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The association between depression and metabolic syndrome
and its components: a bidirectional two-sample Mendelian
randomization study
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Observational studies suggested a bidirectional correlation between depression and metabolic syndrome (MetS) and its
components. However, the causal associations between them remained unclear. We aimed to investigate whether genetically
predicted depression is related to the risk of MetS and its components, and vice versa. We performed a bidirectional two-sample
Mendelian randomization (MR) study using summary-level data from the most comprehensive genome-wide association studies
(GWAS) of depression (n= 2,113,907), MetS (n= 291,107), waist circumference (n= 462,166), hypertension (n= 463,010) fasting
blood glucose (FBG, n= 281,416), triglycerides (n= 441,016), high-density lipoprotein cholesterol (HDL-C, n= 403,943). The
random-effects inverse-variance weighted (IVW) method was applied as the primary method. The results identified that genetically
predicted depression was significantly positive associated with risk of MetS (OR: 1.224, 95% CI: 1.091–1.374, p= 5.58 × 10−4), waist
circumference (OR: 1.083, 95% CI: 1.027–1.143, p= 0.003), hypertension (OR: 1.028, 95% CI: 1.016–1.039, p= 1.34 × 10−6) and
triglycerides (OR: 1.111, 95% CI: 1.060–1.163, p= 9.35 × 10−6) while negative associated with HDL-C (OR: 0.932, 95% CI: 0.885–0.981,
p= 0.007) but not FBG (OR: 1.010, 95% CI: 0.986–1.034, p= 1.34). No causal relationships were identified for MetS and its
components on depression risk. The present MR analysis strength the evidence that depression is a risk factor for MetS and its
components (waist circumference, hypertension, FBG, triglycerides, and HDL-C). Early diagnosis and prevention of depression are
crucial in the management of MetS and its components.
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INTRODUCTION
Depression is a common mental health illness. The lifetime
prevalence of depression varies across countries with a midpoint
of about 10.0% and is generally higher in higher-income than
lower-income countries [1–3]. Globally, depression is estimated to
be one of the leading causes of “years lost” to a disability, resulting
in a loss of individual productivity, placing a severe economic
burden [4–6]. In its most severe cases, depression can lead to
suicide [7–9], contributing to the increased risk of mortality [10].
With the increasing incidence [11], depression is one of the most
challenging public health issues today.
Another big health threat is metabolic syndrome (MetS), which

is defined as a clustering of abdominal obesity, hyperglycemia,
elevated blood pressure, and dyslipidemia [12]. The prevalence of
MetS varies in different ethnicity due to the criteria used for MetS
definitions and has steadily risen worldwide [13, 14]. It was
estimated that MetS has affected over a billion people globally
[13]. MetS and its components are associated with various
diseases and overall mortality, making it a severe health problem
and economic burden [15, 16].
As both depression and MetS are risk factors for cardiovascular

disease [15, 17], their relationship has been attracted extensive

attention in recent years [18, 19]. Epidemiological data have
consistently indicated a co-occurrence of depression with MetS
and its components [20–22]. Several meta-analyses and reviews
also suggested a bidirectional relationship between depression
and MetS [23–26]. It has been shown that depression increased
MetS risk by 34% in cross-sectional studies and 52% in cohort
studies. Conversely, patients with MetS had a 1.27-fold (cross-
sectional studies) to 1.49 times (cohort studies) higher risk of
depression than controls [23]. However, the bidirectional correla-
tions between depression and MetS and its components identified
in observational studies might be susceptible to confounding
factors, small sample size, limited follow-up time, and reverse
causation, which might mislead the conclusion [27]. Thus, the
potential causality of depression in determining the risk of MetS
and its components remains elusive and vice versa.
Mendelian randomization (MR) is a more robust method of

causal inferences, which could overcome the limitations of
observational studies [28, 29]. MR uses genetic variations that
are robustly associated with exposure as an instrument, which
might effectively avoid the influence of confoundings and reverse
causes [28, 30–32]. Genome-wide association studies (GWAS) have
identified thousands of variants related to complex exposures,
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which has pushed the widespread use of MR to a new climax
[33, 34]. In this study, we utilized a bidirectional two-sample MR
method to examine bidirectional causality between depression
and MetS and its components.

MATERIALS AND METHODS
Study design overview
A brief description of this bidirectional MR design is shown in Fig. 1. The
components of MetS were charactered with five elements according to the
National Cholesterol Education Program Adult Treatment Panel III (NCEP/
ATP III) criteria [35]. We tested the causal relationship of depression on
MetS and its components. We adopted the summary-level statistics from
the most comprehensive meta-analyses of GWASs for MetS, hypertension,
waist circumference, fasting blood glucose (FBG), serum triglycerides (TG),
and serum high-density lipoprotein cholesterol (HDL-C). In the reverse-
direction MR analysis, we assessed the association between genetically
predicted MetS and its components and depression risk. Summary-level
data from the most extensive meta-analyses of GWASs for depression was
also extracted. Thus, we performed a total of 12 MR analyses to investigate
the bidirectional association between depression and metabolic syndrome
and its components. MR depends on three key assumptions (Fig. 1): ①
genetic instruments are significantly associated with exposure of interest;
② genetic instruments are not related to any confounding factors of the
exposure-outcome association; ③ genetic instruments affect the outcome
only via the exposure [36]. Details of the data sources used in this study are
summarized in Supplementary Table 1. To minimize racial mismatches, our
analyses are restricted to most of the participants of European descent.

Selection of genetic instruments for MR analyses
For each exposure factor, the SNPs were filtered according to the three
main assumptions of MR. Firstly, we included SNPs at a threshold of
genome-wide significance (p < 5 × 10−8). Then, we retained variants with
the lowest p value as independent instruments based on linkage
disequilibrium (LD) as measured by r2 (when r2 > 0.1 in the European
1000 Genome reference panel). Finally, to quantify the strength of

instrumental variables, we calculated F-statistics, and a threshold of the F-
statistics >10 was typically recommended for MR analyses.

Data sources and SNP selection for depression
We used the hitherto largest published GWAS for depression, which
included participants from 23andMe, Psychiatric Genomics Consortium
(PGC), and UK Biobank with a total of 2,113,907 subjects (660,418 cases and
1,453,489 controls) [37]. Totally, 97 independent genetic SNPs were
identified with genome-wide significant levels (p < 5 × 10−8) and were
selected as genetic instruments for depression. The reverse-direction MR
analyses used the summary-level data from PGC and UK Biobank with
500,199 individuals, which were publicly available (Supplementary Table 1).

Data sources and SNP selection for MetS
Summary-level data for MetS were taken from the most comprehensive
GWAS in UK Biobank [38], consisting of 291,107 individuals (59,677 cases
and 231,430 controls) with nonmissing data on genotypes, outcomes, and
covariates. For reverse MR analyses, 79 independent loci associated with
MetS were identified in this GWAS with a genome-wide threshold of
significance (p < 5 × 10−8), and we selected the satisfying variants for the
construction of the instrumental variables (Supplementary Table 1).

Data sources and SNP selection for the components of MetS
For waist circumference, we extracted the GWAS summary data from the
Medical Research Council Integrative Epidemiology Unit (MRC-IEU) UK
Biobank GWAS Pipeline, which included 462,166 subjects with European
ancestry [39]. In the reverse-direction MR analyses, we selected 31 variants
with a p value less than 5 × 10−8 recognized from a GWAS [40], which
included up to 224,459 individuals from the Genetic Investigation of
ANthropometric Traits (GIANT) Consortium for the construction of genetic
instruments for waist circumference (Supplementary Table 1).
As to hypertension, the summary statistics were also available from the

MRC-IEU UK Biobank pipeline, which included 463,010 subjects [39].
Twelve variants associated with hypertension at a genome-wide sig-
nificance were identified from a GWAS of 29 studies [41] with 203,006

Fig. 1 Overview of the study design in this bidirectional MR study. AWe performed a total of 12 MR analyses to investigate the bidirectional
association between depression and MetS and its components. B MR analysis depends on three key assumptions. C Sketch of the study
design. MetS metabolic syndrome, FBG fasting blood glucose, TG triglycerides, WC waist circumference, HDL-C high-density lipoprotein
cholesterol.

M. Zhang et al.

2

Translational Psychiatry          (2021) 11:633 



participants (GWAS: 69,395, and follow-up: 133,611) of European descent,
and we selected those SNPs as the genetic instruments for hypertension
(Supplementary Table 1).
For FBG, we obtained the summary-level data from the most

comprehensive GWAS in the meta-analyses of glucose and insulin-related
traits Consortium (MAGIC), which included 281,416 individuals with over
70% were European ancestry and were publicly available data [42]. A total
of 134 SNPs were identified to be significantly associated with FBG (p < 5 ×
10−8) and were selected as instruments for FBG (Supplementary Table 1).
For TG and HDL-C, the summary-level statistics were extracted from the

UK Biobank with above 400,000 participants [43]. For the reverse-direction
MR analyses, the variants were extracted from a most representative GWAS
of 188,577 subjects from the Global Lipids Genetics Consortium (GLGC)
[44]. This GWAS identified 28 and 60 SNPs significantly associated with TG
and HDL-C (p < 5 × 10−8), respectively, and were used as instrumental
variables (Supplementary Table 1).

Statistical analyses
In this study, R2 was calculated to represent the proportion of variance in an
exposure factor explained by the instrumental variables. F-statistic was
calculated to represent the strength of the association between the
instruments and risk of exposure of interest [45]. For binary exposures, the
casual estimate was presented as an odds ratio (OR) and 95% confidence
interval (CI) per log-odds increment in genetically determined risk of the
exposures. As to continuous exposures, the causal estimate was presented
as an OR with a 95% CI per standard deviation (SD) increment in an
exposure. MR analyses utilized the random-effects inverse-variance
weighted (IVW) method as the primary method to estimate the potential
bidirectional causal associations between depression and MetS and its
components as it provides a robust causal estimate in the absence of
directional pleiotropy. Furthermore, we used weighted median, simple
mode, weight mode, and MR-Egger methods for alternative analyses. Then,
we performed tests for directional horizontal pleiotropy by MR-Egger
intercept. We also tested the heterogeneity for MR-Egger regression and
IVW method via Cochran’s Q statistics and funnel plots [46, 47]. In addition,
sensitivity analysis by applying leave-one-out analysis was conducted. Post
hoc power calculation for MR was based on online web tools (https://sb452.
shinyapps.io/power/) [48]. All statistical analyses were performed using the
TwoSampleMR packages in R (version 3.6.3, www.r-project.org/) or Stata 16
(Stata, College Station, TX). All p values are two-tailed. We adopted
Bonferroni-corrected p value < 0.004 (0.05/12= 0.004) to determine
statistical significance in the MR analysis, and a p value less than 0.10
was considered significant in the MR-Egger test and heterogeneity test.

RESULTS
The causal effect of depression on MetS and its components
Among the 97 depression-associated variants, two SNPs were not
available in the summary-level datasets of wais circumference,

hypertension, and triglycerides, and three SNPs were unavailable
for HDL-C datasets. In addition, due to ambiguous palindrome, we
excluded one variant for MetS and FBG, six variants for waist
circumference and hypertension, five SNPs for triglycerides, and
four SNPs for HDL-C. Thus, we finally included 96, 89, 89, 96, 90,
and 90 variants as genetic instruments for MetS, waist circumfer-
ence, hypertension, FBG, triglycerides, and HDL-C in the MR
analyses, respectively. The R2 and F-statistics indicated that all
genetic instruments were suitable for MR analysis, and most of the
statistical power to test an OR of 1.20 was higher than 80.0%
(Table 1).
The results of the MR analyses were shown in Table 2, the

scatter plots and forest plots were presented in Fig. 2 and
Supplementary Fig. 1, respectively. Genetically predicted depres-
sion was significantly positively associated with MetS. The OR with
95% CI of per log-odds increment in depression liability was 1.224
(95% CI: 1.091–1.374; p= 5.58 × 10−4) in the IVW model, which
was consistent with the result of the weight median model. MR-
Egger regression analysis showed no indication of potential non-
horizontal pleiotropy (egger_intercept= 0.002, p= 0.747). The
Cochran’s Q value suggested an obvious heterogeneity (Q=
271.41, p < 0.001) obtained from individual variants, but the funnel
plot (Supplementary Fig. 2) showed an invisible asymmetry of the
MR analyses, indicating no evidence of heterogeneity. Further-
more, the leave-one-out analysis suggested that the observed
association was not significantly changed after removing any
single variant (Supplementary Fig. 3).
As to its components, genetic liability to depression was

positively related to waist circumference, hypertension, and
triglycerides while negatively associated with HDL-C. The ORs
with 95% CIs per log-odds increment in genetically predicted
depression were 1.083 (95% CI: 1.027–1.143; p= 0.003) for waist
circumference, 1.028 (95% CI: 1.016–1.039; p= 1.34 × 10−6) for
hypertension, 1.111 (95% CI: 1.060–1.163; p= 9.35 × 10−6) for
triglycerides, and 0.932 (95% CI: 0.885–0.981, p= 0.007) for HDL-C
in the IVW models (Table 2). No significantly association was
identified for FBG (OR= 1.010; 95% CI: 0.986–1.034; p= 0.423).
Those associations were mostly consistent across other models.
MR-Egger regression analyses indicated that there was no
potential horizontal pleiotropy (all p values >0.10) (Table 2). As
to heterogeneity, Cochran’s Q test indicated obviously hetero-
geneities (all p values of Cochran’s Q < 0.001), however, most of
the funnel plots suggested no evidence of heterogeneity
(Supplementary Fig. 2). In addition, the leave-one-out analysis
showed that the results were not significantly changed after

Table 1. The R2 and F-statistics for the genetic instruments and the power for MR.

Exposure Outcome No. SNP R2 F-statistic Power

Depression Metabolic syndrome 96 0.37% 77.71 99.6%

Depression Waist circumference 89 0.33% 78.75 90.9%

Depression Hypertension 89 0.32% 77.19 90.4%

Depression Fasting blood glucose 96 0.32% 77.99 73.2%

Depression Triglycerides 90 0.33% 78.47 89.8%

Depression HDL-C 90 0.33% 77.00 86.5%

The reverse MR analysis

Metabolic syndrome Depression 73 2.34% 88.13 99.9%

Waist circumference Depression 30 0.76% 55.57 100.0%

Hypertension Depression 10 0.22% 37.21 100.0%

Fasting blood glucose Depression 118 13.56% 230.46 100.0%

Triglycerides Depression 26 2.84% 196.14 100.0%

HDL-C Depression 60 3.32% 107.75 100.0%

HDL-C high-density lipoprotein cholesterol.
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omitting any single SNP, suggesting the stability of the observed
associations (Supplementary Fig. 3).

The causal effect of MetS and its components on depression
In the reverse MR analysis, after excluding the unavailable SNPs in
the summary-level dataset of depression and the palindromic
SNPs, we utilized 73 variants for MetS, 30 variants for waist
circumference, ten variants for hypertension, 118 variants for FBG,
26 variants for triglycerides, and 60 variants for HDL-C as genetic
instruments, respectively. We had high statistical power (>80%
power to estimate an OR of 1.20) to assess associations of MetS
and its components with depression (Table 1).
As shown in Table 3, the scatter plots (Supplementary Fig. 4),

and forest plots (Supplementary Fig. 5), the MR results showed
neither MetS nor its five elements were causally related to
depression, with ORs close to 1. Egger’s test showed no potential
horizontal pleiotropy exists but for the relationship between waist
circumference and FBG and risk of depression. Cochran’s Q test
and funnel plots (Supplementary Fig. 6) indicated obviously
heterogeneities except for the association between hypertension
and risk of depression. The leave-one-out analysis also revealed
the stability of the results (Supplementary Fig. 7).

DISCUSSION
In this bidirectional two-sample MR study, we found that
genetically predicted depression was significantly positively
associated with risk of MetS, waist circumference, hypertension,
and triglycerides while negatively associated with HDL-C. The
reverse MR analyses observed no evidence that liability to MetS
and its components was associated with depression.

Epidemiological data have been consistently proposed that
depression was positively correlated with MetS risk [20, 49, 50].
Several meta-analyses of cohort studies suggested that depression
was an independent risk factor for MetS, which agrees with our
results [24, 25]. As to the reverse direction, observational studies on
the effect of MetS on depression risk were inconclusive. Some
cohort studies found that MetS could not independently predict
depression risk [51, 52], however, some publications proposed a
significant positive association [53, 54]. Our MR analysis showed no
evidence supporting a determinate causal effect of MetS on
depression, suggesting that the observed association is likely due
to confoundings, such as physical activity [55, 56] and diet [57]. In
addition, Koponen et al. found that MetS was a risk factor for
depression only in females [58]. A prospective cohort study in the
French population showed MetS associated with new-onset
depressive symptoms in the younger-aged group but not in
older-aged subjects [53]. Those data suggested that depression risk
in the MetS population might differ depending on the definition of
MetS and the participants’ characteristics such as age and sex.
As for the components of MetS, a meta-analysis suggested

depression was positively associated with central obesity [59]. In
addition, subjects with depression have a significant increase in
triglycerides levels and a decrease in HDL-C levels [21, 60]. A cross-
sectional study in Iran also showed that depression was associated
with elevated blood pressure in the elderly, especially men [61].
Consistent with these evidence, our MR analyses proposed that
genetically predicted depression was correlated with high waist
circumference (an indicator of abdominal obesity) and triglycer-
ides, lower HDL-C, and hypertension. However, we did not identify
a causal relationship between depression and high FBG, although
some observational studies pointed to an epidemiological

Fig. 2 The scatter plots of the association between genetically predicted depression on MetS and its components. MetS metabolic
syndrome, FBG fasting blood glucose, TG triglycerides, WC waist circumference, HDL-C high-density lipoprotein cholesterol.
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association between them [21, 22, 49]. In contrast, Tang et al.
performed an MR analysis using summary-level data from the
DIAbetes Genetics Replication And Meta-analysis (DIAGRAM)
consortium indicated a positive genetic correlation was present
between major depression and type 2 diabetes [62]. This paradox
might be due to racial differences, as about 30% of the population
in MAGIC were non-European ancestry. For MetS and its
components associated with depression, the evidence from
epidemiological studies have been inconsistent [51, 63], and no
positive correlations were observed in our MR analyses. However,
potential horizontal pleiotropy was founded for the associations
between waist circumference and FBG and risk of depression.
Therefore, further studies were wanted to investigate the causal
associations between these factors.
Although the exact mechanisms underlying depression to MetS

remain unclear, different hypotheses have been put forward. Firstly,
individuals with depression or major depression are prone to have a
sedentary lifestyle and a diet rich in fat or carbohydrates [64], leading
to an increased risk of developing MetS. Secondly, depression and
MetS share common pathophysiological mechanisms in the stress
system, such as autonomic nervous system disorder and abnormal
activation of the hypothalamus-pituitary-adrenal (HPA) axis [65]. It
has been shown that patients with depression present an increased
HPA activity [66], and the dysregulation of the HPA axis could affect
MetS via influencing abdominal glucose metabolism, fat accumula-
tion, and blood pressure regulation [23]. For example, the activation
of the HPA axis resulted in higher levels of cortisol and cortisone [67].
A typical effect of cortisol is to redistribute adipose tissue around the
abdominal area, leading to central obesity in the long term [68]. In
addition, findings have supported the critical roles of low-grade
systemic inflammation, elevated oxidative and nitrosidative stress in
depression and MetS [65]. Thirdly, conventional antidepressants may
have direct side effects on MetS and its components [69]. For
instance, tricyclic antidepressant (TCA) use increased the risk of MetS
and weight gain [70]. The usage of serotonin-norepinephrine
reuptake inhibitors (SNRIs) has been associated with a higher risk
for hypertension [71].
Traditional observational studies suggested a bidirectional

relationship between depression and MetS. It might be biased
by potential confounding and reverse causality, such as unhealthy
lifestyle, antidepressant usage. A key strength of this MR study is
that our findings avoided reverse causality and minimized residual
confounding. Another strength is that we implemented the most
comprehensive dataset for the exposures and the most extensive
summary-level data for risk of depression, MetS, and its
components, therefore, the power to investigate causal associa-
tions was high and the estimated effect magnitudes were more
accurately. However, our study also has limitations. First, the
functions of the genetic instruments and how they affect the risk
factors were not fully understood. Second, we still can’t remove
the potential pleiotropy effect that might be concealed by the
small number of genetic instruments or small sample size,
although the MR-egger intercept showed little horizontal pleio-
tropism. Third, obvious heterogeneities obtained from individual
variants by the Cochran’s Q value were present in the MR analyses.
We thus performed the leave-one-out analysis, and the results
indicated the stability of the observed associations.
In conclusion, our bidirectional MR study indicated a causal link

between depression and MetS (and its components), the reverse
direction showed no causal associations. Our findings recommended
that the prevention, management, and treatment for depression
might be enhanced for MetS and its components prevention.
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