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Numerous studies have investigated metabolite alterations resulting from pharmacological treatment in depression models
although few quantitative studies explored metabolites exhibiting constant alterations. This study aimed to identify consistently
dysregulated metabolites across such studies using a knowledgebase-driven approach. This study was based on 157 studies that
identified an assembly of 2757 differential metabolites in the brain, blood, urine, liver, and feces samples of depression models with
pharmacological medication. The use of a vote-counting approach to identify consistently upregulated and downregulated
metabolites showed that serotonin, dopamine, norepinephrine, gamma-aminobutyric acid, anandamide, tryptophan,
hypoxanthine, and 3-methoxytyramine were upregulated in the brain, while quinolinic acid, glutamic acid, 5-hydroxyindoleacetic
acid, myo-inositol, lactic acid, and the kynurenine/tryptophan ratio were downregulated. Circulating levels of trimethylamine N-
oxide, isoleucine, leucine, tryptophan, creatine, serotonin, valine, betaine, and low-density lipoprotein were elevated. In contrast,
levels of alpha-D-glucose, lactic acid, N-acetyl glycoprotein, glutamine, beta-D-glucose, corticosterone, alanine, phenylacetylglycine,
glycine, high-density lipoprotein, arachidonic acid, myo-inositol, allantoin, and taurine were decreased. Moreover, 12 metabolites in
urine and nine metabolites in the liver were dysregulated after treatment. Pharmacological treatment also increased fecal levels of
butyric acid, acetic acid, propionic acid, and isovaleric acid. Collectively, metabolite disturbances induced by depression were
reversed by pharmacological treatment. Pharmacological medication reversed the reduction of brain neurotransmitters caused by
depression, modulated disturbance of the tryptophan-kynurenine pathway and inflammatory activation, and alleviated
abnormalities of amino acid metabolism, energy metabolism, lipid metabolism, and gut microbiota-derived metabolites.
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INTRODUCTION
Depression is a common mental illness characterized by low
mood, diminished interest, and a reduced sense of pleasure, with
an incidence of 6.4 to 10.4% [1, 2]. Depression severely reduces
the quality of life of patients and decreases their life expectancy
by ~10 years [3]. The global burden of disease due to depression
has been increasing in recent decades and depression has
become one of the leading causes of disability worldwide [4]. In
2018, the economic burden of depression in the United States
alone was US$326.2 billion [5]. Despite the significant harm
caused by depression, much uncertainty still exists about the
complete molecular mechanism of depression, making it a major
challenge to identify new antidepressants [6].
Classical antidepressants exert antidepressant properties by

modulating monoaminergic targets. A recent meta-analysis
concluded that all licensed antidepressants have a significant
therapeutic effect in adults with acute depression [7]. Extensive
research showing antidepressant properties of pharmacological
treatments other than monoaminergic antidepressants, such as
ketamine, adjunctive nutraceuticals, Traditional Chinese Medicine,
and probiotics, has progressively attracted interest [8–12].

However, the underlying therapeutic mechanisms of classical
antidepressants and other pharmacological treatments are not
fully understood [13–15].
Metabolomics has been widely used to quantify metabolites in

an organism or tissue and identify relationships between
metabolites and physiological or pathological processes [16].
Indeed, because of its ability to elucidate metabolic alterations
induced by treatments, metabolomics has become a vital tool for
drug discovery [17]. With the merit of high accuracy in detecting
the content of small molecules associated with depression (such
as neurotransmitters, amino acids, lipids, and energy metabolites),
metabolomic methods have emerged as powerful tools for
exploring molecular alterations induced by pharmacological
treatments in the brain or other tissues in animal models of
depression [18–20]. Moreover, because metabolites are easily
absorbed and can penetrate the blood–brain barrier, they are an
important source for screening potential drug leads for the
treatment of depression [21, 22].
Several issues have been raised for metabolomics studies

investigating potential molecular mechanisms of antidepressant
action. First, although extensive studies have been carried out, it
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remains difficult to detect panoramic alterations of metabolites
induced by pharmacological treatment in individual studies;
accordingly, a systematic understanding of the neurochemical
effects of these medications is still lacking. Second, the general-
izability of much-published research on this issue is problematic,
as experimental data are rather controversial due to small sample
sizes and differences in experimental design. Faced with
challenges surrounding how to systematically analyze these
massive metabolomics data and a lack of accessible quantitative
data [23, 24], few studies have explored the reliability and
reproducibility of findings for metabolites across metabolomics
studies.
Thus, the purpose of this study was to investigate metabolite

changes consistently resulting from pharmacological treatment in
depression models using a knowledgebase-driven approach. To
this end, a vote-counting method was used to identify consis-
tently upregulated and downregulated metabolites in the brain
and peripheral tissues of animal models induced by pharmaco-
logical treatment from large-scale metabolomics studies.

MATERIALS AND METHODS
Data source
The dataset used in this study was obtained from the MENDA database.
Details of the study design and procedures for data collection and
annotation are described elsewhere [25]. In brief, after screening more
than 11,000 citations from literature and metabolomics databases as of
March 2018, we collected relevant information from 464 studies that
investigated metabolite alterations associated with depression and
antidepressant treatment in human and animal models. Based on
metabolomics and magnetic resonance spectroscopy techniques, a total
of 5675 differential metabolites or metabolite ratios were identified.
As a result of the current study, we updated the MENDA database as

follows. After screening more than 18,000 citations as of 11 August 2021,
we cumulatively retrieved 2278 potentially eligible articles and then
excluded 1461 full-text studies. Excluded studies are listed in Supplemen-
tary Data 1. In total, 817 clinical and preclinical studies were included in the
MENDA database. From these studies, an assembly of 13,112 differential
metabolite entries was manually curated.

Candidate metabolite set
For further study, we selected the candidate metabolite set according to
the following steps. Only studies that aimed to identify differential
metabolites resulting from pharmacological treatment in animal models of
depression were included. Therefore, we excluded studies that (i)
compared metabolite levels between depressed and control conditions;
(ii) focused on non-pharmacological treatments, such as repetitive
transcranial magnetic stimulation, electroacupuncture, or exercise therapy;
(iii) explored metabolic changes after pharmacological treatment in a
healthy state; or (iv) investigated metabolic characteristics associated with
treatment response. Human and nonhuman primate models were also
excluded. This decision was made a priori because metabolic profiles are
clearly different between rodents, humans, and nonhuman primates [26].
We focused on rodent models because there was a large amount of data
on brain tissues provided by rodent samples, while few studies have
examined metabolomic changes in the brain tissues of human or
nonhuman primates. For analytical techniques, untargeted or targeted
metabolomics studies that used mass spectrometry or nuclear magnetic
resonance methods were included, while in vivo studies employing
magnetic resonance spectroscopy techniques were excluded. Candidate
metabolites in brain, blood, urine, liver, and feces samples were selected
for analysis, whereas other tissues were excluded due to a limited amount
of data.

Analytic strategy
In this study, we used the vote-counting method to identify metabolites
consistently upregulated or downregulated in the candidate metabolite
set. Although combining effect sizes has been the mainstream method for
integrating multiple clinical metabolomics studies [27–29], meta-analyses
cannot be performed because of the significant loss of quantitative data
(mean concentrations and standard deviation) in the evaluated animal

studies. Alternatively, the advantage of the vote-counting method is that it
avoids problems associated with a lack of statistical data. Currently, it is the
most feasible method for merging such a large number of studies because
differential metabolites were described in most studies. Moreover, vote
counting is an effective method for selecting molecules to be indepen-
dently validated by external studies, with the assumption that a reliable
differential molecule is robust enough to show significance across multiple
studies [30]. This approach has been recently implemented in other
research integrating large-scale metabolomics studies [31, 32].
In the current study, the following analyses were performed based on

the vote-counting procedure. In the primary analysis, we analyzed
metabolite alterations in brain, blood, urine, liver, and feces samples of
animal models resulting from all available pharmacological treatments.
Next, secondary analyses were performed based on tissue types and
pharmacological treatments. For the types of tissues, we analyzed
candidate metabolites in the hippocampus, prefrontal cortex, hypothala-
mus, plasma, and serum samples. For the types of pharmacological
treatments, eight licensed drugs for depression (citalopram, fluoxetine,
paroxetine, venlafaxine, amitriptyline, desipramine, imipramine, and
vortioxetine) were classified as antidepressants [7], and pharmacological
treatments other than these licensed antidepressants (various types of
compounds and Traditional Chinese Medicine) were classified as non-
antidepressants. In addition, probiotics and fecal microbiota transplanta-
tion were classified as non-antidepressant therapy because they yield
antidepressant effects by ameliorating metabolomic disturbances and
modifying the colonic ecosystem [33].

Statistical analysis
The vote-counting method is based on the hypothesis that the probability
of upregulation or downregulation of a differential metabolite follows a
binomial distribution, i.e., there is a random occurrence of significant
upregulation or downregulation for the altered metabolite in each study.
In this study, we calculated the vote-counting statistic (VCS) for each
metabolite in the vote-counting procedure. Each metabolite entry
exhibiting an upregulation or downregulation trend was scored with 1
or −1 points, respectively. Next, the VCS for each metabolite was
calculated by computing the total score of all studies, with VCS values
more than 0 indicating that the candidate metabolite was predisposed to
be upregulated across studies, and vice versa. Duplicate metabolites
curated from the same study but with different study designs (including
different types of drugs, dose groups, types of tissues, and analytical
techniques) were considered to be derived from independent studies. For
each metabolite, the one-tailed P value of the binomial test was estimated
to compare hypothesized versus obtained counts of upregulation and
downregulation trends, using the binom.test function in R version 4.0.4
(https://www.R-project.org/). A P value < 0.05 was considered statistically
significant. Metabolites with total counts of dysregulation less than four
were not introduced into the vote-counting procedures because their
minimum P values were 0.125.

RESULTS
Data sets
After data selection, we excluded 660 studies from the MENDA
database (listed in Supplementary Data 2). At the metabolite level,
we excluded 10,355 differential metabolite entries from the 13,112
metabolite entries. The reasons for these excluded studies and
metabolite entries are summarized in Supplementary Table 1.
Detailed information of the 157 studies and 2757 metabolite
entries used in the current study are presented in Supplementary
Data 3 and Supplementary Data 4, respectively. Next, metabolic
alterations in the brain, blood, urine, liver, and feces were
investigated by vote-counting procedures based on the candidate
metabolite set. The numbers of studies and metabolite entries for
each tissue are summarized in Supplementary Table 2.

Effects of pharmacological treatment on metabolite
alterations in the brain
Among 46 metabolites and one metabolite ratio that were voted in
the brain, eight and six were consistently upregulated and
downregulated, respectively (Fig. 1A). Specifically, serotonin
(VCS= 47, P < 0.001), dopamine (VCS= 41, P < 0.001),
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norepinephrine (VCS= 32, P < 0.001), gamma-aminobutyric acid
(GABA, VCS= 31, P < 0.001), anandamide (VCS= 11, P < 0.001),
hypoxanthine (VCS= 9, P= 0.002), tryptophan (VCS= 9,
P= 0.018), and 3-methoxytyramine (VCS= 5, P= 0.031) were
upregulated, while quinolinic acid (VCS=−18, P < 0.001), glutamic
acid (VCS=−14, P= 0.030), 5-hydroxyindoleacetic acid (VCS=−13,
P= 0.015), myo-inositol (VCS=−8, P= 0.004), lactic acid (VCS=−5,
P= 0.031), and the kynurenine/tryptophan ratio (VCS=−5,
P= 0.031) were downregulated (Supplementary Table 3).
We further analyzed metabolite alterations in the hippocampus

(504 metabolite entries), prefrontal cortex (164 metabolite entries),
and hypothalamus (39 metabolite entries). Of the 28 candidate
metabolites in the hippocampus, six were upregulated and three
were downregulated. Specifically, concentrations of serotonin
(VCS= 23, P < 0.001), GABA (VCS= 17, P < 0.001), norepinephrine
(VCS= 13, P < 0.001), dopamine (VCS= 12, P < 0.001), glycine
(VCS= 7, P= 0.008), and hypoxanthine (VCS= 7, P= 0.008) were
increased, whereas concentrations of glutamic acid (VCS=−9,
P= 0.047), myo-inositol (VCS=−8, P= 0.004), and lactic acid
(VCS=−5, P= 0.031) were decreased (Supplementary Table 4).
Among the eight candidate metabolites examined in the
prefrontal cortex, serotonin (VCS= 12, P < 0.001), norepinephrine
(VCS= 10, P= 0.001), GABA (VCS= 7, P= 0.020), and dopamine
(VCS= 6, P= 0.016) were upregulated (Supplementary Table 5).
Among the six candidate metabolites evaluated in the hypotha-
lamus, serotonin (VCS= 5, P= 0.031), dopamine (VCS= 5,
P= 0.031), and GABA (VCS= 5, P= 0.031) were upregulated
(Supplementary Table 6). Numbers of shared dysregulated
metabolites in the hippocampus, prefrontal cortex, and hypotha-
lamus are shown in Fig. 1B. Only serotonin, dopamine, and GABA
were shared metabolites in these three brain regions.

Effects of pharmacological treatment on metabolite
alterations in blood
The results of vote counting showed that 23 of the 63 circulating
metabolites were consistently dysregulated (Fig. 2A). Specifically,
levels of trimethylamine N-oxide (VCS= 29, P < 0.001), isoleucine
(VCS= 21, P < 0.001), leucine (VCS= 16, P < 0.001), tryptophan
(VCS= 12, P= 0.004), creatine (VCS= 11, P= 0.022), serotonin
(VCS= 10, P= 0.006), valine (VCS= 9, P= 0.006), betaine (VCS= 8,
P= 0.011), and low-density lipoprotein (LDL; VCS= 6, P= 0.016)

were upregulated, while levels of alpha-D-glucose (VCS=−25,
P < 0.001), lactic acid (VCS=−23, P < 0.001), N-acetyl glycoprotein
(VCS=−18, P < 0.001), glutamine (VCS=−15, P < 0.001), beta-D-
glucose (VCS=−11, P < 0.001), corticosterone (VCS=−11,
P < 0.001), alanine (VCS=−9, P= 0.018), phenylacetylglycine
(VCS=−9, P= 0.002), glycine (VCS=−8, P= 0.011), high-
density lipoprotein (HDL;VCS=−8, P= 0.004), arachidonic acid
(VCS=−7, P= 0.046), myo-inositol (VCS=−7, P= 0.008), allan-
toin (VCS=−5, P= 0.031), and taurine (VCS=−5, P= 0.031) were
downregulated (Supplementary Table 7).
We further analyzed metabolite alterations in plasma (344

metabolite entries) and serum samples (663 metabolite entries).
Among the 29 candidate metabolites in plasma, six were
dysregulated. Specifically, the concentration of tryptophan
(VCS= 10, P= 0.001) was increased, and concentrations of
corticosterone (VCS=−11, P < 0.001), arachidonic acid (VCS=−7,
P= 0.008), glycine (VCS=−6, P= 0.035), D-glucose (VCS=−5,
P= 0.031), and glutamine (VCS=−5, P= 0.031) were decreased
(Supplementary Table 8). Eighteen of the 43 candidate metabo-
lites in serum were dysregulated. Specifically, trimethylamine
N-oxide (VCS= 28, P < 0.001), isoleucine (VCS= 21, P < 0.001),
creatine (VCS= 13, P= 0.002), leucine (VCS= 13, P < 0.001),
pyruvic acid (VCS= 10, P= 0.001), betaine (VCS= 7, P= 0.020),
valine (VCS= 7, P= 0.008), and serotonin (VCS= 7, P= 0.008)
were upregulated, and N-acetyl glycoprotein (VCS=−22,
P < 0.001), alpha-D-glucose (VCS=−21, P < 0.001), lactic acid
(VCS=−21, P < 0.001), glutamine (VCS=−10, P= 0.001), HDL
(VCS=−8, P= 0.004), alanine (VCS=−8, P= 0.029), beta-D-
glucose (VCS=−7, P= 0.008), allantoin (VCS=−5, P= 0.031),
phenylacetylglycine (VCS=−5, P= 0.031), and taurine (VCS=−5,
P= 0.031) were downregulated (Supplementary Table 9). Num-
bers of shared dysregulated metabolites in plasma and serum are
shown in Fig. 2B, and glutamine was the only shared metabolite.

Effects of pharmacological treatment on metabolite
alterations in urine
The results of vote counting showed that 12 of the 33 candidate
metabolites in urine were dysregulated (Fig. 3A). Specifically, levels
of oxoglutaric acid (VCS= 12, P < 0.001), acetic acid (VCS= 10,
P= 0.001), creatinine (VCS= 9, P= 0.011), betaine (VCS= 8,
P= 0.004), phenylacetylglycine (VCS= 6, P= 0.016), xanthurenic

Fig. 1 Effects of pharmacological treatment on metabolite alterations in the brain of depression models. A Volcano plot for consistently
upregulated (red) and downregulated (blue) metabolites across studies. Dysregulated metabolites were identified by vote-counting
procedures with a significance threshold of one-tailed P < 0.05. The vote-counting statistic (VCS) is presented on the x-axis and the −log10
(p value) is presented on the y-axis. B Venn plot for shared dysregulated metabolites between the brain, hippocampus, prefrontal cortex, and
hypothalamus.
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acid (VCS= 6, P= 0.035), creatine (VCS= 5, P= 0.031), indoleace-
tic acid (VCS= 5, P= 0.031), and tryptophan (VCS= 5, P= 0.031)
were increased, while levels of glycine (VCS=−7, P= 0.008),
cortisol (VCS=−6, P= 0.016), and glutamine (VCS=−5,
P= 0.031) were decreased (Supplementary Table 10).

Effects of pharmacological treatment on metabolite
alterations in the liver
Of the 18 candidate metabolites that were voted in the liver, one
was consistently upregulated and eight were consistently down-
regulated (Fig. 3B). Specifically, the concentration of ornithine
(VCS= 6, P= 0.016) was increased, while concentrations of beta-D-
glucose (VCS=−8, P= 0.004), lactic acid (VCS=−8, P= 0.011),
arachidonic acid (VCS=−7, P= 0.008), alpha-D-glucose
(VCS=−6, P= 0.016), tryptophan (VCS=−6, P= 0.016), 3′-AMP
(VCS=−5, P= 0.031), creatine (VCS=−5, P= 0.031), and tyrosine
(VCS=−5, P= 0.031) were decreased (Supplementary Table 11).

Effects of pharmacological treatment on metabolite
alterations in feces
Of the five candidate metabolites in feces, four were consistently
upregulated, including butyric acid (VCS= 8, P= 0.011), acetic
acid (VCS= 7, P= 0.008), propionic acid (VCS= 7, P= 0.033), and
isovaleric acid (VCS= 5, P= 0.031) (Fig. 3C and Supplementary
Table 12).

Pharmacological treatment reversed metabolite disturbances
induced by depression
To further explore which metabolite disturbances induced by
depression can be reversed by pharmacological treatment, we
compared the current data with our previous data showing
dysregulated metabolites in the brain, blood, and urine samples of
depression models [31]. An overview of consistently dysregulated
metabolites resulting from depression and pharmacological
treatment in animal models is shown in Fig. 4.
Among the 11 dysregulated metabolites or metabolite ratios

in the brains of depression models, eight were reversed by
pharmacological treatment (Fig. 4A). Specifically, decreased

levels of serotonin, dopamine, norepinephrine, GABA, ananda-
mide, and tryptophan, as well as increased levels of myo-inositol
and the kynurenine/tryptophan ratio resulting from depression
were reversed following treatment. However, increased levels of
kynurenine and hydroxykynurenine and the decreased level of
N-acetyl-L-aspartic acid were not attenuated following
treatment.
For metabolite disturbances in blood, pharmacological treat-

ment reversed eight of the 12 dysregulated metabolites, including
decreased concentrations of serotonin, tryptophan, leucine, valine,
and trimethylamine N-oxide, as well as increased concentrations
of N-acetyl glycoprotein, corticosterone, and glutamine (Fig. 4B).
Decreased concentrations of tyrosine, proline, oleamide, and
pyruvic acid were not reversed following treatment.
Among the ten dysregulated metabolites resulting from

depression in urine, only four downregulated metabolites
(tryptophan, creatine, betaine, and oxoglutaric acid) were reversed
by pharmacological treatment (Fig. 4C). Dysregulated levels of L-
DOPA, palmitic acid, pimelic acid, citric acid, proline, and hippuric
acid were not attenuated following treatment.

Effects of antidepressants and non-antidepressants on
metabolite alterations
We further explored the commonalities and differences of
metabolic effects resulting from antidepressants and non-
antidepressants. For metabolites in the brain, a total of 344 and
555 metabolite entries resulting from antidepressants and non-
antidepressants were voted, respectively. Of the 15 candidate
metabolites of antidepressants, six were dysregulated (Supple-
mentary Table 13). For non-antidepressants, seven of the 26
candidate metabolites were dysregulated (Supplementary Table
14). These altered metabolites are summarized in Fig. 5A. Notably,
levels of dopamine, norepinephrine, and GABA were upregulated
by both antidepressants and non-antidepressants. In addition,
concentrations of tryptophan, 5-hydroxyindoleacetic acid, and
quinolinic acid were altered by antidepressants, while concentra-
tions of serotonin, anandamide, hypoxanthine, and myo-inositol
were altered by non-antidepressants.
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For metabolites in blood, a total of 289 and 718 metabolite
entries assessing antidepressants and non-antidepressants were
voted, respectively. Among 17 candidate metabolites assessing
antidepressants, five were dysregulated (Supplementary Table 15).
For non-antidepressants, 18 of the 48 candidate metabolites were
dysregulated (Supplementary Table 16). Levels of trimethylamine
N-oxide and leucine were upregulated by both antidepressants
and non-antidepressants, while lactic acid and glutamine were
downregulated (Fig. 5B). The concentration of tryptophan was
altered by antidepressants, while concentrations of isoleucine,
creatine, serotonin, valine, N-acetyl glycoprotein, myo-inositol,
glycine, HDL, alanine, phenylacetylglycine, alpha-D-glucose, beta-
D-glucose, and corticosterone were altered by non-
antidepressants.
We next investigated metabolite alterations in urine, liver, and

feces. Neither of the two candidate metabolites potentially altered
by antidepressants in urine were significantly dysregulated
(Supplementary Table 17). Moreover, no candidate metabolites
in the liver or feces were voted due to limited numbers of
metabolite entries. For non-antidepressants, six candidate meta-
bolites (oxoglutaric acid, acetic acid, betaine, phenylacetylglycine,
cortisol, and glycine) were dysregulated in urine (Fig. 5C and
Supplementary Table 18), four candidate metabolites (alpha-D-
glucose, beta-D-glucose, lactic acid, and arachidonic acid) were
decreased in the liver (Fig. 5D and Supplementary Table 19), and
two candidate metabolites (acetic acid and butyric acid) were
increased in feces (Fig. 5E and Supplementary Table 20).

DISCUSSION
Although numerous studies have assessed the effects of
pharmacological treatment on metabolite levels in depression
models, inconsistent results for dysregulation of metabolites were
reported. Here, we performed the first systematic investigation to
identify consistently dysregulated metabolites using a
knowledgebase-driven approach. The results of vote-counting
procedures showed that 13 metabolites and one metabolite ratio
in the brain, 23 metabolites in blood, 12 metabolites in urine, nine
metabolites in the liver, and four metabolites in feces were
consistently dysregulated across the evaluated large-scale studies.
These findings represent the panoramic metabolomic alterations
induced by pharmacological treatment in depression, thus
contributing to an understanding of the molecular mechanisms
underlying antidepressant effects.

Consistent with our expectations, we confirmed that the
regulatory effect of neurotransmitters is the most pronounced
feature of brain metabolite alterations caused by pharmacological
treatment. In fact, we found that these treatments reversed
decreased brain levels of monoamine neurotransmitters, GABA,
and anandamide caused by depression. For monoamine neuro-
transmitters, pharmacological treatment increased serotonin
levels and decreased levels of its main metabolite
5-hydroxyindoleacetic acid, increased concentrations of dopamine
and its metabolite 3-methoxytyramine, and upregulated norepi-
nephrine levels. These findings are consistent with the neuro-
chemical mechanism of classic antidepressants [34]. We also
found that pharmacological medication promoted the synthesis of
GABA and reduced the content of its precursor glutamic acid.
However, human studies investigating alterations of glutamatergic
metabolite levels after treatment reported inconsistent results.
Previous magnetic resonance spectroscopy studies reported that
both decreased glutamic acid levels and increased GABA levels in
the cingulate were associated with reduced depressive symptoms
in patients with major depressive disorder (MDD) following
citalopram treatment [35, 36]. Another study found that cortical
concentrations of these metabolites were not altered after
escitalopram treatment [37]. We also found reduced glutamine
levels in blood and urine following treatment, but discordant
results were reported in patients with MDD [38, 39]. Therefore,
further studies with larger sample sizes are needed to investigate
alterations of glutamatergic metabolites induced by antidepres-
sant treatment. We also found that pharmacological treatment
increased anandamide levels in the brain. Consistent with our
results, a preclinical study showed that anandamide exerted
antidepressant effects by antagonizing the cannabinoid CB1
receptor [40].
Our results show that pharmacological treatment reduced

corticosterone levels in blood and cortisol levels in urine. In
rodents, cortisol and corticosterone are endogenous glucocorti-
coids induced by stressful conditions through activation of the
hypothalamic-pituitary-adrenal (HPA) axis [41], disturbance of
which have been implicated in the pathophysiology of depression
[42]. In line with our results, preclinical and clinical evidence show
that modulating the function of the HPA axis is a potential
treatment approach for depression [43]. Therefore, the results of
this study support the notion that pharmacological medications
exert antidepressant effects by alleviating activation of the
HPA axis.
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In this study, we found that pharmacological treatment
increased central and circulating levels of tryptophan, while brain
levels of quinolinic acid, kynurenine, and the kynurenine/
tryptophan ratio showed a decreasing trend or statistically
significant decrease. Tryptophan and its two metabolites (indo-
leacetic acid and xanthurenic acid) were also upregulated in urine,
suggesting that tryptophan levels were increased throughout the
body after treatment. In line with this finding, recent meta-
analyses suggested that disturbance of the tryptophan-
kynurenine pathway is an important signature of patients with
MDD [27, 44]. Quinolinic acid, a brain-endogenous metabolite
synthesized from the tryptophan-kynurenine pathway by micro-
glia, can activate the N-methyl-D-aspartate receptor to exert
neurotoxic and oxidative actions [45]. Existing evidence suggests
that immune activation promotes the transformation of trypto-
phan to kynurenine in the circulation, ultimately leading to the
accumulation of quinolinic acid in the brain [46, 47]. Our current
results show that pharmacological treatment reversed this
process. Consistent with these findings, we found evidence that
peripheral inflammation was alleviated following treatment. A
large-scale meta-analysis identified N-acetyl glycoprotein as one of
the inflammatory markers in patients with depression [48]. Herein,
we found that pharmacological treatment reversed the elevation
of N-acetyl glycoprotein levels in the blood of depression models.
In addition, we found that pharmacological treatment reversed
the elevation of myo-inositol in the brain, whereby it is regarded
as a glial cell marker [49]. An in vivo study showed that the forced
swimming test caused an elevation of myo-inositol in the

prefrontal cortex of rats that could be counteracted by adminis-
tration of the tricyclic antidepressant desipramine [50]. Taken
together, our results suggest that pharmacological treatment may
exert antidepressant effects by modulating disturbances of the
tryptophan-kynurenine pathway and alleviating inflammatory
activation.
Another important finding was that pharmacological treatment

modulated microbiota-derived metabolites. We found that the
levels of four short-chain fatty acids (SCFAs), including acetic acid,
butyric acid, isovaleric acid, and propionic acid, were increased in
feces and urine following treatment. SCFAs are mainly derived
from dietary fiber and maintain the function of the innate gut
barrier [51]. Preclinical evidence shows that supplementation with
an SCFA mixture could counteract the depressive behavior caused
by chronic stress [52]. Clinical evidence also demonstrated that
fecal levels of SCFAs were negatively correlated with depression
scale scores [53]. Therefore, pharmacological treatment may exert
antidepressant effects by modulating SCFA-producing bacteria.
We also found that blood and urine levels of betaine, which is
derived from dietary choline, were increased following treatment
[54]. Interestingly, a recent study showed that betaine supple-
mentation in mice could lead to stress resilience accompanied by
alleviated elevation of fecal SCFAs and release of circulating
interleukin 6 [55]. Trimethylamine N-oxide is a gut-microbe-
derived metabolite produced from dietary choline and carnitine
[56]. In the current study, we found that pharmacological
treatment alleviated the reduction of trimethylamine N-oxide in
the blood of depression models, suggesting that these treatments
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could improve nutritional status and modulate gut microbiota.
Phenylacetylglycine, a metabolite transformed from dietary
phenylalanine that acts on adrenergic receptors, has been
implicated in platelet hyperresponsiveness [57]. Interestingly,
previous studies demonstrated that stress could lead to a
prothrombotic state, which could be attenuated by antidepres-
sants [58, 59]. We found that concentrations of phenylacetylgly-
cine were decreased following treatment, suggesting that these
treatments may also affect phenylacetylglycine synthesis to
alleviate prothrombotic states by modulating gut microbiota.
The results of vote counting suggest that pharmacological

treatment improved abnormalities of amino acid metabolism in
animal models of depression. Branched-chain amino acids,
including leucine, isoleucine, and valine, play important roles in
promoting protein synthesis [60]. We found that pharmacological
treatment elevated blood levels of these three branched-chain
amino acids in this study, consistent with our previous finding that
circulating levels of leucine were decreased in both patients with
MDD and depression models, implicating a chronic catabolic state
in depression [27, 31]. In addition, we found that ornithine was the
only upregulated metabolite in the liver. Ornithine is synthesized
as an intermediate metabolite in the urea cycle, which disposes
excess nitrogen by converting ammonia to urea [61]. Collectively,
this evidence suggests that pharmacological treatment could
promote protein synthesis and improve disturbances of nitrogen
metabolism.
We found that pharmacological medications modulated energy

metabolism in animal models of depression. The results of vote
counting showed that pharmacological treatment reduced blood
glucose levels and alleviated the accumulation of lactic acid in the
brain and periphery. One possible reason for this observation is
that stress conditions in animal models promoted insulin
resistance and mobilized glucose [62], which were reversed by
pharmacological treatment. Moreover, circulating levels of two
energy metabolites, oxoglutaric acid, and creatine, were elevated
after treatment. Oxoglutaric acid, also known as alpha-ketogluta-
rate, is an intermediate in the citric acid cycle [63]. Creatine is
synthesized in the liver and transported throughout the body to
facilitate the recycling of adenosine triphosphate, and creatine
supplementation exerted antidepressant effects in mice [64, 65].
Therefore, these results implicate improvements in energy
dyshomeostasis in the molecular mechanism of pharmacological
treatments of depression.
Our findings also suggest that pharmacological medication

improved peripheral lipid abnormalities in depression models.
Following treatment, LDL levels were elevated and HDL levels
were reduced in blood. A previous study demonstrated that
antidepressant therapy decreased blood LDL levels without
affecting HDL levels [66], while another study found that patients
with MDD presenting with and without metabolic syndrome
showed different trends for these metabolic parameters after
antidepressant treatment [67]. A previous study with 2461
participants also showed that patients with different MDD
subtypes had distinct blood lipid profiles [68]. Therefore, more
studies are still needed to explore baseline levels and post-
treatment changes in LDL and HDL cholesterols in the context of
depression. We also found that levels of arachidonic acid, an
essential omega-6 fatty acid, were decreased in the blood and
liver. Clinical studies previously found that the reduction of
arachidonic acid in blood was associated with antidepressant
treatment response [69]. Moreover, because arachidonic acid is a
precursor of pro-inflammatory eicosanoids, its reduction suggests
abrogation of the inflammatory response in depression [70].
Finally, the present study compared metabolomic changes

associated with different pharmacological treatments in depres-
sion models. The results of vote-counting procedures showed that
both antidepressants and non-antidepressants modulated levels
of monoamine neurotransmitters and GABA in the brain. However,

the regulatory effect of antidepressants on anandamide was
unclear. Moreover, we found that antidepressants increased
central and peripheral levels of tryptophan, while non-
antidepressants did not show similar effects. Notably, we found
that most of the dysregulated metabolites in the blood resulting
from antidepressants were also altered by non-antidepressants,
suggesting a significant overlap in the metabolic changes elicited
by antidepressants and non-antidepressants, although the latter
caused more diverse molecular changes. Despite these findings,
more studies are needed to further verify our results.

LIMITATIONS
There are some limitations to this study. First, we could not
identify dysregulated metabolites other than the candidate
metabolites due to the shortcomings of the vote-counting
method. Second, although more comprehensive statistical results
could be provided by merging raw data or combining mean
concentrations of the candidate metabolites, this remains a
difficult task to complete. In addition, it is difficult to compare
metabolomic changes brought about by different types of
pharmacological treatments, such as fluoxetine and venlafaxine,
due to the limited number of metabolite entries.

CONCLUSIONS
We present a systematic characterization of metabolomic altera-
tions resulting from pharmacological treatment in depression
models, which contributes to the understanding of the molecular
mechanism of antidepressant effects. The results of vote-counting
procedures suggested that pharmacological medications reversed
the reduction of brain neurotransmitter levels caused by depres-
sion, modulated disturbance of the tryptophan-kynurenine path-
way and inflammatory activation, and alleviated abnormalities of
amino acid, energy, and lipid metabolism. Pharmacological
treatment reversed metabolite disturbances induced by depres-
sion, however further studies with more metabolite entries are
needed to verify our results.
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