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Allele-specific analysis reveals exon- and cell-type-specific
regulatory effects of Alzheimer’s disease-associated genetic
variants
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Elucidating regulatory effects of Alzheimer’s disease (AD)-associated genetic variants is critical for unraveling their causal pathways
and understanding the pathology. However, their cell-type-specific regulatory mechanisms in the brain remain largely unclear.
Here, we conducted an analysis of allele-specific expression quantitative trait loci (aseQTLs) for 33 AD-associated variants in four
brain regions and seven cell types using ~3000 bulk RNA-seq samples and >0.25 million single nuclei. We first develop a flexible
hierarchical Poisson mixed model (HPMM) and demonstrate its superior statistical power to a beta-binomial model achieved by
unifying samples in both allelic and genotype-level expression data. Using the HPMM, we identified 24 (~73%) aseQTLs in at least
one brain region, including three new eQTLs associated with CA12, CHRNE, and CASS4. Notably, the APOE ε4 variant reduces APOE
expression across all regions, even in AD-unaffected controls. Our results reveal region-dependent and exon-specific effects of
multiple aseQTLs, such as rs2093760 with CR1, rs7982 with CLU, and rs3865444 with CD33. In an attempt to pinpoint the cell types
responsible for the observed tissue-level aseQTLs using the snRNA-seq data, we detected many aseQTLs in microglia or monocytes
associated with immune-related genes, including HLA-DQB1, HLA-DQA2, CD33, FCER1G, MS4A6A, SPI1, and BIN1, highlighting the
regulatory role of AD-associated variants in the immune response. These findings provide further insights into potential causal
pathways and cell types mediating the effects of the AD-associated variants.
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INTRODUCTION
Late-onset sporadic Alzheimer’s disease (AD) is the most prevalent
progressive neurodegenerative disorder among all dementia
cases affecting a large proportion of the elderly population [1].
Late-onset AD (LOAD) etiology is not clearly understood, posing
substantive challenges for developing effective intervention and
treatment procedures. With the technological breakthrough of
next-generation sequencing, large-scale genome-wide association
studies (GWAS) over the past decade have hitherto detected >30
genetic loci associated with LOAD [2–9], highlighting the
involvement of lipid metabolism and the immune system in the
pathogenesis of LOAD. However, except for a few exonic variants
in, e.g., APOE and TREM2, most of these identified signals are in
non-coding regions and thus present difficulties in elucidating
their causal pathways in neuropathology and pinpointing the
genes, cell types, and brain regions mediating their associations
with LOAD.
A potential biological consequence of a non-coding genetic

variant is local regulation of gene expression. These regulatory
variants are called cis-acting expression quantitative trait loci
(eQTLs). The cis-eQTLs have been extensively investigated in
multiple tissues and regions across the brain [10–13], substantially
improving our understanding of the genetic role of AD-associated
variants in local gene regulation. Nevertheless, the statistical
power of most transcriptomic studies in the brain is undermined

by limited sample sizes and substantial inter-subject noises,
including RNA degradation in the post-mortem tissues and
heterogeneity of cell-type proportions [11]. More importantly,
the brain consists of neural cell types with different morphology. It
is largely unclear which cell types mediate the effects of the eQTLs
detected at the tissue level. To date, most studies of cell-type-
specific eQTLs related to AD have been performed by using an
interaction model with deconvolved cell type proportion [11, 14],
of which the power and accuracy could be substantially
compromised. Fortunately, recent advances in high-throughput
single-cell RNA-seq technologies dramatically facilitate the
exploration of regulatory events at the single-cell level.
To discover novel eQTLs across more brain regions and further

explore their cell-type-specific cis-regulatory effects, in this work,
we focused on interrogating single nucleotide polymorphisms
(SNPs) identified in GWAS of LOAD and conducting an allele-
specific eQTL (aseQTL) analysis in four regions in the cerebrum
using 3000+ tissue and cell-sorting bulk RNA-seq samples and
>0.25 million neural cells from single-nucleus RNA-seq (snRNA-
seq) data. We define aseQTLs as genetic variants associated with
allelic expression of a local gene. The allelic expression can be
measured at a single exonic SNP or a haplotype, and we focused
on the SNP-level allelic expression (i.e., SNP-level aseQTLs) in this
study. Compared with genotype-based eQTL analysis, aseQTL
analysis considerably boosts the statistical power. Allele-specific
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analysis exploits the imbalance between allelic counts within each
of the heterozygous subjects. Because allelic imbalance is
insusceptible to inter-subject variation, such as environmental
exposures, RNA degradation, and technical noise introduced in
experiments, this strategy markedly improves the statistical power
and the accuracy of the estimated eQTL effects.
A handful of statistical models have been proposed to leverage

allelic imbalance or to detect aseQTLs in bulk RNA-seq data [15–
21]. We classify these methods into two major categories. The
methods in the first category model the allelic imbalance within
each of the heterozygous samples using, e.g., a binomial model
[15]. More recent advances in this direction, including a beta-
binomial model, a Poisson-Gamma model [20], a logistic mixed-
effects model [17], and a binomial generalized linear mixed model
[18], further account for overdispersion arising from biological and
technical variations. Despite being flexible as these models can be
fitted using existing standard statistical tools, they take advantage
of only heterozygous samples. The methods in the second
category [16, 19] build a dedicated joint likelihood to incorporate
the contributions from both allele-specific and genotype-based
information. Despite being able to include homozygous samples
to improve the statistical power, the second category is less
flexible for incorporating interaction or non-linear terms.
Here, we propose a flexible and statistically powerful method

based on a hierarchical Poisson mixed model (HPMM) for
detecting aseQTLs. The HPMM incorporates both allelic and
genotype-level expression and prioritizes the heterozygous
samples to boost the statistical power. Our simulation study
demonstrates that combining both homozygous and heterozy-
gous samples using the HPMM improves the statistical power
compared to a beta-binomial model. Furthermore, it is straightfor-
ward to implement using existing statistical tools like the lme4 R
package. This is achieved by introducing hierarchical random
effects and a coding strategy for genotypes so that allelic counts
of a heterozygous sample are remodeled as paired samples. In the
snRNA-seq data, unique molecular identifiers (UMIs) are often
adopted to mitigate a source of bias introduced in the library
amplification step during the sample preparation [22]. Such single-
cell data, albeit a more accurate quantification of mRNA
molecules, introduce another layer in quantifying the allele-
specific expression (ASE). We then further extended this frame-
work of HPMM to accommodate UMI-based snRNA-seq data.
By leveraging the HPMM, we performed a comprehensive

aseQTL analysis to investigate the regulatory effects of 33 AD-
associated SNPs on the expression of local genes. We examined
and compared the aseQTL effects across the prefrontal cortex
(PFC), the temporal cortex (TC), the posterior cingulate cortex
(PCC), and the head of caudate nucleus (HCN) by using bulk RNA-
seq data. The cross-region comparison is of interest because the
early stage of LOAD involves the hippocampus and entorhinal
cortex, and the degeneration spreads to other brain regions in a
later stage, suggesting that the heterogeneity across brain regions
may partly explain the pathogenesis of LOAD. To explore the cell-
type-specific regulatory mechanisms, we conducted eQTL and
aseQTL analyses using snRNA-seq data comprising 240,000+ cells
from the PFC. We investigated major neural cell types, including
excitatory neurons, inhibitory neurons, astrocytes, oligodendro-
cytes, and oligodendrocyte progenitor cells (OPCs). To our
knowledge, this is the first analysis of aseQTLs for AD at the
single-cell level. Because many AD-associated SNPs are located in
or near genes specifically expressed in microglia or monocytes
(e.g., TREM2 and CD33), we further evaluated the regulatory effects
in these two cell types using both cell-sorting bulk RNA-seq and
snRNA-seq data. Our results reveal that many AD-associated SNPs
are tissue-level aseQTLs in the brain and show exon-specific
regulatory effects. Some of these effects are mediated by specific
neural or immune cells.

RESULTS
Many AD-associated loci are aseQTLs in multiple regions
across the cerebrum
We specifically focused on 33 independent (except for the APOE
ε4 and APOE ε2 variants encoded by the minor alleles of rs429358
and rs7412, respectively) AD-associated common SNPs (defined as
a minor allele frequency (MAF) > 5%) in the European population
reported or replicated in large-scale GWAS and meta-analyses
[2–9] (Fig. 1a). Specifically, among the 31 SNPs outside the APOE
region, 23 SNPs were selected from the lead SNPs reported in [5],
one of the latest large-scale GWAS of AD. We further included
eight additional variants that were reported as lead SNPs in
[7, 8, 23] and were outside the regions of the SNPs selected from
[5] (See more details in Table S9). For each of these SNPs, we
examined its association with the ASE of proximal genes whose
transcription starting site (TSS) is located within a window of
±500k base pairs (bp). We measured SNP-level ASE through exonic
SNPs within these local genes across the four brain regions and
seven cell types. The pipeline is summarized in Fig. 1b. In the RNA-
seq data, we first quantified the ASE based on reads overlapping a
heterozygous exonic SNP. In the snRNA-seq data, mRNA
molecules with a unique UMI were instead used for the
quantification (See Methods). We used WASP [16] to remove
reads with potential mapping bias. The exonic SNPs are not
necessarily in high linkage disequilibrium (LD) with the AD-
associated SNPs, but their haplotype information is available or
can be estimated from, e.g., a phasing procedure during
imputation. We included only high-quality genotypes to minimize
haplotype phasing errors. Using this haplotype information, we
employed these exonic SNPs as a proxy for the gene to quantify
the ASE associated with each allele of the AD-associated SNP. This
SNP-level ASE can only be measured for samples with double-
heterozygous genotypes at the GWAS locus and the exonic locus.
Our proposed HPMM and coding strategy (See Methods, Fig. S4)
build a unified framework to further allow incorporation of
subjects that are not double-heterozygous, which improves the
statistical power, particularly in situations where the number of
double-heterozygous subjects is low. We excluded exonic loci not,
or barely overlapping RNA-seq reads (a mean raw count <2) from
the analysis of that tissue or cell type because of their low
expression and thus the lack of statistical power.
To compare the regulatory effects across different areas in the

cerebrum, we performed an aseQTL analysis using four bulk RNA-
seq data sets comprising ~2500 samples in the PFC, PCC, and HCN
from ROSMAP [24, 25] and in the TC from the MayoRNASeq
Project [26] (Fig. 1b). About 51% of the subjects in ROSMAP had
samples in all three areas (Fig. S6). The PCC and HCN have not
been investigated in the previous studies of cis-eQTLs in the brain
[12, 13]. We interrogated 2432 haplotypes between the AD-
associated SNPs and exonic SNPs within the ±500k bp window.
We detected 367 significant (false discovery rate (FDR) adjusted
p < 0.05) associations (A complete list of these summary statistics
is provided in Table S1). These associations involve 24 (72.7%)
independent AD GWAS loci in 173 haplotypes, showing differ-
ential ASE of 87 genes in at least one of the brain regions (Fig. 1c).
While most of these associations showed consistent effects across
the four brain regions, some exhibited a region-specific pattern
(Fig. 1c). For example, as measured at multiple coding variants,
rs113260531-A was associated with reduced expression of RABEP1
in the PFC and TC but with elevated expression in the other
regions (Fig. 1c). rs7982 (chr8:27462481), in almost complete LD
with the AD GWAS locus rs4236673, was significantly (p= 1E-50)
associated with the ASE of CLU only in the TC, but not even
nominally significant in the other regions (Fig. 1c, Table S1). In
addition, rs2093760 and rs442495 were strong aseQTLs of CR1 and
ADAM10 in the TC, respectively, while the expression of both
genes was hardly detectable in the other regions. These
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observations suggest that the regulatory effects of certain AD-
associated SNPs are region-dependent.
We showed in the simulation study (Fig. S7) that, by combining

both allelic and genotype-level expression, the proposed HPMM is
statistically more powerful than the beta-binomial model. The

advantage of the HPMM is evident in some of these findings. For
example, the association between rs113260531 and ZNF232
became significant after combining evidence primarily from the
genotype-based association, although the evidence for the allelic
imbalance was equivocal due to the small number of double-
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heterozygous samples (Fig. 1d). This demonstrates the advantage
of incorporating subjects that are not double-heterozygous,
particularly when one SNP has a low MAF. Similarly, the
significance of the association between rs6733839 and BIN1 was
achieved by combining the weak evidence from both genotype-
level and allelic expression (Fig. 1e).

Analysis of aseQTLs reveals exon-specific associations in CD33
and APOE
The SNP-level ASE facilitates the exploration of exon-specific
aseQTLs compared to haplotype-level ASE, which aggregates
reads across all heterozygous loci within a gene. Opposite effects
or weaker significance observed at exonic SNPs in different exons
within the same gene might suggest that the identified aseQTLs
are splicing variants or associated with differential transcript
expression. Weaker significance at some exonic variants might
also be due to lower exon expression or fewer double-
heterozygous subjects. Among the significant associations, we
observed exon-specific effects at two exonic loci (chr19:51728477
and chr19:51728641) in the second exon of CD33 (FDR p < 0.05),
and the effects observed in the other exons were not significant
(Table S1). Because CD33 is predominantly expressed in microglia
among the neural cells [27, 28], this region-specific result supports
the previous finding of rs3865444 or its haplotype as a splicing
variant of exon 2 of CD33 in microglia [29].
Additionally, we observed exon-dependent associations in, e.g.,

APOE, CLU, and PILRB. Allelic associations in these genes exhibit
opposite effects at SNPs located in different exons (Fig. 1c).
Further scrutiny of these opposite effects reveals that these exon-
dependent associations result from the fact that the AD GWAS
SNPs are in high LD with multiple exonic variants that showed
opposite effects on different transcripts (Table S1). For example,
we observed that the APOE ε4 allele (rs429358-C), the leading
genetic risk factor, was associated with elevated expression of
exon 2 measured at rs440446 (Fig. 2a), but with reduced
expression of exon 4 of APOE (Fig. 2b). These effects were
consistent across multiple regions in both homozygous and
double-heterozygous subjects (Fig. 2a, b). A further investigation
reveals that the APOE ε4 variant is in mild LD with rs440446, which
is located in another transcript (ENST00000434152) of APOE (Fig.
2c). The expression of ENST00000434152 is much lower than that
of the major transcript (ENST00000252486) (Fig. 2a, b), probably
due to its premature termination (Fig. 2c), and ENST00000434152
does not lead to a truncated ApoE protein [30]. As
ENST00000252486 accounts for the vast majority of the APOE
expression, the imbalanced ASE indicates that the haplotype
containing the APOE ε4 allele has a repressive effect on the ApoE
ε4 isoform. We then attempted to elucidate whether the
association between the APOE ε4 allele and the decreased APOE
expression was mediated by a higher frequency of AD patients in
the APOE ε4 carriers. We carried out an allelic analysis using the
healthy controls alone in the PFC, PCC, and HCN (The cohort in the
TC has only a small number of control subjects and thus was not
investigated). We found that the significant associations were

preserved in the control subjects, suggesting that the regulatory
effects of the APOE ε4 allele were not mediated through the
diagnosis of AD.

Interpretation of the identified allelic associations
As shown in the example of APOE, the identified aseQTLs can be
mediated by their high LD with the exonic SNPs, which might be
the driving variant per se. Therefore, to further explore the
biological interpretation, we divided these significant associations
into three categories based on the LD between the SNPs and
whether the exonic SNP per se was associated with the ASE (Fig.
3a). This strategy attempted to evaluate whether the detected
allelic imbalance was driven by the AD-associated SNP or the
exonic proxy SNP. The first category includes the situation in
which the p value of the exonic SNP is less significant than that of
the AD-associated SNP for the association with the ASE (Fig. 3a,
Top). We found 53 associations involving 19 genes in this category
(Table S1, Fig. 3b). These associations are likely not mediated by
the exonic SNP because of its less significant p value. The allelic
imbalance arises from either the regulatory effects of the GWAS
SNP or the effect of another exonic variant in high LD with the
GWAS SNP. A notable example is those associations between
rs2093760 and CR1 in the TC. The AD-associated SNP rs2093760
was significantly associated with the ASE of multiple exons of CR1,
but almost all exonic variants were not or were weakly associated
with the ASE. The only exception is the missense variant
rs2296160, which was in nearly complete LD
(r= 0.995) with rs2093760 and very strongly (p= 8.95E-16)
associated with the ASE (Table S1, Fig. 3c). This suggests that
the missense variant rs2296160 likely mediates the associations
between rs2093760 and the ASE of CR1. This situation is described
in the second category, in which the p value of the GWAS SNP is
less significant than that of the exonic SNP, but the two SNPs are
in high LD (defined by |r | >0.8) (Fig. 3a, Middle). We found 17
other associations in this category, including rs4236673 with CLU,
rs4575098 with ADAMTS4, rs4575098 with B4GALT3, rs59735493
with PRSS36, rs3865444 with CD33, and rs442495 with ADAM10
(Table S1). These AD GWAS SNPs were in almost complete LD with
the exonic SNPs used for measuring the ASE. Hence, the effect can
be driven by the disease-associated SNP, an exonic SNP in high LD
with it, or a haplotype harboring alleles of these two SNPs. It is not
straightforward to distinguish the causal variant without combin-
ing additional annotation information or more samples.
We classify the remaining significant aseQTLs as the third

category, mainly including the situation in which the disease-
associated SNP was not in strong LD with the exonic SNP, and the
association between the ASE and the exonic SNP was much more
significant than that of the AD-associated SNP (Fig. 3a, Bottom). In
this category, the allelic imbalance was probably driven by the
exonic SNP, and the observed association between the ASE and
the AD-associated SNP often resulted from a large correlation
between the alleles of the two SNPs in the double-heterozygous
subjects. As shown in Fig. 3d, although two SNPs are in very mild
LD, their conditional correlation in the double-heterozygous

Fig. 1 An aseQTL analysis of AD-associated loci in multiple brain regions and cell types. a A list of AD-associated SNPs investigated in this
study. Pos: the genomic position of the SNP (hg19). Gene: the annotated nearest gene. Coding: the effect allele (coded as 1) corresponding to
the effect sizes reported in this study. The UTR and missense variants are highlighted in orange and purple, respectively. b An overview of the
aseQTL analysis using tissue-level RNA-seq, cell-sorting RNA-seq, and snRNA-seq data sets. The outline includes information about the brain
regions, cell types, sample sizes, data processing, and major results. The numbers are the actual sample sizes after removing subjects with
missing or inconsistent genotypes. HPMM: the hierarchical Poisson mixed model. c Significant aseQTLs and their associated genes identified
in the PFC, PCC, HCN, and TC. The genomic position of the exonic variant used for measuring the ASE is shown with the rsID of the AD-
associated SNP. log(FC) corresponds to the effect allele given in (a). d An example showing that the association was mainly determined from
the homozygous subjects when the number of double-heterozygous subjects is small. The boxplots summarize the genotype-level
expression, and the ASE of the double-heterozygous samples (yellow points) are shown in the scatter plots below. The dashed line is a smooth
curve fitted using linear regression. e An example of combining evidence from both the ASE and the genotype-level expression to improve
the power for detecting the association between the AD-associated SNP rs6733839 and BIN1.
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samples can be much larger, particularly in those significant
associations. Compared to a general eQTL analysis, this inflated
allelic correlation among the double-heterozygous subjects plays
a prominent role in confounding the observed association

between the ASE and the disease-associated SNP. Moreover, we
observed an even more pronounced difference between the
allelic correlation in the double-heterozygous subjects and the
genotype correlation in the whole sample when the SNPs have a

Fig. 2 The APOE ε4 variant rs429358-C shows exon-dependent association with the ASE of APOE. a rs429358-C is associated with increased
expression of exon 2 measured at the exonic variant rs440446. b rs429358-C is associated with increased expression of exon 4 measured at
itself. In both (a) and (b), the evidence from the genotype-level expression and the ASE is consistent. c The exon-dependent associations are
due to the LD between rs429358 and rs440446, which had opposite effects on different APOE transcripts. The genomic coordinates are based
on the human assembly hg19.
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low MAF (Fig. S5) or the sample size is small (See Methods for
more details). Therefore, LD has a prominent influence on
detecting SNP-level aseQTLs, and it should be cautious about
interpreting the associations in this category.
To further assess these significant associations, we compared

the identified aseQTLs with gene-level eQTLs reported from a
previous meta-analysis using the same cohorts in the PFC and TC
[12] and previous eQTL analyses in ROSMAP [31], GTEx (v8) [13]
(PFC, hippocampus, and anterior cingulate cortex (ACC)), Com-
monMind [32], and BrainSeq [33]. Among the aseQTLs in the first
and second categories, the associations with NDUFS2, ADAM10,
CR1, APH1B, POLR2E, ZNF232, PILRA, STAG3, and PRSS36 are
reported in at least one of these studies. The association between
rs2093760 and CR1 was identified only in the TC in [12] and in the
hippocampus in GTEx, corroborating our finding of its region-
specific effects. However, our detected aseQTLs associated with
CLU, BIN1, CD33, PTK2B, B4GALT3, CASTOR3, and ADAMTS4 in the
brain are not reported in these gene-level results, probably
because exonic SNPs disrupting the exon-level or transcript-level
expression might not be detected from the analysis of the gene-
level expression. Therefore, we then compared the summary

statistics of splicing QTLs (sQTLs), transcript-level and exon-level
eQTL analyses in GTEx [13], CommonMind [32], BrainSeq [33], and
ROSMAP [34]. Indeed, we found that many of these aseQTLs are
exon-level or transcript-level eQTLs. The exonic SNPs used to
measure the ASE with CLU, PTK2B, BIN1, and CASTOR3 are in high
LD with the sQTLs in the PFC reported in [34]. Notably, for CLU, our
aseQTL analysis captured two sQTLs, rs9331888, reported in
[34, 35] and rs7982, reported being associated with intron
retention in exon 5 [36]. The AD GWAS SNP rs4236673 is in
almost complete LD with rs7982 and mild LD with rs9331888
(Table S1). In addition to these consistent findings, the associa-
tions between rs117618017 and CA12 in the HCN, rs113260531
and CHRNE in the PFC and HCN, rs6014724 and CASS4 in the HCN,
are novel.

No evidence of interaction between aseQTLs and age, sex, or
AD
Because age is one of the major risk factors of LOAD and has been
reported to regulate the expression of microglial genes related to
cytoskeleton, immune response, and cell adhesion [37], we then
investigated whether these aseQTL effects were different across

Fig. 3 Interpretation of the identified aseQTLs in the PFC, PCC, HCN, and TC. a Classification of the identified associations into three
categories based on the LD between the AD-associated SNP and the exonic SNP and whether the AD-associated SNP is more significantly
associated with the ASE than the exonic SNP. b Comparison of the p-values between the AD-associated SNP (y-axis) and the exonic variant (x-
axis) for the significant aseQTLs in the first category. The color of the points indicates the expression level measured at the exonic variant. The
labels include the AD-associated SNP and its associated gene. For better visualization, we omit one significant association between rs4236673
and CLU in the TC with a p value < 1E-50. c Exon-dependent aseQTLs identified in CR1. Green: the AD-associated SNP. Blue: the significant
association classified as the second category. Red: significant associations classified as the first category. Black: Nonsignificant associations. The
genomic coordinates are based on the human assembly hg19. d Comparison of the genotype correlation between the AD-associated and the
exonic SNPs in the whole sample (x-axis) and the allelic correlation between the two SNPs observed in double-heterozygous samples (y-axis).
The difference between these two correlations is more noticeable in the identified significant aseQTLs.
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age groups in the four brain regions. We transformed age into a
dichotomized variable (age at death ≤85 or >85). We carried out
an interaction analysis by adding the dichotomized age variable
and its interaction term with the genotype to the HPMM. We
restricted our interaction analysis to the 367 significant associa-
tions identified in the region-specific aseQTL analysis. We tested
the null hypotheses of no interaction effect on the ASE between
an aseQTL and age; that is, the impact of the aseQTL on the ASE is
homogeneous across the age groups. We did not find significant
interaction effects of age after adjusting for multiple testing (FDR
p < 0.05) (Table S2). In addition, we found no interaction effects
between the detected aseQTLs and sex or the diagnosis of LOAD.

Cell-type-specific analysis reveals that rs2093760 is an eQTL of
CR1 in oligodendrocytes
Given the evidence that many AD GWAS SNPs were aseQTLs in the
cortex, we next attempted to pinpoint the neural cell types that
mediate such associations. We collected snRNA-seq data in the
frontal cortex comprising >240,000 cells from 71 subjects from
two cohorts in ROSMAP [27, 38] (Fig. 1b). Using the cell type
annotation provided in [27, 38], we classified these cells into six
major neural cell types: excitatory neurons, inhibitory neurons,
astrocytes, microglia, oligodendrocytes, and OPCs. Unlike the bulk
RNA-seq data, UMIs are utilized in these snRNA-seq data sets to
mitigate the amplification bias. Since multiple reads tagging with
the same UMI originate from the same mRNA molecule, the UMI-
based snRNA-seq data introduce another layer of complication in
the allele-specific analysis. We, therefore, called the ASE at the UMI
level by collapsing all reads that share a similar UMI barcode (see

the Methods section for more details). We carried out a cell-type-
specific aseQTL analysis for the AD-associated SNPs in each cell
type using the UMI-level ASE. We quantified the ASE at exonic
SNPs in local genes whose TSS is located within a window of
±500k bp surrounding the AD-associated SNPs.
We tested 499 associations between 28 AD-associated SNPs and

118 local genes that showed at least moderate expression (mean
count>2), among which 327 tests (65.5%) were in the two types of
neurons (Fig. 4a). Only four of these tests were in microglia
because of the tiny proportion of microglia in the entire library of
the snRNA-seq data. Compared to the bulk RNA-seq data, we
observed substantially attenuated expression in the 5’-end, which
is expected because of the bias of read coverage toward the 3’-
end in the 3’-sequencing snRNA-seq data. Consequently, the reads
in the other genomic regions are often not sufficiently abundant
for measuring the ASE. Therefore, most exonic variants under
evaluation were located in the 3’ untranslated region (UTR) (Fig.
4b). We identified 11 significant associations (FDR p < 0.05)
between two AD-associated SNPs and the ASE of three genes,
including PILRB, TRIM4, and MTCH2 (Table S3). All these associa-
tions were detected in the region-specific analysis (Fig. 1c).
Specifically, the AD GWAS SNP rs1859788 was associated with the
allelic imbalance of PILRB in excitatory and inhibitory neurons,
astrocytes, and oligodendrocytes. The trend of the genotype-level
expression in the homozygous subjects is concordant with the
imbalance of the ASE measured at two exonic variants
(chr7:99965285 and chr7:99955364) in PILRB (Fig. 4c, d). These
associations belong to the third category described above.
rs1859788 was in complete LD with the two exonic SNPs only in

Fig. 4 Cell-type-specific aseQTL and cis-eQTL analysis using snRNA-seq data in the frontal cortex. a Percentage of the six neural cell types
among the examined associations. b The location-based annotation (3’ UTR, 5’ UTR, or coding regions) of the exonic SNPs used in the aseQTL
analysis with their percentage. c and d rs1859788 is a significant aseQTL of PILRBmeasured at two exonic loci in multiple neural cell types. The
boxplots summarize the genotype-level expression, and the ASE of the double-heterozygous samples (yellow points) are shown in the scatter
plot below. The dashed line is a smooth curve fitted using linear regression. e–g Three significant genotype-based cell-type-specific cis-eQTLs
identified using a pseudo-bulk sample by aggregating cells in the snRNA-seq data. The p values of the significant associations are highlighted
in pink.
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the double-heterozygous subjects, but the correlation was low in
the whole sample (r= ~0.2). Additionally, both exonic SNPs were
much more strongly associated with the allelic imbalance of PILRB
(Table S3). Therefore, these associations are likely mediated by the
two exonic SNPs and not driven by the regulatory effects of
rs1859788. Similar situations were observed for the other two
associations between rs1859788 and TRIM4, and rs3740688 and
MTCH2 in excitatory neurons (Table S3, Fig. S3). To further assess
these identified associations, we performed a general genotype-
level eQTL analysis for rs1859788 and rs3740688. Indeed, these
SNPs were not significant in the general eQTL analysis (Table S4),
suggesting that the observed associations in the allelic analysis are
likely due to their high LD with the exonic SNPs in the double-
heterozygous subjects.
A drawback of the allelic analysis using the snRNA-seq data is

the low expression called at exonic variants that are not close to
3’-end, which potentially misses many signals and leads to a small
number of identified associations. To compare the results more
thoroughly between the allele-specific and the genotype-level
eQTL analyses, we also performed a genotype-level cis-eQTL
analysis for local genes within a ± 500k bp window in each of the
six neural cell types. We identified three significant associations
(FDR p < 0.05) (Table S4), including an association between
rs2093760 and CR1 in oligodendrocytes (Fig. 4e). CR1 was
abundantly expressed only in oligodendrocytes and microglia
(Fig. 4e). Because no association was detected in microglia, the
tissue-level association between rs2093760 and CR1 (Fig. 1c) is
likely attributed to its effect in oligodendrocytes. We also found

associations between rs6931277 and HLA-DOB and HLA-DQA2 in
excitatory neurons and microglia, respectively (Fig. 4f, g). The
association between rs6931277 and HLA-DOB was also nominally
(p < 0.05) significant in inhibitory neurons and oligodendrocytes.

Multiple AD-associated SNPs are aseQTLs in microglia
Many AD-associated loci are located in genes that are exclusively
or abundantly expressed in microglia. Unfortunately, microglia
accounted for only a tiny fraction of the total cell population in the
two snRNA-seq data sets in the frontal cortex. To increase the
statistical power to detect aseQTLs in microglia, in addition to the
71 snRNA-seq samples in the frontal cortex, we further added
seven samples from a microglia-specific snRNA-seq data set [39]
and ten samples from a cell-sorting bulk RNA-seq data set [40]. We
tested 183 associations between the imbalance of ASE and
haplotypes in which there were at least three double-
heterozygous samples. We identified seven significant associa-
tions (FDR p < 0.05) (Table S5) involving six genes (BIN1, ITGAM,
FCER1G, MS4A7, ATXN3, and ABCA7). The associations with BIN1,
FCER1G, and ABCA7 were also observed in our region-specific
aseQTL analysis (Fig. 1c), suggesting that some of these tissue-
level associations might be driven by their effects in microglia. For
example, because microglia are the primary cell type expressing
FCER1G, its tissue-level association is likely mediated through
microglia. For these three genes, the ASE and the genotype-level
expression exhibit consistent trends (Fig. 5a–c). The other three
genes (ITGAM, MS4A7, and ATXN3) were not detected in the
region-specific analysis, probably due to their much lower

Fig. 5 Cell-type-specific aseQTL and cis-eQTL analyses in microglia using combined snRNA-seq and cell-sorting bulk RNA-seq data sets.
a–c Three significant aseQTLs identified in microglia, which are also significant in the tissue-level aseQTL analysis. Unknown ASE: The ASE of
these subjects is not available because they are not double-heterozygous. The pair of the allelic counts of a double-heterozygous subject are
connected by a dashed line. Some lines are omitted from the plot of FCER1G to improve visibility. The CPM of the ASE of the double-
heterozygous subjects is normalized by half of its total library size. d rs6931277 is a significant genotype-level cis-eQTL of HLA-DQA2 in
microglia.
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expression at the tissue level. Most of the significant associations
in microglia were primarily driven by strong allelic imbalance
observed in the double-heterozygous samples (Fig. 5a, c, Fig. S2).
Because of the small sample size, the allelic imbalance can be
attributed to an inflated correlation between the AD-associated
SNP and the exonic SNP in the double-heterozygous subjects.
Further study with larger sample size is required to confirm these
findings.
To compare with the allele-specific analysis, we also performed

a genotype-level eQTL analysis using these 88 samples, including
the 17 microglia-specific samples and the 71 samples comprising
cells annotated as microglia in the two snRNA-seq data sets in the
frontal cortex. Our analysis confirmed that rs6931277 was a cis-
eQTL of HLA-DQA2 in microglia with a more significant p value
after including the microglia-specific samples (Fig. 5d, Table S6). In
addition, among the top five genes, we observed associations
between rs4575098 and ADAMTS4 (p= 7.4E-4) and between
rs867611 and PICALM (p= 9E-4) (Table S6). In contrast to the
oligodendrocytes, rs2093760 was not associated with the expres-
sion of CR1 in microglia. These associations were preserved after
adjusting for the AD diagnosis (Table S6), suggesting that these
cis-regulatory effects are not affected by the disease status.

Identification of aseQTLs with immune-related genes in
monocytes
Multiple putative AD-related genes are also abundantly expressed
in monocytes, implying that monocytes might also be involved in

AD by, for example, infiltration through the blood-brain barrier
[41–43] or its breakdown [44, 45]. We next investigated the
association between the AD-associated loci and the ASE in
CD14+CD16- classical monocytes in a cohort [40] comprising >600
cell-sorting RNA-seq samples from ROSMAP (Fig. 1b). We
identified 14 significant associations (FDR p < 0.05) involving six
AD-associated SNPs and nine genes (Table S7). Most of these
genes are related to the immune system, including CD33, MS4A6A,
SPI1, HLA-DQB1, and FCER1G. In these associations, the GWAS loci
were in moderate or high LD ( | r | >0.5) with the exonic variants.
Similar to the results in the region-specific analysis, rs3865444

was associated with the ASE of the second exon of CD33
measured at chr19:51728641 (rs2455069) and chr19:51728477
(rs12459419) in monocytes (p= 4.52E-12 and 2.05E-6) (Fig. 6a),
confirming that this AD-associated SNP is an sQTL of exon 2
reported in [46]. Our follow-up transcript-level eQTL analysis also
shows that rs3865444 was only associated with two transcripts
(ENST00000421133 and ENST00000601785) (Table S8) that overlap
the second exon among all seven transcripts of CD33.
In addition, many associations showed consistent effects

compared to those detected in microglia or the brain regions.
For example, rs6931277 was associated with the ASE of HLA-DQB1
in monocytes (Fig. 6b). It was also associated with HLA-DQB1 and
HLA-DQA2 in microglia (Tables S4, S5) and with HLA-DOB in
neurons (Table S4). Moreover, rs6931277 is an sQTL of multiple
Class II HLA genes in almost all tissues in GTEx [13]. This suggests
that rs6931277 may affect different genes in a cell-type-

Fig. 6 The aseQTLs identified in the classical monocytes, which are also identified in neural cell types or brain regions. a Exon-specific
aseQTLs of CD33 identified in monocytes. Green: the AD-associated SNP rs3865444. Red: exonic loci with a significant FDR p-value (FDR p <
0.05). Blue: exonic loci with a nonsignificant p value (p > 0.05). The red and green curves indicate complete and moderate LD between
rs3865444 and the two exonic variants in exon 2 of CD33. P values: the p values of the association between rs3865444 and the ASE measured
at the exonic locus. The genomic coordinates are based on the human assembly hg19. b rs6931277 is a significant aseQTL of HLA-DQB1 in the
monocytes. c rs4575098 is a significant aseQTL of FCER1G in the monocytes. d rs2081545 is a significant (FDR p < 0.05) aseQTL of MS4A6A in
monocytes, which is consistent with its p value and effect in the HCN (FDR p < 0.1). The boxplots summarize the genotype-level expression,
and the ASE of the double-heterozygous samples (yellow points) are shown in the scatter plot. The dashed line is a smooth curve fitted using
linear regression.

L. He et al.

9

Translational Psychiatry          (2022) 12:163 



dependent manner. As another example, rs4575098, an AD-
associated SNP located in the UTR of ADAMTS4, was in moderate
LD (r= 0.59) with an exonic variant rs11421, located in the 5’ UTR
of FCER1G, which was itself a significant aseQTL of FCER1G (Fig.
6c). This association was also consistent with those detected in the
region-specific analysis and in microglia in terms of the direction
of the effect (Table S1, Table S5). Likewise, the association
between rs2081545 and the ASE of MS4A6A was observed in both
monocytes and the HCN (FDR p < 0.1), and the direction of effect
sizes was consistent (Table S1, Fig. 6d). The association between
rs2081545 and MS4A6A was observed in two of the exons
measured at rs7232 and rs12453. The lack of significance in the
other exons was probably due to their much lower expression
(Table S7).
The evidence from allelic imbalance is in line with genotype-

level differential expression in most of these associations (Fig.
6b–d, Fig. S1). Allelic imbalance plays a more crucial role in
determining the association when the conclusion cannot be
drawn from genotype-level expression alone (e.g., MS4A6A and
HBEGF). In comparison, a previous eQTL analysis in classical
monocytes using the DICE (~100 samples) [47] identifies associa-
tions with four SNPs, one of which between rs6931277 and HLA-
DQB1 was also observed in this analysis. This study did not
investigate the other associations because these genes were not
within our defined window for a cis-gene.

DISCUSSION
In this study, we investigated the regulatory effects of AD GWAS
SNPs using the allelic expression in four brain regions, six major
neural cell types, and monocytes. Our results replicate not only
previously reported signals and, most importantly, also discover
novel aseQTLs. It is shown in [12] that the regulatory patterns of
eQTLs are different between the cortex and the cerebellum. Our
SNP-level aseQTL analysis further reveals that the regulatory
effects of AD-associated SNPs can be heterogeneous across
different brain regions and neural cell types, even within the
cortex, and can be exon-specific.
We have demonstrated that the SNP-level aseQTL analysis not

only identifies eQTLs but can also uncover exon-specific regula-
tion. As an example, our aseQTL analysis of CD33 detected
significant associations between rs3865444 and allelic imbalance
at exonic SNPs exclusively in exon 2. These associations were
observed in monocytes and multiple brain regions, including the
TC, PCC, and HCN, supporting previous findings showing that the
AD GWAS locus rs3865444 is associated with the splicing of exon 2
of CD33 [29, 34, 46]. The almost complete LD between the
promoter variant rs3865444 and the exonic variant rs12459419
makes it challenging to determine the causal variant. Another
example is CLU, of which our aseQTL analysis captured two sQTLs
in the promoter and exon 5. A recent study reveals that rs7982 is
associated with intron retention in three regions in the temporal
lobe, including TC, superior temporal gyrus, and parahippocampal
gyrus [36]. Our result shows no association in the PFC, PCC, or
HCN, suggesting that this sQTL is region-dependent.
Interestingly, the APOE ε4 variant is associated with attenuated

expression of the major transcript of APOE based on the evidence
from both allelic imbalance and gene-level expression. These
results corroborate previous findings of lower mRNA and protein
levels of APOE in ε4 carriers [48–51]. Our findings reveal that this
association remains significant in the control subjects and is across
all these brain regions. The expression of the ApoE ε4 isoform is
lower than that of the ApoE ε3 isoform in APOE ε3/ε4 carriers at
the tissue level. Because APOE expresses most abundantly in
astrocytes among these neural cell types, astrocytes might be the
primary cell type contributing to this effect. Due to this eQTL
effect, the higher proportion of APOE ε4 carriers among the
patients with AD can lead to a decreased expression observed in

the patients, explaining the reported association between the
reduced APOE expression in astrocytes and the diagnosis of AD
[27]. Compared with astrocytes, the APOE expression in microglia
is upregulated in patients with AD [27]. This overexpression of
APOE in microglia might be due to either a different regulatory
mechanism or a disease-associated subpopulation specifically in
microglia, although recent studies have not detected an AD-
specific subpopulation in microglia in the cortex of patients with
AD [27, 52]. More studies are needed to examine this regulatory
effect of the APOE ε4 variant at the cell level, including microglia.
Using the single-cell data, we have attempted to pinpoint the

cell types that mediate genetic regulatory effects detected at the
region-specific analysis. For example, the association between the
haplotype containing the GWAS SNP rs2093760 and the ASE of
CR1 observed in the TC was seen in oligodendrocytes but not in
microglia. CR1 is one of the key genes involved in the complement
system and shows the highest expression level in oligodendro-
cytes followed by microglia among the neural cells in our data.
Genes in the complement system are abundantly expressed in
microglia and are co-expressed with APOE [53]. Our findings
suggest that oligodendrocytes might play a role in mediating the
effect of rs2093760. Nevertheless, this haplotype also includes
rs2296160, a non-synonymous variant of CR1 in almost complete
LD with rs2093760. More research is needed to elucidate which
functional consequence of this haplotype is the primary factor
contributing to the risk of LOAD. Compared to a previous study
detecting few cis-eQTLs in the primary microglia [43], we
identified multiple aseQTLs and eQTLs in microglia, such as
BIN1, FCER1G, ABCA7, and HLA-DQB1, which were also detected in
the region-specific analysis. These findings suggest that microglia
might mediate their effects observed at the tissue level.
We have demonstrated using both a simulation study and the

real data analysis that the proposed HPMM increases the statistical
power by prioritizing the evidence from the allelic imbalance and
combining the evidence from both double-heterozygous and
homozygous subjects. This method is fast, easy to implement,
flexible for adjusting additional covariates and investigating
interactions. Our real data analysis also demonstrated that the
additional information from the genotype-level expression is
important, especially when the evidence from the ASE is limited
due to a small sample size. Future work can be focused on further
extending the HPMM to accommodate haplotype-based ASE.
It should be noted that the LD between the GWAS SNP and the

exonic SNP among the double-heterozygous subjects complicates
the interpretation of the findings from the SNP-level aseQTL
analysis. It is easier to draw a conclusion when the exonic SNP that
is used as the proxy for measuring the ASE is not associated with
the ASE intrinsically. Otherwise, we show both theoretically and
practically that a false interpretation of the regulatory function can
result from an inflated conditional correlation between the exonic
proxy SNP and the GWAS SNP among double-heterozygous
subjects. We implement a straightforward classification strategy to
tackle this issue to gain better biological insights. This problem
might not be serious in a haplotype-level allele-specific analysis
because the ASE was quantified by aggregating multiple exonic
SNPs of the gene.
One of the limitations of the current cell-type allele-specific

analysis using the 3’-sequencing snRNA-seq data is that the reads
are distributed non-uniformly, and its concentration is biased
towards 3’ UTR or 5’ UTR depending on the experimental protocol.
Consequently, many exonic SNPs within the gene body are not
captured by most reads or covered by a quite low number of
reads. This technical limitation leads to low statistical power to
detect associations in these regions. Further research using long-
read sequencing technologies might offer much better coverage
for the aseQTL analysis at the cell level. Another limitation of this
study is the small sample size in the snRNA-seq data, which might
at least partly justify the lack of significant findings in the cell-type-
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specific analysis. For loci with low counts or a small sample size,
more sophisticated methods based on shrinkage might also be
utilized [54].
In conclusion, we detected many AD GWAS loci showing strong

associations with the allelic expression of local genes or exons,
which can be tissue- or cell-type-dependent. Our results
pinpointed the underlying brain regions and cell types that
mediate the associations for multiple AD GWAS loci, which
provide valuable insights into the cellular regulatory mechanisms
in the genetic architecture underlying the pathogenesis of LOAD.

METHODS
Sample collection
We obtained 747, 572, and 882 bam files of the tissue-level bulk RNA-seq
samples in the HCN, PCC, and PFC, respectively, in ROSMAP from Synapse
(https://www.synapse.org/#!Synapse:syn22333035). The library was gener-
ated using either a poly-A selection or ribosomal depletion method. The
reads were trimmed before being aligned to the reference genome (hg19)
using Bowtie. These RNA-seq samples were collected from 925 subjects
with an age of death ranging from 67.4 to 108.3, among whom 602 are
female, and 571 are patients diagnosed with AD by the pathology of the
post-mortem brain. We further removed from the downstream analysis five
subjects whose genotypes called from the RNA-seq samples were
inconsistent with their whole-genome sequencing (WGS) data. The bam
files of the 317 bulk RNA-seq samples in the TC from the MayoRNAseq
project [26] were downloaded from Synapse (https://www.synapse.org/#!
Synapse:syn20818651). This data set included 82 patients with AD, 84
patients with progressive supranuclear palsy (PSP), 71 subjects with
pathologic aging, and 78 healthy controls. The reads were aligned to the
GRCh38 reference genome using the SNAPR software [55].
We obtained the fastq files of the cell-sorting bulk RNA-seq samples in

monocytes and microglia in ROSMAP from Synapse (https://www.synapse.
org/#!Synapse:syn11468526 and https://www.synapse.org/#!Synapse:
syn22024496). The monocytes were extracted based on the surface
marker CD14+CD16- from peripheral blood mononuclear cells (PBMCs) of
615 subjects. We included 336 samples that had both the RNA-seq and
genotype data, including 238 females and 139 patients with AD. RNA
molecules were extracted using the ribosomal depletion method, and the
library was prepared using a SMART-seq2 or SMART-seq2-like protocol. The
microglia were isolated from the dorsolateral PFC of 10 subjects using
magnetic anti CD11b beads and then followed by fluorescence-activated
cell sorting based on the CD11bhighCD45int7AAD- staining profile. RNA
molecules with a poly-A tail were extracted, and the library was
constructed using the SmartSeq-2 protocol [56]. More details about the
data generation are given in [40].
We obtained the fastq files of the three snRNA-seq data sets, two in the PFC

and one in microglia, in ROMSAP from Synapse (https://www.synapse.org/#!
Synapse:syn16780177, https://www.synapse.org/#!Synapse:syn12514624, and
https://www.synapse.org/#!Synapse:syn23446265). The two snRNA-seq data
sets in the PFC included ~80,000 cells in Brodmann area (BA) 10 from
48 subjects and >160,000 cells from 24 subjects. More details about the
generation of these two data sets are described in [27, 38]. In the snRNA-seq
data set in microglia, the tissue was extracted from the dorsolateral PFC (BA9/
46) of 13 subjects. The microglia were isolated using the same procedure as in
the above cell-sorting bulk RNA-seq data. More details about this data set can
be found in [39]. All these snRNA-seq libraries were generated using the 10x
Genomics Chromium Single Cell 3’ Reagent Kit v2 protocol.
Clinical characteristics of the subjects in ROSMAP and the MayoRNAseq

project, including sex, age, race, ethnicity, diagnosis of neurodegenerative
disorders, and age at death, were also retrieved from Synapse.

Quantification of ASE in Bulk RNA-seq data
To process the two bulk RNA-seq data sets in microglia and monocytes
that started with fastq files, we first trimmed the paired-end reads using
Trim Galore! (https://www.bioinformatics.babraham.ac.uk/projects/
trim_galore/). The trimmed fastq files were then aligned to the hg19
human genome assembly using the STAR aligner [57]. Samples with a
mapping rate of <50% were excluded from the downstream analysis.
Gene-level raw counts were quantitated from the bam file for each sample
using the Rsubread package [58] with the parameters “requireBothEnds-
Mapped=TRUE, allowMultiOverlap=TRUE, countMultiMappingReads=-
FALSE, largestOverlap = TRUE” and the gene transfer format (GTF) build

GRCh37.87. In the allele-specific analysis, mapping bias introduced during
the library alignment is one source for false positives [59]. We thus used
WASP [16] in the STAR aligner to tag and remove reads that showed the
alignment bias at exonic SNPs. The exonic SNPs considered in our analysis
were defined by those that are included in NCBI dbSNP Build 144 (https://
bioconductor.org/packages/release/data/annotation/html/SNPlocs.
Hsapiens.dbSNP144.GRCh37.html) and the Haplotype Reference Consor-
tium (HRC) SNP reference panel, and intersect at least one exon defined in
the GTF build GRCh37.87. Using the WASP-filtered bam files, the ASE at the
exonic SNPs were quantified using the pileup function in the samtools [60]
with the parameters “min_base_quality = 10 L, min_mapq=254, distin-
guish_strands=FALSE, max_depth=10000, include_insertions=TRUE,
include_deletions=TRUE” to filter out low-quality and ambiguously
mapped reads.
Because the RNA-seq data sets in the PFC, PCC, HCN, and TC are

available only in bam files, we re-aligned the reads using WASP to
eliminate potential mapping bias. More specifically, we first removed
secondary alignments from the original bam files using samtools and re-
paired the reads according to the fragment ID using Rsubread. We then
used this re-paired bam file as the input in the STAR aligner. The
quantification of ASE then followed the same steps described above.

Quantification of ASE in snRNA-seq data
The raw fastq files from the 10x Genomics platform were processed using
STARsolo [61] to obtain the bam files aligned to the hg19 human reference
genome. We used WASP to tag and filter those reads that overlapped the
exonic SNPs and showed mapping bias. In STARsolo, we used the
parameters “--soloCellFilter EmptyDrops_CR --soloCBmatchWLtype
1MM_multi_Nbase_pseudocounts --soloUMIfiltering MultiGeneUMI_CR
--soloUMIdedup 1MM_CR” to filter cells and collapse UMI barcodes. We
confirmed that this setting generated highly consistent results with
CellRanger v3. We first quantified the UMI-level ASE at each of the exonic
SNPs for each cell. Specifically, given a cell barcode and an exonic locus, we
obtained all UMI barcodes that had at least one read overlapping the locus.
Then for each unique UMI barcode, we used the same pileup function as
described above to quantify the number of allelic reads that had that UMI
barcode and overlapped the locus. We counted only those reads assigned
to a transcript by STARsolo. We removed problematic UMIs to which
multiple reads were mapped but had different alleles at the exonic locus
because this may indicate a sequencing error in one of the reads. Next, we
collapsed the UMIs that had at most one mismatch and obtained allele-
specific counts by counting the number of collapsed UMIs that shared the
same allele. This gave us the UMI-level ASE in each cell at each exonic locus
of interest. Finally, we obtained the cell-type-specific UMI-level ASE for
each subject by aggregating all cells annotated to the same cell type and
subject. We used this ASE in the aseQTL analysis of the snRNA-seq data.

Genotype data processing, phasing, and imputation
The three genotype data sets in ROSMAP were downloaded from Synapse
(https://www.synapse.org/#!Synapse:syn17008936), including a WGS data
set of 1196 subjects in the VCF format and two SNP array data sets of 382
(Illumina HumanOmniExpress) and 1709 (Affymetrix GeneChip 6.0)
subjects in the plink format. If a subject had both the WGS and SNP
array data, we always used the WGS data for better accuracy. Before the
imputation, we checked strands, alleles, and positions and removed
ambiguous SNPs using the tool HRC-1000G-check-bim.pl with default
settings and the reference panel of the EUR population in the 1000
Genomes project (https://www.well.ox.ac.uk/~wrayner/tools/). We phased
and imputed the WGS data set using the Michigan Imputation Server [62]
with the HRC reference panel (Version r1.1 2016). Because one of the SNP
array data sets using the Affymetrix GeneChip 6.0 has many missing data
and low-quality genotypes, after removing the subjects and SNPs with a
missing rate >5%, 1019 subjects remained. To achieve better imputation
quality for the SNP array data, we used the TOPMed imputation reference
panel [63] based on hg38 for the phasing and imputation of the SNP array
data sets. We mapped the imputed SNPs from hg38 back to hg19 using
liftover [64]. The WGS data set of 349 subjects in the MayoRNAseq project
was downloaded from Synapse (https://www.synapse.org/#!Synapse:
syn10901601). We used the same procedure as in the preparation of the
ROSMAP genotype data for the imputation. We imputed the genotype
data using the TOPMed imputation reference panel and mapped them
back to hg19 using liftover. In the allele-specific analysis, we used only
high-quality imputed exonic SNPs that had an imputation quality
score>0.96 to control phasing errors.
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Analysis of genotype-level and transcript-level cis-eQTLs
The genotype-level cis-eQTL analysis using the snRNA-seq data was
performed for genes whose TSS was within a ±500k bp window of the AD-
associated SNPs. Cell-level count matrices were obtained from the output
of STARsolo during the alignment. We included both exonic and intronic
reads because pre-mRNA accounts for a large proportion of the snRNA-seq
library. We then generated cell-type-specific subject-level pseudo-bulk
count matrices by aggregating cells of each subject in each cell type. We
adopted the cell type annotation based on the clustering results in [27, 38],
which are available from Synapse. The pseudo-bulk raw counts were first
normalized using the trimmed mean of M-values (TMM) [65] after
removing low-expression genes that had CPM > 1 in <3 subjects. The
overdispersion parameters were then estimated using the functions
estimateGLMCommonDisp and estimateGLMTagwiseDisp in the edgeR
package [66]. Finally, the association tests between the gene expression
and the genotypes were performed using the glmFit and glmLRT functions
with cohorts as the covariate. In a second model to adjust for the diagnosis
of AD, we further added an ordinal variable (between 1 and 5) of the
clinical cognitive diagnosis score to the covariates. We also added RNA
integrity number (RIN) to the analysis when it is available in a cohort.
In the analysis of transcript-level cis-eQTLs using the bulk RNA-seq

samples in monocytes, we first generated transcript-level count matrices
by quantifying the transcripts from the fastq files using salmon [67] with a
pre-built transcriptome index using a partial selective alignment method
(http://refgenomes.databio.org/) with the parameters “-l A --validateMap-
pings --rangeFactorizationBins 4”. The downstream analysis followed the
same procedure as described above.

The hierarchical Poisson mixed-effects model for allele-
specific eQTL analysis
Testing allelic imbalance is much more powerful than testing genotype-
level expression data because the allelic information is generally not
subject to technical noises or confounders, which is a severe problem in
gene expression analysis. We propose an HPMM that enjoys the power
gain from the allelic imbalance and borrows evidence from the expression
of homozygous samples to further improve the statistical power. This
HPMM is also straightforward to accommodate covariates and interaction
terms. The key idea in the HPMM is to introduce two random-effects terms.
One accounts for the allele-level overdispersion in the count data, and the
other treats the two allelic counts of each subject as paired samples so that
the allelic imbalance within the heterozygous samples has higher influence
on the inference than the homozygous individual-level expression.
We first describe the HPMM for analyzing the exonic SNPs. The model

can be applied with a minor modification for the aseQTL analysis, which
will be discussed later. Assume that each heterozygous subject has two
allelic counts corresponding to the two alleles A and a, and only one count
is observed for each homozygous subject (AA or aa). Denote by yij the
number of RNA-seq reads overlapping the exonic SNP of subject i,
i 2 f1; ¼ ; ng, where j represents one of the allele patterns,
j 2 fA; a;AA; aag. Thus, for a homozygous subject, we have j ¼ AA or aa
depending on the carried allele, while heterozygous subjects have two
observations with j ¼ A and a (Fig. S4a). Denote by Xij the coding of the
allele patterns defined by

X ij ¼
1; j ¼ AA or A

0; j ¼ aa or a

�

We use the following HPMM to estimate the exonic aseQTL effect

yij � Poisðexpðμþ Xijβþ Cijγ þ bi þ εijÞ � KijÞ; (1)

where μ is the intercept, β is the effect of the exonic SNP, Cij and γ are the
design matrix and effects of covariates, bi is the individual-level random
effects, εij is the allele-level random effects, both of which follow a zero-
mean normal distribution, and Kij is given by

Kij ¼
li ; if subject i is homozygous
li
2 ; if subject i is heterozygous

(

where li is the library size or a normalizing factor. That is, yij is normalized
by half of its total library size if subject i is heterozygous. The rationale
behind this model is to treat the two observations from a heterozygous
subject as paired samples, which is achieved by halving its library size and
introducing the random effects bi to capture the individual-level noises.
The HPMM can be easily fitted using, e.g., the glmer function in the lme4 R

package [68]. An example R script used in this study for fitting this model
can be found in Supplementary Text. If the summary statistics show no
sign of overdispersion, εij can be omitted to improve the power. To test
whether the allelic imbalance is different between two groups (e.g., the
patients with AD and the control group), we add an interaction term to the
model

yij � Poisðexpðμþ Xijβþ Diαþ XijDiδþ Cγ þ bi þ εijÞ � KijÞ; (2)

where Di ∈ {0, 1} is the diagnosis of the disease. Thus, the differential eQTL
effects between case-control groups can be detected by testing δ = 0 in
model (2).
If there is no homozygous subject, model (1) is equivalent to a binomial

model with an overdispersion modeled by εij, as shown in [18]. We thus
conducted a comprehensive simulation study to compare the statistical
power between the proposed HPMM with all subjects, the HPMM with
heterozygous subjects only, and the beta-binomial regression [69]
implemented by the betabin function in the aod R package (https://cran.
r-project.org/web/packages/aod/index.html). We simulated allelic expres-
sion of 500 subjects based on model (1) with β ranging from 0 to 0.3,
Var bið Þ ¼ 1, and Var εij

� � ¼ 0:5. We considered SNPs with a MAF ranging
from 0.1 to 0,4. The empirical power was evaluated at 5% significance level
with 2000 simulated replicates. As shown in Fig. S7, all three methods
controlled the type I error rate very well (corresponding to effect_size=0).
In terms of the statistical power, the beta-binomial regression showed
almost the identical performance to the HPMM with heterozygous subjects
only. By incorporating homozygous subjects, the proposed HPMM
achieved better power than the other two methods. In addition, SNPs
with a larger MAF exhibit much larger statistical power because these SNPs
have more heterozygous subjects than those with a smaller MAF,
suggesting that the number of heterozygous subjects has a large impact.
The aseQTL analysis of AD GWAS SNPs adopted a similar HPMM

framework. The difference is that the allelic counts are not directly
observed for the GWAS SNPs but are obtained through phased haplotypes
as they are not located in an exonic region. Consider haplotypes
containing a pair of SNPs, a GWAS SNP with two alleles A/a and an
exonic SNP with two alleles B/b, where a and b are the minor alleles.
Denote by yij the number of reads observed for subject i carrying the allele
pattern j of GWAS SNP, j 2 fA; a;AA; aa; Aag. We split those subjects being
heterozygous at both GWAS and exonic loci (i.e., double-heterozygous)
into two observations (that is, for subject i who is double-heterozygous, we
have j ¼ fA; ag) (Fig. S4b) because allelic reads can be determined for
these subjects. For each double-heterozygous subject, we have two
observations corresponding to the haplotypes on the two chromosomes
(i.e., either (1) j ¼ A; k ¼ B and j ¼ a; k ¼ b, or (2) j ¼ A; k ¼ b and
j ¼ a; k ¼ B), where k 2 fB; bg is the allele of the exonic SNP. The library
size of each allelic observation is one-half of the library size of the subject.
Subjects who are not double-heterozygous have only one observation (i.e.,
j ¼ AA or aaorAa). Note that j ¼ Aa is used for those who are hetero-
zygous at the GWAS SNP but not at the exonic SNP. Denote by Xij the
variable coded for the GWAS SNP defined by

X ij ¼
1; j ¼ AA or A

0:5; j ¼ Aa

0; j ¼ aa or a

8><
>: :

In this study, we fitted model (1) using this definition of Xij, and the
estimated β was the aseQTL effect of the AD GWAS SNP (See
Supplementary Text for an example script).
The interpretation of the allelic analysis of a GWAS SNP is more complicated

than that of an exonic aseQTL because the allelic reads are not directly
measured for the GWAS SNP. Like GWAS, the LD between the two SNPs
complicates the interpretation. Because the double-heterozygous subjects are
treated like paired samples in model (1), they have a large impact on the
estimate of β. Therefore, the correlation between alleles in the double-
heterozygous subjects is more influential. It should be noted that this allelic
correlation between the GWAS and exonic SNPs in double-heterozygous
subjects can be very large even if the two SNPs are not in LD at the population
level, particularly when the sample size is small or the MAF is low (Fig. S5). For
example, following the previous notations, we consider a situation where there
is no LD between the two SNPs. In this case, the haplotype relative frequency
equals the product of allele frequency, that is, Pab = PaPb. If the MAF is small
(i.e., Pa or Pb is small), then Pab is nearly zero. Thus, under a small sample size,
we may not even observe subjects with the haplotype ab in double-
heterozygous subjects. The lack of this haplotype means that the only possible
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combination in the double-heterozygous subjects is j ¼ A; k ¼ b and
j ¼ a; k ¼ B, which leads to complete allelic correlation.

Quality control in the allele-specific analysis
We performed stringent quality control for sequencing error and mapping
bias, which might significantly affect the allele-specific analysis as
mentioned in [70]. As described above, WASP was used in all the analyses,
and only those reads with tag vW=1 were retained. In the pileup function,
we counted only high-quality reads that were mapped uniquely and had a
minimum base Quality=10 and minimum MAPQ=254. To minimize
potential sequencing and phasing errors, we chose to use the imputed
genotypes for the exonic SNPs, but we also double-checked them with the
genotypes called from the RNA-seq data. We adopted genotypes called
from the RNA-seq data if the two genotypes were inconsistent. The
criterion for the inconsistency was defined by either the ratio between the
counts of two alleles >10% when the imputed genotype was homozygous
or the ratio <2% when the imputed genotype was heterozygous if >20
reads overlapped the locus in the RNA-seq data. As the correct phase
information is critical for the accuracy of the allele-specific analysis, we
examined only those SNPs with an imputation quality score R2 > 0.96.

Functional annotation and external resource
To compare the eQTL results in CD14+CD16- classical monocytes, we
obtained the VCF files containing the summary statistics of significant
eQTLs in classical monocytes identified in the DICE. To compare the eQTLs
in the brain regions, we obtained the summary statistics of significant
eQTLs from GTEx (v8) in three brain tissues, including the PFC, ACC, and
hippocampus [13], and from a meta-analysis of the TC and PFC conducted
in [12]. The summary statistics of sQTLs in the PFC were obtained from a
supplementary table of [34]. The summary statistics of gene-level,
transcript-level, exon-level eQTLs in BrainSeq [33] were downloaded from
http://eqtl.brainseq.org/phase1/eqtl/. The summary statistics of gene-level
and transcript-level eQTLs in CommonMind [32] were downloaded from
the FTP server of the eQTL Catelogue (https://www.ebi.ac.uk/eqtl/). The
functional annotation of the exonic variants in the aseQTL analysis was
performed using the VariantAnnotation R package [71], in which we
annotated the location of the exonic variants using the database TxDb.
Hsapiens.UCSC.hg38.knownGene, the amino acid coding change (non-
synonymous, synonymous, frameshift, and nonsense), and prediction of
the impact of non-synonymous variants using PolyPhen (Polymorphism
Phenotyping).

CODE AVAILABILITY
An example R script for implementing the HPMM used in this study is provided in
Supplementary Text.
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