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Nuclear factor of activated T cells 4 in the prefrontal cortex is
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(R, S)-ketamine has prophylactic antidepressant-like effects in rodents; however, the precise molecular mechanisms underlying its
action remain unknown. Using RNA-sequencing analysis, we searched novel molecular target(s) that contribute to the prophylactic
effects of (R)-ketamine, a more potent enantiomer of (R, S)-ketamine. Pretreatment with (R)-ketamine (10 mg/kg, 6 days before)
significantly ameliorated body weight loss, splenomegaly, and increased immobility time of forced swimming test in
lipopolysaccharide (LPS: 1.0 mg/kg)-treated mice. RNA-sequencing analysis of prefrontal cortex (PFC) and subsequent IPA
(Ingenuity Pathway Analysis) revealed that the nuclear factor of activated T cells 4 (NFATc4) signaling might contribute to sustained
prophylactic effects of (R)-ketamine. Quantitative RT-PCR confirmed that (R)-ketamine significantly attenuated the increased gene
expression of NFATc4 signaling (Nfatc4, Cd4, Cd79b, H2-ab1, H2-aa) in the PFC of LPS-treated mice. Furthermore, pretreatment with
NFAT inhibitors (i.e., NFAT inhibitor and cyclosporin A) showed prophylactic effects in the LPS-treated mice. Similar to (R)-ketamine,
gene knockdown of Nfatc4 gene by bilateral injection of adeno-associated virus (AAV) into the mPFC could elicit prophylactic
effects in the LPS-treated mice. In conclusion, our data implicate a novel NFATc4 signaling pathway in the PFC underlying the
prophylactic effects of (R)-ketamine for inflammation-related depression.
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INTRODUCTION
Robust antidepressant action of the N-methyl-D-aspartate recep-
tor (NMDAR) antagonist (R, S)-ketamine is a paradigm shift for
depression research and treatment [1]. In 2000, Berman et al. [2]
demonstrated the rapid-onset and sustained antidepressant
actions of (R, S)-ketamine in patients with major depressive
disorder (MDD). Subsequently, several groups replicated the
robust antidepressant effects of (R, S)-ketamine in treatment-
resistant patients with MDD or bipolar disorder (BD) [3–10]. Meta-
analyses revealed that (R, S)-ketamine has rapid-acting and
sustained antidepressant effects in treatment-resistant patients
with MDD or BD [11–13]. Although (R, S)-ketamine can produce
the robust antidepressant actions in severe patients with
depression, precise molecular mechanisms underlying its anti-
depressants remain elusive [14–22].
Dr. Denny and her colleagues demonstrated that (R, S)-ketamine

could produce persistent prophylactic effects against chronic
social defeat stress (CSDS) model, learned helplessness (LH)
model, chronic corticosterone-treated model [23], and lipopoly-
saccharide (LPS)-treated inflammation model [24]. Furthermore,
the same group reported prophylactic effects of (R, S)-ketamine
against fear expression [25, 26]. It is also reported that ΔFosB in
the ventral CA3 of hippocampus plays a role in the prophylactic
effects of (R, S)-ketamine in CSDS model [27]. Moreover, it is

demonstrated that (R, S)-ketamine produced a robust pro-resilient
response to CSDS through Akt signaling in the ventral tegmental
area (VTA)-nucleus accumbens (NAc) [28]. Interestingly, Ma et al.
[29] reported prophylactic effects of (R, S)-ketamine on post-
partum depression in Chinese women undergoing cesarean
section. Collectively, it is possible that (R, S)-ketamine may be
useful in protecting against stress-related psychiatric disorders
such as depression and posttraumatic stress disorder (PTSD) [30].
However, the precise molecular and cellular mechanisms under-
lying prophylactic actions of (R, S)-ketamine remain unclear.
(R,S)-ketamine (Ki= 0.53 μM for NMDAR) is a racemic mixture

that contains equal amounts of (R)-ketamine (or arketamine) (Ki=
1.4 μM for NMDAR) and (S)-ketamine (or esketamine) (Ki= 0.30 μM
for NMDAR). In 2019, (S)-ketamine nasal spray for treatment-
resistant MDD patients was approved in the United State and
Europe. In contrast, increasing preclinical data show that (R)-
ketamine displays greater potency and longer-lasting antidepres-
sant effects than (S)-ketamine in rodent models of depression
[31–41], suggesting that NMDAR does not play a major role in the
robust antidepressant-like effects of (R, S)-ketamine. Importantly,
side effects of (R)-ketamine are less than those of (R, S)-ketamine
or (S)-ketamine [32, 38, 42–46]. A recent pilot study demonstrated
that (R)-ketamine elicited rapid-acting and sustained antidepres-
sant actions in treatment-resistant MDD patients, and that side
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effects such as dissociation were very low [47]. Taken all together,
it is likely that (R)-ketamine would be a novel antidepressant
without side effects of (R, S)-ketamine [16–20, 22]. Meanwhile,
there are no articles reporting the prophylactic effects of (R)-
ketamine in rodents. Little is known about the precise molecular
mechanisms underlying the prophylactic effects of (R)-ketamine.
The aim of this study was to identify the novel molecular

mechanisms underlying the prophylactic effects of (R)-ketamine in
LPS-induced inflammation model. First, we conducted RNA-
sequencing analysis of the prefrontal cortex (PFC) of LPS-treated
mice treated with either (R)-ketamine or 0.9% saline, as PFC
contributes to the antidepressant-like actions of ketamine and its
enantiomers [32, 48, 49]. Furthermore, we examined the
prophylactic effects of (R)-ketamine on LPS-induced splenomegaly
in mice since LPS increased spleen weight through systemic
inflammation [50]. Second, we studied the effects of pharmaco-
logical inhibitors and adeno-associated virus (AAV) vector of the
novel target in the prophylactic effects of (R)-ketamine in LPS-
treated mice.

METHODS AND MATERIALS
Animals
Male adult C57BL/6 mice (8 weeks old, body weight 20–25 g) were
purchased from Japan SLC, Inc. (Hamamatsu, Shizuoka, Japan). Animals
were housed under controlled temperature and 12 h light/dark cycles
(lights on between 07:00–19:00), with ad libitum food and water. The study
was approved by the Chiba University Institutional Animal Care and Use
Committee (1-374, 2-146, and 3-282). All efforts were made to minimize
suffering. The sample size was chosen as reported previously.

Compounds and treatment
(R)-ketamine hydrochloride was prepared by recrystallization of (R, S)-
ketamine (Ketalar®, ketamine hydrochloride, Daiichi Sankyo Pharmaceu-
tical Ltd., Tokyo, Japan) and D-(-)-tartaric acid, as reported previously [31].
(R)-norketamine hydrochloride was synthesized as reported previously
[33]. (2R,6R)-hydroxynorketamine (HNK) hydrochloride was purchased
from Tocris Bioscience (Tokyo, Japan). The dose (10 mg/kg as hydro-
chloride salt) of (R)-ketamine, (R)-norketamine, and (2R,6R)-HNK were
selected as reported previously [32, 35–37, 51]. LPS (L-4130, serotype
0111:B4, Sigma-Aldrich, St Louis, MO, USA) was dissolved in saline. The
dose (1.0 mg/kg) of LPS was used as reported previously [24]. The NFAT
inhibitor (L-methionyl-L-alanylglycyl-L-prolyl-L-histidyl-L-prolyl-L-valyl-L-
isoleucyl-L-valyl-L-isoleucyl-L-threonylglycyl-L-prolyl-L-histidyl-L-α-gluta-
myl-L-glutamic acid, Cat No.: 249537-73-3, Cayman Chemical, Ann Arbor,
Michigan, USA) or cyclosporin A (CysA; Cat No.: 59865-13-3, FUJIFILM,
Tokyo, Japan) was dissolved in 10% dimethylsulfoxide (DMSO). The dose
(40 mg/kg) of CysA was used as reported previously [52]. ANA-12
(0.5 mg/kg; Maybridge, Cornwall, UK), was dissolved in phosphate-
buffered saline (PBS) containing 17% DMSO and administrated intraper-
itoneally (i.p.) to mice 30 min prior to the administration of saline or
(R)-ketamine, as reported previously [32, 53–57].

LPS-induced depression model, and behavioral tests
The mice were randomly divided into the groups. The procedure of LPS-
treated inflammation model for depression was performed as reported
previously [35, 50, 57, 58]. Locomotion test and forced swimming test
(FST) were performed 23 and 24 h after i.p. administration of saline
(10 ml/kg) or LPS (1.0 mg/kg), respectively. Behavioral tests were
performed in a blind manner. Detailed methods were shown in the
supplemental information.

Collection of blood and spleen
The mice were deeply anesthetized with inhaled isoflurane (5%) 24 h after
the i.p. injection of saline (10 ml/kg) or LPS (1.0 mg/kg). Blood was
collected via cardiac puncture, placed into tubes containing ethylenedia-
minetetraacetic acid (EDTA), and immediately centrifuged at 3000 × g for
3 min at 4 °C to obtain plasma, and then stored at −80 °C until bioanalysis,
as reported previously [50]. Prefrontal cortex (PFC) was collected rapidly
and stored at −80 °C until bioanalysis. The weight of spleens was recorded
immediately after spleen removal.

Measurement of pro-inflammatory cytokines in the blood
The plasma levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α)
were determined using ELISA kits (IL-6: cat number: 88-7064, TNF-α: cat
number: 88-7324, Invitrogen, Camarillo, CA, USA) according to the
manufacturer’s instructions.

RNA-sequencing analysis
(R)-ketamine (10 mg/kg) or saline (10 ml/kg) was administered i.p. to mice
6 days before i.p. administration of saline (10 ml/kg, i.p.) or LPS (1.0 mg/kg,
i.p.) (Fig. 1A). PFC was collected 24 h after a single administration of saline
or LPS. RNA-sequencing analysis of the PFC samples was performed at the
Novogene (Beijing, China). Analysis of the biological functions was
performed using the Ingenuity pathway Analysis (IPA) [59].

Quantitative real-time PCR
Saline (10ml/kg) or (R)-ketamine (10 mg/kg) was administered i.p. to mice
6 days before LPS (1.0 mg/kg, i.p.) administration. Mice were sacrificed 24 h
after administration of saline or LPS. Mice were sacrificed under deep
anesthesia by isoflurane (5%), then PFC was quickly dissected on ice from
the whole brain.
A quantitative RT-PCR system (Step One Plus, Thermo Fisher Scientific,

Yokohama, Japan) was used. All specific mRNA transcripts were quantitatively
analyzed by TaqManGene Expression assays (Thermo Fisher Scientific,
Yokohama, Japan). The gene expression levels of Cd4 (Mm00442754_m1),
Cd79b (Mm00434143_m1), H2-Aa (Mm00429211_m1), H2-Ab1
(Mm00439216_m1), Nfatc4(Mm00452375_m1) were measured. Total RNA
was extracted using an RNase-Free DNase Set and a RNeasy Mini Kit (Qiagen,
Hilden, Germany). The purity of total RNA was assessed by Bio photometer
plus (Eppendorf, Hamburg, Germany). The cDNA libraries were obtained by
reverse transcription-PCR using a High-Capacity cDNA Reverse Transcription
Kit (#4368813 Thermo Fisher Scientific, Yokohama, Japan). All specimens were
detected twice, and arithmetic means were used for quantification. The data
of arithmetic mean were normalized to Vic-labeled Actb mRNA (#4352341E:
pre-developed TaqMan Assay Reagents, Thermo Fisher Scientific, Yokohama,
Japan).

Effects of NFAT inhibitors
To examine the role of NFATc4 in the prophylactic effects of (R)-ketamine,
the two inhibitors (NFAT inhibitor and CysA) of NFATc4 were used. The
NFAT inhibitor (10 μM, 2 μl, i.c.v.) or saline (2 μl, i.c.v.) was injected 60 min
before i.p. administration of LPS (1.0 mg/kg) in mice. CysA (40 mg/kg, i.p.)
or vehicle (10% DMSO, 10 ml/kg, i.p.) was injected 60 min before i.p.
administration of LPS (1.0 mg/kg) in mice. Subsequently, the behavioral
tests such as locomotion test and FST were performed as
described above.

Viral vector preparation and injection
The transfer plasmid [U6-shNfatc4 (short hairpin RNA against Nfatc4)-CAGGS-
EmGFP] was constructed by Invitrogen. The viral vectors were prepared as
described previously [60]. Briefly, the AAV vectors were packaged using the
AAV Helper Free Expression System (Cell Biolabs, Inc., San Diego, CA). The
packaging plasmids (pAAV-DJ and pHelper) and transfer plasmid (pAAV-U6-
shRNA-CAGGS-EmGFP or pAAV- U6-CAGGS-EGFP) were transfected into
HEK293T cells using the calcium phosphate method. After 48 h incubation,
AAV vector particles were obtained and purified by serial ultracentrifugation
with cesium chloride. The purified particles were dialyzed with PBS containing
0.001% Pluronic F-68 (Sigma-Aldrich, St. Louis, MO), and then concentrated by
ultrafiltration using an Amicon 10k MWCO filter (Merck Millipore, Darmstadet,
Germany). The copy number of the viral genome (vg) was determined by the
TaqMan Universal Master Mix II (Applied Biosystems, Foster City, CA). Real-
time quantitative PCR was performed in duplicate samples using the StepOne
real-time PCR system as follows: 95 °C for 10min; 40 cycles of (95 °C, 15 s, and
60 °C, 1min).
To induce gene expression in the mPFC, AAV DJ-CAGGS-Nfatc4-P2A-

EmGFP or AAV DJ-CAGGS-EGFP vectors (1.0 × 1012 vg/ml) were bilaterally
injected into the mPFC (+1.7 AP, ±0.4 ML, −1.8 DV) of C57BL/6 male mice
at 9 weeks old by microinjection tube connected to a micro-infusion pump
(1 μl/site, 0.5 μl/min) [61]. Three weeks after injection, saline (10ml/kg) or
LPS (1.0 mg/kg) was administered i.p. to mice. Subsequently, behavioral
tests such as locomotion test and FST were performed. After behavioral
tests, the bilateral medial prefrontal cortex (mPFC) was collected rapidly
and stored at −80°C until bioanalysis. The weight of spleens was recorded
immediately after spleen removal.
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Western blot analysis
Detailed methods for Western blot analysis were shown in the supple-
mental information.

Statistical analysis
The data were shown as mean ± standard error of the mean (S.E.M.).
Analysis was performed using PASW Statistics 20 (formerly SPSS Statistics;
SPSS). A test of homogeneity of variance for all animal data showed no
significant difference. The data were analyzed using the one-way analysis
of variance (ANOVA), followed by post-hoc Tukey test. The data using
postmortem brain samples were analyzed using Mann-Whitney U-test.
Correlation was determined by Pearson correlation. The P-values of less
than 0.05 were considered statistically significant.

RESULTS
Prophylactic effects of (R)-ketamine on depression-like
phenotype, splenomegaly, and systemic inflammation after
LPS administration
Saline or LPS (1.0 mg/kg) was administered to mice 6 days after
injection of saline or (R)-ketamine (10 mg/kg) (Fig. 1A). Body
weight of mice was significantly decreased 24 h after LPS injection
(Fig. 1B). Pretreatment with (R)-ketamine significantly attenuated
LPS-induced body weight loss (Fig. 1B). There were no significant
changes in the locomotor activity among the three groups
(Fig. 1C). Pretreatment with (R)-ketamine significantly ameliorated
LPS-induced increase in the immobility time of FST (Fig. 1D). In

Fig. 1 Prophylactic effects of (R)-ketamine on depression-like phenotype, splenomegaly and inflammatory cytokines after LPS injection.
A Treatment schedule. Adult mice were intraperitoneally (i.p.) injected with lipopolysaccharides (LPS, 1.0 mg/kg) or saline (10ml/kg). (R)-
ketamine (10mg/kg) or saline (10ml/kg) was i.p. injected to mice 6 days before LPS injection. Locomotion test and forced swimming test (FST)
were performed 23 and 24 h after the injection of saline or LPS. Blood and spleens were collected after behavioral tests. B Body weight change
(one way ANOVA: F2,24= 41.19, P < 0.0001). C Locomotion test (one way ANOVA: F2,24= 0.034, P= 0.966). D FST (one way ANOVA: F2,24= 4.738,
P= 0.018). E Representative picture of spleen and spleen weight (one way ANOVA: F2,27= 27.06, P < 0.001). F The ratio of spleen weight/body
weight (one way ANOVA: F2,27= 44.13, P < 0.0001). G Plasma levels of interleukin (IL)-6 (one way ANOVA: F2,27= 12.24, P= 0.0002). H Plasma
levels of tumor necrosis factor (TNF)-α (one way ANOVA: F2,27 =17.08, P < 0.0001). I There was a positive correlation (R= 0.791, P < 0.0001)
between spleen weight and plasma IL-6. (J): There was a positive correlation (R= 0.626, P= 0.0002) between spleen weight and plasma TNF-α.
The data represent mean ± S.E.M. (n= 8–11). *P < 0.05, **P < 0.01, ***P < 0.0001. N.S., not significant.
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contrast, pretreatment with (R)-norketamine (10 mg/kg) or (2R,6R)-
HNK (10 mg/kg), two metabolites of (R)-ketamine, did not show
prophylactic effects for body weight loss, splenomegaly and
depression-like phenotype in LPS-treated mice (Figure S1).
We previously reported that LPS caused the splenomegaly and

the increased ratio of spleen weight to body weight in the mice,
and that spleen weight was associated with systemic inflamma-
tion [50]. Pretreatment with (R)-ketamine (10 mg/kg) significantly
attenuated the splenomegaly and the increased ratio of spleen
weight to body weight in mice after LPS administration (Fig. 1E, F).
Pretreatment with (R)-ketamine significantly attenuated the
increased blood levels of IL-6 and TNF-α in the LPS-treated mice
(Fig. 1G, H). There were significantly positive correlations between
plasma IL-6 (or TNF-α) levels and spleen weight in the three
groups (Fig. 1I, J). The data suggest that LPS-induced systemic
inflammation might be related with spleen weight, consistent with
our previous reports [50, 62].

RNA-sequencing analysis of PFC samples
To identify the novel molecular targets for the prophylactic effects
of (R)-ketamine (10 mg/kg, 6 days before), we collected PFC
samples 24 h after administration of LPS (1.0 mg/kg). We
performed RNA-sequencing analysis of PFC samples from animals
treated with either (R)-ketamine or saline (Fig. 2A). The canonical
pathway results identified a total of 7 pathways. Among these
pathways, the role of NFAT (nuclear factor of activated T cells) in
regulation of immune response signaling pathway had the highest
inhibition score, and 5 genes including CD4, CD79b, H2-ab1, H2-aa,
Nfatc4 are related to NFAT pathway (Fig. 2B). Subsequent diseases
and functions analysis shows that the differentially expressed
genes were associated with inflammation (Fig. 2C). In the network
analysis, we observed 18 genes, and the top functions of this
network included cell morphology, cell-to-cell signaling interac-
tion, and immunoglobulin (Fig. 2D).
Next, we measured gene expression of several genes (Nfatc4,

Cd4, Cd79b, H2-ab1, and H2-aa) for NFATc4 signaling in the PFC
samples. We found increased expression of Nfatc4, Cd4, Cd79b, H2-
Ab1, and H2-Aa in the PFC from LPS-treated mice (Fig. 3A, E–H).

Pretreatment with (R)-ketamine (10 mg/kg) significantly attenu-
ated the increased expression of these genes in the PFC of LPS-
treated mice (Fig. 3A, E–H). There were positive correlations
between expression of Nfatc4 in the PFC and spleen weight (or
blood levels of IL-6, TNF-α) from three groups (Fig. 3B, C),
indicating that Nfatc4 expression in the PFC may be associated
with systemic inflammation.
Western blot analysis showed that pretreatment with (R)-

ketamine (10 mg/kg) significantly ameliorated the reduction of
postsynaptic density protein 95 (PSD-95) in the PFC of LPS-treated
mice (Fig. 3I). Furthermore, Western blot analysis using post-
mortem brain samples showed that the levels of NFATc4 in the
parietal cortex from MDD patients were significantly higher than
those of controls (Fig. 3J).
Pretreatment with (R)-ketamine (10 mg/kg) significantly attenu-

ated splenomegaly and increased levels of IL-6 and TNF-α in the
LPS-treated mice (Figure S2). Furthermore, there were positive
correlations between spleen weight (or IL-6, TNF-α) and expres-
sion of several genes (i.e., Cd4, Cd79b, H2-Ab1) in the PFC from
three groups (Figure S2). The data suggest that gene expression of
NFATc4 signaling in the PFC may be associated with systemic
inflammation.

Effects of NFAT inhibitors on LPS-induced depression-like
phenotype
To study the role of NFATc4 signaling in LPS-induced depression-
like phenotype, two NFAT inhibitors (NFAT inhibitor and CysA)
were used (Fig. 4A, H). Pretreatment with the NFAT inhibitor
(10 μM, 2 μl, i.c.v., 60 min) significantly attenuated LPS-induced
increase in the immobility time of FST (Fig. 4D), without significant
effects on LPS-induced body weight loss, splenomegaly, and
locomotion (Fig. 4B–E). The NFAT inhibitor significantly attenuated
increased blood levels of IL-6 in the LPS-treated mice (Fig. 4F). The
NFAT inhibitor slightly attenuated increased blood levels of TNF-α
in the LPS-treated mice although statistical analysis did not reach
significance (Fig. 4G).
Furthermore, pretreatment with NFAT inhibitor CysA (40 mg/kg,

i.p., 60 min) significantly inhibited LPS-induced increase in the

R-KT+LPS vs SAL+LPS
(1 day after injection)

whole tissue RNA-seq

R-KT+LPS vs SAL+LPS (94 DRGs)
(P value < 0.05, |log2FC| > 1 )

81 13

Down

A

B C

5 molecules associated with Role of NFAT in Regulation of the Immune Response 

B Cell Development

Role of NFAT in Regulation of the Immune Response

iCOS-iCOSL Signaling in T Helper Cells

CD28 Signaling in T Helper Cells

Th1 Pathway

Calcium-induced T Lymphocyte Apoptosis

PKCӨ Signaling in Lymphocytes

D

Fig. 2 Canonical pathway, protein functional network and diseases analysis for differentially genes in the PFC after LPS injection. A Adult
mice were i.p. injected with LPS (1.0 mg/kg) 6 days after i.p. administration of (R)-ketamine (10 mg/kg) or saline (10ml/kg). For RNA-
sequencing, PFC samples were collected 24 h after injection of LPS. B Top 7 canonical pathways altered in the PFC were identified by
Ingenuity Pathway Analysis (IPA). The role of NFAT in regulation of the immune response signaling pathway had the highest inhibition scores
(P= 9.85E−05, z-score= –2.236). C IPA constructs identified relationships between the differentially expressed genes and associated disorders.
D The most significant molecular network by IPA pathway enrichment analysis. IPA Z-score indicates whether the pathway is predicated to be
inhibited (blue) or activated (red). In some cases, activation or inhibition cannot be predicated (gray). The shapes of the proteins imply their
molecular classes as outlined in the legend. Solid lines indicate direct interaction whereas dashed line correspond to indirect relationship
among the interacting proteins. The arrows indicate modulatory effect of a protein on its interacting proteins.
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immobility time of FST (Fig. 4J) without significant effects in the
body weight loss (Fig. 4I). These data show that similar to (R)-
ketamine, NFAT inhibitors can show prophylactic effects for LPS-
induced depression-like behavior.

Effects of NFATc4 knockdown on LPS-induced depression-like
phenotype
We further studied the impact of NFATc4 knockdown on LPS-
induced depression-like phenotype, splenomegaly, and increased
plasma inflammatory cytokines. AAV-U6-shNfatc4-CAGGS-EmGFP
or AAV-CAGGS-EGFP were stereotaxic injected into the mPFC to
induce knockdown of NFATc4 in the mPFC (Fig. 5A). Western
blotting analysis confirmed the knockdown efficiency of NFATC4
and p-NFATC4 in the mPFC (Fig. 5C, D). NFATc4 knockdown
significantly ameliorated LPS-induced increase in the immobility
time of FST (Fig. 5F). In contrast, NFATc4 knockdown in the mPFC
did not affect body weight loss (Fig. 5E) and splenomegaly in the

LPS-treated mice (Fig. 5G). NFATc4 knockdown in the mPFC
significantly attenuated increased levels of IL-6, but not TNF-α, in
the LPS-treated mice (Fig. 5H, I). The data suggest that NFATc4 in
the mPFC plays a role in depression-like phenotype and increases
in blood levels of IL-6 of LPS-treated mice.

The roles of TrkB in the prophylactic effects of (R)-ketamine in
LPS model
We previously reported the role of brain-derived neurotrophic
factor (BDNF) and its receptor, tropomyosin-receptor-kinase B (TrkB)
signaling in the beneficial actions of (R)-ketamine [32, 37, 53–56]. To
investigate the roles of BDNF-TrkB signaling in the prophylactic
effects of (R)-ketamine on LPS-induced depression-like phenotype,
TrkB antagonist ANA-12 (0.5mg/kg) was injected to mice 30min
before injection of (R)-ketamine (Figure S3). There were no changes
in locomotion among the five groups (Figure S3B). Pretreatment
with ANA-12 significantly blocked the antidepressant-like effects of

Fig. 3 Prophylactic effects of (R)-ketamine on the expression of NFATc4 in the PFC after LPS injection. A Nfatc4 mRNA in the PFC (one way
ANOVA: F2,28= 17.84, P < 0.0001). B There was a positive correlation (R= 0.744, P < 0.0001) between spleen weight and Nfatc4 mRNA in the
PFC. C There was a positive correlation (R= 0.544, P= 0.002) between plasma interleukin (IL)-6 and Nfatc4 mRNA in the PFC. D There was a
positive correlation (R= 0.637, P < 0.0001) between plasma tumor necrosis factor (TNF)-α and Nfatc4mRNA in the PFC. E Cd4mRNA in the PFC
(one way ANOVA: F2,28= 16.16, P < 0.0001). F Cd79b mRNA in the PFC (one way ANOVA: F2,28= 30.40, P < 0.0001). G H2-ab1 mRNA in the PFC
(one way ANOVA: F2,28= 12.81, P= 0.0001). H H2-aa mRNA in the PFC (one way ANOVA: F2,28= 5.617, P= 0.009). I The protein expression of
PSD-95 in the PFC (one way ANOVA: F2,27= 5.506, P= 0.010). The data represent mean ± S.E.M. (n= 9–11). *P < 0.05, **P < 0.01, ***P < 0.001.
J The protein expression of NFATc4 in the parietal cortex from controls (n= 15) and MDD patients (n= 15) (Man–Whitney U-test: U= 60.00,
P= 0.030). The data represent mean ± S.E.M. (n= 15). *P < 0.05.

L. Ma et al.

5

Translational Psychiatry           (2022) 12:27 



(R)-ketamine in the LPS-treated mice (Figure S3C). Our data suggest
that (R)-ketamine shows prophylactic effects on LPS-induced
depression-like phenotype via BDNF-TrkB signaling.

DISCUSSION
The main findings of this study are as follows: First, pretreatment
(6 days) with (R)-ketamine could ameliorate LPS-induced

depression-like phenotype, splenomegaly, and increased blood
levels of pro-inflammatory cytokines in mice. In contrast, (R)-
norketamine and (2R,6R)-HNK did not show prophylactic effects in
the same model. Second, RNA-sequencing and IPA revealed the
role of NFATc4 signaling in the PFC for prophylactic effects of (R)-
ketamine in the LPS-induced model. RT-PCR revealed the
increased expression of several genes (Nfatc4, Cd4, Cd79b, H2-
Ab1, H2-Aa) of NFATc4 signaling in the PFC of LPS-treated mice.

Fig. 4 Effects of NFAT inhibitors on depression-like phenotype, spleen weight and pro-inflammatory cytokines after LPS injection.
A Treatment schedule. Mice were i.p. injected with LPS (1.0mg/kg) or saline (10ml/kg). NFAT inhibitor (10 μM, 2 μl) or saline (2 μl) was
administered i.c.v. to mice 60min prior to LPS injection. Locomotion test and forced swimming test (FST) were performed 23 and 24 h after the
injection of saline or LPS, respectively. Blood and spleens were collected after behavioral tests. B Body weight change (one way ANOVA: F2,29=
27.72, P < 0.0001). C Locomotion test (one way ANOVA: F2,29= 2.589, P= 0.092). D FST (one way ANOVA: F2,29= 6.486, P= 0.005). E Spleen
weight (one way ANOVA: F2,28= 26.41, P < 0.0001). F Plasma levels of IL-6 (one way ANOVA: F2,28= 28.67, P < 0.0001). G Plasma levels of TNF-α
(one way ANOVA: F2,28= 5.013, P= 0.014). H Treatment schedule. Mice were i.p. injected with LPS (1.0mg/kg) or saline (10ml/kg). Cyclosporin A
(CysA: 40mg/kg) or vehicle (10% DMSO, 10ml/kg) was i.p. injected to mice 60min prior to LPS injection. Locomotion test and FST were
performed 23 and 24 h after the injection of saline or LPS, respectively. I Body weight change (one way ANOVA: F2,27= 90.99, P < 0.0001). J FST
(one way ANOVA: F2,27= 10.86, P= 0.0003). The data represent mean ± S.E.M. (n = 10–12). *P < 0.05, **P < 0.01, ***P < 0.001. N.S., not significant.
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Furthermore, (R)-ketamine significantly attenuated the increased
expression of these genes in the PFC of LPS-treated mice. There
were positive correlations between the expression of Nfatc4 mRNA
in the PFC and spleen weight (or blood levels of IL-6, TNF-α) from
three groups. In addition, we found the increased expression of
NFATC4 protein in the parietal cortex of MDD patients compared to
controls. Third, pharmacological inhibitors of NFAT showed
prophylactic antidepressant-like effects in the LPS-treated mice,
indicating a role of NFAT signaling in the prophylactic
antidepressant-like effects of (R)-ketamine. Fourth, knockdown of
Nfatc4 gene in the mPFC by AAV blocked LPS-induced increases in
the immobility time of FST, suggesting a role of NFATc4 in the mPFC
in the prophylactic effects of (R)-ketamine. Lastly, pretreatment with
TrkB inhibitor ANA-12 significantly blocked prophylactic effects of
(R)-ketamine in the LPS-treated mice. Overall, it appears likely that
(R)-ketamine can exert sustained prophylactic antidepressant-like
effects by decreasing NFATc4 signaling in the PFC.
We found that (R)-ketamine showed a sustained (6 days)

prophylactic effect in inflammation model of depression; however,
(R)-norketamine and (2R,6R)-HNK did not show prophylactic
effects in the same model. We previously reported that (R)-
norketamine and (2R,6R)-HNK did not show antidepressant-like
effects in LPS-induced inflammation, LH, and CSDS models of
depression [35, 63]. Therefore, it is likely that (R)-ketamine itself,
but not these metabolites, could have prophylactic effects in LPS-
treated mice.

Despite of short half-life of (R)-ketamine in rodents [33, 34], (R)-
ketamine showed sustained (6 days) prophylactic effects in LPS-
treated mice. The data suggest that altered signaling pathway
induced by (R)-ketamine may play a role in its prophylactic effects.
RNA-seq analysis and IPA identified a role of NFATc4 signaling in
the PFC for prophylactic effects of (R)-ketamine. Using two NFAT
inhibitors and AAV for Nfatc4, we found that NFATc4 signaling in
the mPFC might play a role in the sustained prophylactic effects of
(R)-ketamine for LPS-induced depression.
The transcription factor NFATc4 is localized in neuron, but not

astrocyte, microglia, and oligodendrocyte, in the brain [64].
Interestingly, NFATc4 is demonstrated to play a key role in
BDNF-mediated synaptic plasticity, resulting in long-term changes
in neuronal functions [52, 65]. In this study, we found positive
correlations between Nfatc4 gene expression in the PFC and
spleen weight (or pro-inflammatory cytokines). Considering the
crucial role of NFATc4 in immune system [66, 67], it seems that
NFATc4 in the PFC may regulate systemic inflammation in mice via
brain-body crosstalk. However, the precise mechanisms under-
lying (R)-ketamine-induced reduction of NFATc4 signaling are
currently unknown.
We previously reported that LPS caused splenomegaly in mice,

and that spleen weight of LPS-treated mice was associated with
blood levels of pro-inflammatory cytokines in these mice [50, 62].
In this study, pretreatment with (R)-ketamine ameliorated
splenomegaly in the LPS-treated mice through anti-inflammatory

Fig. 5 Effects of NFATc4 knockdown on depression-like phenotype, spleen weight and inflammatory cytokines after LPS injection.
A Treatment schedule. AAV-U6-shNfatc4-CAGGS-EmGFP or AAV-CAGGS-EGFP was injected bilaterally to mPFC 21 days prior to saline (10 ml/
kg) or LPS (1.0 mg/kg) injection. Locomotion test and FST were performed 23 and 24 h after the injection of saline or LPS, respectively. Blood,
spleen and mPFC were collected after behavioral tests. B Schematic of AAV-mediated Nfatc4 down expression in the mPFC. The diagram
shows the AAV constructs and stereotaxic injection of AAV into the mPFC. C The protein expression of phosphorylated NFATc4 (p-NFATc4) in
the mPFC (one way ANOVA: F2,26= 5.440, P= 0.011). D The protein expression of total NFATc4 in the mPFC (one way ANOVA: F2,26= 6.673, P=
0.005). E Body weight change (one way ANOVA: F2,26= 36.65, P < 0.0001). F FST (one way ANOVA: F2,26= 8.409, P= 0.002). G Spleen weight
(one way ANOVA: F2,26= 23.94, P < 0.0001). H Plasma levels of IL-6 (one way ANOVA: F2,26= 8.580, P= 0.001). I Plasma levels of TNF-α (one way
ANOVA: F2,26= 79.13, P < 0.0001). The data represent mean ± S.E.M. (n= 9–11). *P < 0.05, **P < 0.01, ***P < 0.001. N.S., not significant.
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effects although (R)-ketamine was washout from the body. In
contrast, the NFAT inhibitors or AAV in the mPFC did not affect
splenomegaly in the LPS-treated mice. It is unlikely that gene
knockdown of NFATc4 by AAV in the mPFC can affect LPS-induced
splenomegaly in mice. Thus, it seems that other mechanisms
except NFATc4 may play a role in the effects of (R)-ketamine on
the LPS-induced splenomegaly. In contrast, gene knockdown of
NFATc4 by AAV in the mPFC significantly attenuated increased
blood levels of IL-6 in the LPS-treated mice via brain-body
communication. Precise mechanisms underlying the relationship
between gene knockdown of Nfatc4 in the mPFC and blood levels
of IL-6 remain unclear. Recently, we reported that splenomegaly in
CSDS susceptible mice could be normalized after single injection
of (R)-ketamine [68]. It is possible that brain–spleen axis may play a
role in the beneficial effects of (R)-ketamine on depression-like
phenotype and splenomegaly [19, 22], although further study is
needed.
Depression has high rate of recurrence, resulting in significant

personal and public health consequences [69]. Therefore, preven-
tion of recurrence using cognitive behavioral therapy and
pharmacological treatment is extremely important. Given potent
prophylactic effects of (R)-ketamine, it is possible that (R)-ketamine
might prevent the recurrence in depressed patients. It is,
therefore, of interest to investigate whether (R)-ketamine can
reduce the recurrent rate in depressed patients.
In conclusion, this study shows that NFATc4 signaling in the PFC

might contribute to the prophylactic effects of (R)-ketamine in
inflammation model of depression. It is likely that (R)-ketamine or
NFATc4 inhibitors may produce prophylactic effects for
inflammation-related depression in humans.

DATA AVAILABILITY
The RNA sequencing data have been deposited to the NCBI Sequence Read Archive
and are available at the accession number PRJNA768662.
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