph theory approach and to our knowledge,
no such studies have been performed.
Here, we examined the role of the small amygdala and

hippocampus subregions in the whole-brain neural network and
their topological features in relation to depression symptoms
among MDD patients and HC using ultra-high field 7T MRI.
Utilizing the 7T MRI high spatial resolution advantage, data-driven
graph theory structural connectomic analysis was implemented
to test whether local network hierarchies of amygdala and
hippocampus subregions differentiate MDD and HC. We exam-
ined three common local centrality features; (1) node strength,
which quantifies the node’s connectedness in the network and is
defined by the sum of weights of connections to the node. Higher
node strength indicates a strong and direct influence on the
other nodes in the network. In brain networks, nodes with high

node strength are referred to as network hubs, and are thought
to be critical for general information transmission and system-
level computing, potentially making them good therapeutic
targets for network-level modulation [39]; betweenness, which
quantifies the node’s involvement in information flow across the
network and defined as the number of shortest paths that
traverse a given node. A node with a high betweenness centrality
is more likely to act as an intermediary in the transmission of
information between other nodes or even clusters of nodes in the
network [41]. A node with higher betweenness centrality would
have more control over the network since more information
passes through that node; and (3) clustering coefficient, which
quantifies the node’s connectedness to its local neighbors by
calculating the probability that two nodes connected to a given
node are also connected with each other (the node’s tendency to
be embedded in a cluster). A node with a high clustering
coefficient indicates its local cohesiveness and a high tendency to
be embedded in or to form a cluster. A higher local clustering
coefficient also indicates the network’s local robustness to the
node’s removal or failure [42]. Thus, if a node’s neighbors are also
highly connected with each other, removing that node will not
greatly influence its neighbors’ ability to communicate with each
other. We hypothesized that the MDD group will show aberrant
limbic subregion structural network hierarchy compared to HC.
We specifically hypothesized that the hippocampus dentate gyrus
and CA 3 subfields and the CeA and BA amygdala nuclei will
exhibit altered hierarchy in the brain network in relation to
depression symptoms.

METHODS AND MATERIALS
Participants
Participants included 38 MDD patients (22 males, 16 females, mean age:
37.24 ± 11.45) and 40 HC (26 males, 14 females, mean age: 37.15 ± 10.40)
age and gender-matched (p= 0.97 and p= 0.52, respectively). The
demographic and clinical variables are presented in Table 1. All subjects
were recruited at the Depression and Anxiety Center for Discovery and
Treatment (DAC) at Icahn School of Medicine at Mount Sinai. All
participants underwent the Structured Clinical Interview for DSM-V Axis
Disorders (SCID-V) by a trained rater to determine any current or lifetime
psychiatric disorder [43]. As the power analysis using G Power software
[44] indicated that we needed a sample of at least 78 participants to detect
a medium to large effect size (Cohen’s d= 0.65, α= 0.05, 1−β= 0.8) to
conduct a two-sample t-test. Subjects were excluded if they had an
unstable medical illness (i.e., a significant, active medical condition that
requires treatment), history of neurological disease, history of schizo-
phrenia or other psychotic disorder, neurodevelopmental/ neurocognitive
disorder, substance use disorder within the past 2 years, any contra-
indications to MRI, or positive urine toxicology on the day of the scan. HC
subjects were free from any current or lifetime psychiatric disorder.

Table 1. Demographic and clinical characteristics.

MDD (n= 38) HC (n= 40) Statistic χ2/t (df) p-value

Male (frequency, %) 22, 57.89% 26, 65% 0.42 0.52

Age, years (mean ± SD) 37.24 ± 11.45 37.15 ± 10.40 0.035 (76) 0.97

Age at first episode (mean ± SD) 20.45 ± 11.67 – – –

Years since first episode (mean ± SD) 16.79 ± 10.34 – – –

Number of episodes (mean ± SD) 4.40 ± 5.44 (35) – – –

Duration of current episode, months (mean ± SD) 55.69 ± 71.28 – – –

Recurrent MDD (frequency, %) 27, 71.05% – – –

Current PPD (frequency, %) 18, 47.37% – – –

MADRS 29.34 ± 5.16 0.62 ± 1.18 33.88 (75) 2.16E−46*

QIDS-SR 14.06 ± 4.32 (36) 1.16 ± 1.79 (34) 16.72 (70) 1.35E−25*

MDD major depressive disorder, HC healthy controls, PPD persistent depressive disorder, MADRS Montgomery Åsberg Depression Rating Scale, QIDS-SR Quick
Inventory of Depressive Symptomatology Self-Report. *p < 0.05 for MDD group compared to healthy control group.
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All participants were free of antidepressant medication or other
psychotropic medication for at least 4 weeks (8 weeks for fluoxetine)
prior to data collection. Inclusion criteria for MDD subjects included having
MDD as their primary presenting problem and being in a current major
depressive episode. In all subjects, depressive symptom severity was
measured by a clinician with the Montgomery–Åsberg Depression Rating
Scale (MADRS) [45], and subjective depression symptoms were assessed by
the Quick Inventory of Depressive Symptomatology, Self-Report (QIDS-SR)
[46]. All data were collected under Institutional Review Board (IRB)
approved written informed consent and participants were compensated
for their time.

MRI data acquisition
Data were acquired on a Siemens Magnetom 7T MRI scanner (Erlangen,
Germany) with a 32-channel head coil (Nova Medical, Wilmington, MA).
Each imaging session included the acquisition of an anatomical scan using
a twice magnetization-prepared rapid gradient echo (MP2RAGE) sequence
for improved T1-weighted contrast and spatial resolution [47], with the
following parameters: 0.7 mm isotropic resolution, 240 slices, TR/TE=
6000/3.62 ms, field of view (FOV)= 240 × 320, flip angle (FA)= 0 and 5°,
bandwidth= 300. A coronal-oblique T2-weighted turbo spin-echo (T2-TSE)
with the following parameters: resolution= 0.43mm× 0.43mm× 2.0 mm,
66 slices, TR/TE= 9000/69ms, FOV= 816mm× 1024, FA= 150°, band-
width= 279. Lastly, a high-angular-resolved diffusion-weighted imaging
(HARDI) sequence was acquired: b= 1500 s/mm2, 132 slices, TR/TE= 7200/
67.6 ms, FOV= 210mm× 210mm, resolution= 1.05mm isotropic, FA=
90°, and number of gradient directions was 64, with 5 b= 0 s/mm2. The 5
b= 0 acquisitions were interleaved during the acquisition to correct for
artifacts at time points 0.0, 115.2, 223.2, 338.4, and 453.6 s. Two diffusion
MRI reverse-direction scans were acquired to correct gradient distortions.

Anatomical data processing
T1-weighted images were preprocessed using the FreeSurfer (http://freesurfer.
net) version 6.0 recon-all pipeline, nonparametric nonuniform intensity
correction, intensity normalization, skull stripping, and neck removal,
automatic segmentation, and parcellation steps [48]. Each subject’s anatomi-
cal brain image was segmented into the Desikan–Killiany Atlas [49] and
subcortical brain regions. Hippocampus and amygdala segmentation was
carried out in FreeSurfer development version 6.0 using the T1-weighted and

coronal-oblique T2-TSE high-resolution images [34]. The hippocampus was
segmented into the following subregions: presubiculum, subiculum, para-
subiculum, CA1, CA3, CA4, the granule cell layer of the dentate gyrus (GC-DG),
the molecular layer of the dentate gyrus, and the hippocampal-amygdala
transition. The amygdala was segmented into the lateral (LA), basal (BA),
accessory basal (ABA), cortical (CoA), medial (MeA), and central (CeA) nuclei
and the corticoamygdaloid transition (CAT) area (Fig. 1B). All FreeSurfer
outputs were manually inspected for segmentation quality, accuracy, and
correct co-registration during the analysis. Hippocampus subfields were
combined into CA1, CA3/4, the subicular complex (pre-, para- and subiculum),
and the GC-DG (granule cell layer and molecular layer) to ensure subregions
were large enough for accurate quantification (Fig. 1A). Due to the small
volumes of the amygdala MeA, the authors chose to exclude this region from
the analysis. All subregion volumes were quantified as the number of voxels
within the diffusion-weighted image and compared between the MDD and
HC using 2 sample t-tests. The whole-brain segmentation was combined with
the hippocampus and amygdala subregions (a total of 98 ROIs) into a single
brain parcellation image in the subject’s native space.

Diffusion data processing
Diffusion data were preprocessed and denoised using MRtrix phase-
reversed processing (https://mrtrix.readthedocs.io/en/latest/index.html). B1
field inhomogeneity correction was performed for the diffusion images
[50]. Fiber orientation distributions (FODs) were estimated from the
diffusion data using spherical deconvolution [50], and the diffusion tensor
was calculated using iteratively reweighted linear least squares estimator
[51]. The T1-weighted and the brain segmentation image (combined with
hippocampus and amygdala subregions) were coregistered to the
diffusion space using SPM12 nearest-neighbor interpolation. MRtrix
software was used to carry out whole-brain probabilistic tractography
[52]. Streamlines were thresholded using a FOD amplitude cutoff of 0.1.
The spherical deconvolution (SIFT2) algorithm was applied to all tracts to
eliminate spurious streamlines that were unlikely to be physically accurate
[53]. Lastly, the streamlines count between all ROIs were extracted,
creating the pairwise structural connectivity matrix.

Connectome analysis
To construct the brain structural connectome each of the 98 anatomical
segmented ROIs represents a node in the graph and the network edges

Fig. 1 Hippocampus and amygdala subregion segmentation. A single-subject hippocampus (A) and amygdala (B) subregions FreeSurfer
segmentation overlaid on the T1-weighted image.
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were defined by the streamline count between any pairwise ROIs derived
from the diffusion MRI tractography matrix (Fig. 2A). We then used a
sparsity threshold S, which retains S% of the top connections for each
subject to ensure that the number of nodes and connections are matched
across participants [6].
Using the Brain Connectivity Toolbox [54], we examined common local

nodal centrality features; (1) node strength, which is the sum of weights of
links connected to the node (Fig. 2B); (2) betweenness centrality, which is a
measure of the number of shortest paths that traverse a given node
(Fig. 2C); and (3) clustering coefficient, which quantifies how well a node’s
neighbors are also connected to one another and is defined by the fraction
of triangles around a node (Fig. 2D). We examined these local centrality
features across a range of thresholds (10% < S < 30% in steps of 1%) [6]. We
then calculated the area under the curve for each network feature, which
provides a summarized measure independent of a single threshold
selection [6].

Statistical analysis
We conducted a between-group two-sample t-test for each region’s
centrality measures. Age, gender, and region volume were treated as
covariates in all analyses. For statistical significance permutation tests
were performed conducting 1000 repetitions on shuffled datasets
assessing the specificity of the t-test findings by comparing the observed
t-value with the results of the randomized networks. The p-value of the
bootstrapping test was defined as the fraction of the number of random
cases which obtained t statistic values smaller than the observed finding.
Finally, all results were corrected for multiple comparisons for a total of
98 tests (number of regions) using the false discovery rate (FDR)
correction [55] (q < 0.05).
For the MDD group separately, we also conducted Spearman’s

correlations to assess the association between the hippocampus and
amygdala subregions centrality features and the depression symptoms as

measured by the MADRS score. Partial correlation was used to control for
age, gender, subregion volume, and previous antidepressant medication
history (1= had previous medication treatment, 0= no past medication
treatment) as covariates. The results were corrected for multiple
comparisons using FDR (q < 0.05) where the hippocampus subregions
were corrected for a total of 8 tests and amygdala subregions for a total of
12 (number of subregions).

RESULTS
The groups were matched for age and gender (see Table 1).
Significant differences in MADRS (t(df)= 33.88 (75), p= 2.16E−46)
and QIDS-SR (t(df)= 16.72 (70), p= 1.35E−25) were present
(Table 1). Assumptions for normal distribution and equal variances
were met for two-sided t-tests.
To test our hypothesis regarding the relationship between

network topology and depression, we investigated the difference
in the local (e.g., node strength, betweenness centrality, and
clustering coefficient) subregion network features (within the whole
brain connectome) between MDD and HC (Fig. 3). We found that
compared to HC, MDD patients exhibit decreased strength of the
right hippocampus CA3/4 subfield (t(df)= 3.56 (71), p< 0.001,
Cohen’s d= 0.73), right pallidum (t(df)= 2.83 (71), p < 0.001, Cohen’s
d= 0.59), left precentral gyrus (t(df)= 2.55 (71), p < 0.001, Cohen’s
d= 0.58) and left postcentral gyrus (t(df)= 2.58 (71), p < 0.001,
Cohen’s d= 0.60), all FDR corrected (q < 0.05) controlled for age,
gender, region’s volume and previous antidepressant medication
history (Fig. 3B). In other words, these regions exhibit lower
connectivity to the rest of the brain network among the MDD
group compared to the HC group. As the focus of the analysis was to

Fig. 2 Connectome analysis procedure. A Each subject’s whole brain segmentation was combined with the hippocampus and amygdala
subregion segmentation, constructing the nodes of the graph (a total of 98 ROIs). Network edges (i.e., links) were defined by the streamline
count between all pairwise ROIs using probabilistic fiber tracking creating a structural connectivity matrix. A threshold of the top connections
for each network was applied across a range from 0.1–0.3. We then examined the structural connectome local network centrality features; (B)
node strength—the sum of weights of links connected to the brain region; (C) betweenness centrality—the number of shortest paths that
traverse a given region; and D clustering coefficient, which quantifies how well a node’s neighbors are also connected to one another.
Finally, for each local feature, the area under the curve for all network densities was used to provide a measure independent of single
threshold selection.
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examine the role of the limbic subregions in the network, we
conducted further specific exploration of the right hippocampus
CA3/4 edges’ weights (number of streamlines connecting two
regions). No significant edges weights differences between the
MDD and HC groups were found after correcting for multiple
comparisons. However, at an uncorrected threshold in a one-sided
two-sample t-test, decreased number of streamlines was observed
between the right hippocampus CA3/4 and the right thalamus,
pericalcarine, inferior parietal, hippocampus subiculum subfield, and
amygdala’s lateral and basal nuclei (MDD<HC; p < 0.05, uncorrected,
Table S2 in the Supplementary and Fig. 4A).
Compared to HC, MDD patients also exhibit decreased

clustering coefficient measures of the right hippocampus GC-DG
(t(df)= 2.90 (71), p < 0.001, Cohen’s d= 0.61), left cuneus (t(df)=
2.77 (71), p < 0.001, Cohen’s d= 0.65) and left thalamus (t(df)=
2.22 (71), p < 0.001, Cohen’s d= 0.50), all FDR corrected (q < 0.05)
(Fig. 3C), indicating these regions are less embedded in a cluster
among patients. None of the betweenness centralities measures
showed significant differences between the MDD and control
groups after correcting for multiple comparisons.

In addition to controlling for the region’s volume, the volumes
of the amygdala and hippocampal subregions within the diffusion
image were compared between MDD and HC to determine
whether any structural connectivity differences were being driven
by differences in volume. There were no subregion volumes that
significantly differed between MDD and HC (Supplementary S1).
Further investigation of the significant results association with

depression symptoms among MDD patients, found reduced
hippocampus CA3/4 node strength was significantly associated
with greater self-reported depression symptoms as measured by
the QIDS-SR score (r=−0.53, p < 0.0035, FDR corrected) (Fig. 4B).
In addition, we tested whether the network topology of only

the limbic subregions is associated with depression symptoms as
measured by the clinical MADRS and self-reported QIDS-SR scores
as well as the depressive episode duration. The amygdala right
central nucleus clustering coefficient showed a positive associa-
tion with MADRS scores (r= 0.49, p < 0.004, FDR corrected) among
the MDD group controlled for age, gender, subregion volume, and
previous antidepressant medication history (Fig. 4C). The right
central nucleus clustering coefficient was also positively correlated

Fig. 3 Connectome analysis results. A Connectograms of amygdala and hippocampus subregions hyper-connectivity (MDD > HC) and hypo-
connectivity (HC >MDD). The ideograms (i.e., heatmap inner rings) represent the between-groups differences (t-values) in node strength
(pink), betweenness (purple), and clustering coefficient (orange), the darker the tone the greater the group difference. All structural
connectivity that are significantly different between the two groups at the p < 0.05 uncorrected level are plotted as edges. Each edge is color-
coded according to the brain’s anatomical lobe. Amygdala and hippocampus subregions exhibit both hyper- and hypo-connectivity and inter-
and intra-hemispheric connections. The connectogram visualization was created using Circos (http://circos.ca/). Violin plots and permutation
tests histograms of the significant between-group differences (p < 0.05 FDR corrected) for the local network features of node strength (B) and
clustering coefficients (C). The histograms represent the t-value results of 1000 permutations tests, and the vertical red line represents the true
t-value comparing the MDD vs. HC.

Y. Jacob et al.

5

Translational Psychiatry          (2022) 12:209 

http://circos.ca/


with the depressive episode duration (r= 0.39, p < 0.03 uncor-
rected) (Fig. 4D).

DISCUSSION
Applying a data-driven connectomic approach with high-field 7-T
diffusion MRI data, we investigated the role and topological
architecture of minute structures of the limbic amygdala and
hippocampus within the whole brain network in MDD patients
compared to HC and their association with depression symptoms.
Analysis of the network hierarchy according to node strength

showed reduced strength (i.e., reduced connectivity to the rest of
the brain network) of the right hippocampus CA3/4 among MDD
patients compared to HC (Fig. 3B). Decreased hippocampus CA3/4
connectivity was also associated with greater self-reported
depression symptoms (Fig. 4). This reduced hippocampus CA3/4
overall connectivity might be driven by a trend indicating a
reduced number of streamlines both internally between the
hippocampus right CA3/4 and right subiculum as well as
externally with other limbic structures including the right
thalamus and amygdala’s lateral and basal nuclei (Fig. 4A).
Analysis of the network hierarchy according to nodal clustering

Fig. 4 Hippocampus CA3/4 connectogram and association to clinical measures. A Compared to HC, the right hippocampus CA3/4 exhibited
significantly decreased node strength (lower connectivity to the rest of the brain network) among the MDD group. Connectogram
visualization of the right hippocampus CA3/4 reduced connectivity among the MDD group compared to HC. Each edge is color-coded
according to the brain’s anatomical lobe. The connectogram visualization was created using Circos (http://circos.ca/). B Patients with greater
depression symptoms as measured by the QIDS score exhibit lower right hippocampus CA3/4 node strength. C The Amygdala right CeA
clustering coefficient feature exhibit a positive correlation to depression symptoms as measured by the MADRS score (**p < 0.05, FDR
corrected) among the MDD group. Further exploration also found a correlation to depressive episode duration (*p < 0.05, uncorrected) (D).
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coefficients found that compared to HC, MDD patients’ hippo-
campus GC-DG subregion exhibit a reduced tendency to be
embedded in a cluster (Fig. 3C). In contrast, a stronger clustering
coefficient of the right amygdala central nucleus was associated
with higher depression symptoms levels and depressive episode
duration among MDD patients (Fig. 4C, D). Together, these results
indicate specific subregions altered involvement in the whole
brain connectome as related to depression.
The hippocampus dentate gyrus and CA 3 are the most

implicated subfields in relation to depression [56]. Here, both (i.e.,
GC-DG and CA3/4) were the only subregions that exhibit a
significantly altered connectivity pattern among MDD compared
to HC. The hippocampus CA3/4 showed decreased overall
connectivity to the rest of the brain network and the dentate
gyrus exhibited a reduced tendency to be embedded in a cluster
among MDD. In a previous study, we found a reduced overall
number of streamlines emerging from the hippocampal left
GC-DG subfield among MDD patients compared to HC [36],
whereas here we did not observe a significant reduction in GC-DG
strength. However, the right dentate gyrus did exhibit a reduced
tendency to be embedded in a cluster among MDD. This result
might indicate the network’s lack of endurance (or compensation)
in case of a hippocampus GC-DG failure. Preclinical studies have
shown that chronic stress or overexposure to glucocorticoids (i.e.,
stress hormones cortisol in humans, corticosterone in rodents)
leads to atrophy in the hippocampus dentate gyrus, CA, and
particularly of the pyramidal neurons of CA3 [57]. Other studies
also showed that antidepressant treatments can prevent and
reverse this atrophy in CA3 [56, 58, 59]. A postmortem human
study [21] found significant decreased pyramidal neuron soma
size in all CA hippocampus subfields (CA1–CA4) among MDD
patients compared to HC and a neuroimaging anatomical study
found that patients with MDD showed a bilateral pattern of
volume reduction in all CA subfields [60]. Here we show that even
when controlling for hippocampus CA3/4 subregion volume, its
role in the whole brain network is significantly reduced among
nonmedicated MDD patients exhibiting less connectivity to the
rest of the brain.
The hippocampus is part of the limbic system and is known to

be involved in the formation of episodic and declarative memory
[61]. Specifically, the hippocampus connectivity to the thalamus
through the mammillary bodies and fornix is known to be crucial
for episodic event memory [62, 63]. Impaired overall connectivity
of the hippocampus CA3/4 subregion and specifically the trend in
its reduced connectivity with the thalamus (Fig. 4A) among
depressed people are in line with previous studies showing
impaired episodic memory and particularly autobiographical
memory in depressed patients [64, 65]. In addition, our results
also indicate a trend of reduced connectivity of the right
hippocampus CA3/4 with the ipsilateral BA and LA amygdala
nuclei (Fig. 4A), which may cause emotional memory biases in
depression. However, these results must be interpreted with
caution as they are uncorrected for multiple comparisons.
While the focus of the current analysis was to examine the role

of hippocampus and amygdala subregions in the whole brain
network, several other brain regions exhibited significantly
altered connectivity patterns among MDD compared to HC. The
right pallidum, left precentral, and postcentral gyri showed
decreased node strength (i.e., reduced connectivity to the whole
brain network regions); the left cuneus and thalamus showed
decreased clustering coefficient (i.e., reduced tendency to
cluster). Alterations in the structure and function of each of
these regions have been linked to depression in several prior
studies [66–70]. According to meta-analyses, MDD patients
showed decreased pallidum, thalamus [67], and precentral gyrus
[69] volumes, increased cuneus volume [70], and decreased
activation in the precentral and postcentral gyri [68]. Here we
show that when controlling for the region’s volumes, their role in

the whole brain network is significantly reduced among MDD
patients exhibiting less connectivity to the rest of the brain or less
connectedness to clusters.
Exploration of disease severity association with the subre-

gion’s connectome features found the amygdala CeA subregion
clustering coefficient to be highly correlated with depression
symptoms scores (Fig. 4). A higher clustering coefficient
indicates that this region’s neighbors are also highly connected
between them (highly clustered). Previous studies have shown
that the amygdala CeA is highly connected to key cortical and
subcortical brain regions functioning as a hub mediating various
aspects of stress response as well as of fear and anxiety [71–76].
To our knowledge, this is the first in vivo human study showing
the association between CeA hubness (centrality in the network)
and depression severity.
The main limitations of this study are the potential effect of

partial voluming of the small limbic substructure and the limited
sample size. To minimize the partial volume, we excluded very
small hippocampal subfields and amygdaloid nuclei that were not
consistently accurately delineated on T2-TSE and T1 images [36].
Additionally, we merged several smaller constituent regions into
their larger subfield (dentate gyrus and subicular complex). Thus,
the final limbic subregions used in the current analysis were large
enough to both be segmented using ultra-high submillimeter
resolution T1 and T2-TSE imaging and accurately visualized to
conduct tractography using the 1.05 mm isotropic diffusion
imaging. Another major limitation of this study is our limited
accountability for prior medication treatment effects among MDD
patients. Though no participants were taking antidepressant
medication at the time and 4 weeks prior to clinical evaluation
and scanning, most of our patients have been receiving drug
therapies in the past. To account for any confounding effects, we
statistically controlled for prior medication treatment. Future
prospective drug therapy studies could shed a light on the effect
of medication on the limbic substructures connectomic.
To conclude, our findings add to existing research by

inspecting the whole-brain network hierarchy of small limbic
subregions and identifying the hippocampus CA3/4 and GC-DG
subfields as critical nodes in MDD pathophysiology and the
amygdala CeA nucleus as predictive of depression symptoms
levels. Compared to previous studies, this study was conducted
on an ultra-high field 7 T dataset which offers considerable
advantage of improved quality of signal and thus allows for more
precise segmentation and structural connectivity analysis. We
believe that these findings may advance our knowledge
regarding the underpinning mechanisms of depression and its
relevance to potential treatments.
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