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Ibrutinib as a potential therapeutic for cocaine use disorder
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Cocaine use presents a worldwide public health problem with high socioeconomic cost. No current pharmacologic treatments are
available for cocaine use disorder (CUD) or cocaine toxicity. To explore pharmaceutical treatments for tthis disorder and its sequelae
we analyzed gene expression data from post-mortem brain tissue of individuals with CUD who died from cocaine-related causes
with matched cocaine-free controls (n= 71, Mage= 39.9, 100% male, 49% with CUD, 3 samples/brain regions). To match molecular
signatures from brain pathology with potential therapeutics, we leveraged the L1000 database honing in on neuronal mRNA
profiles of 825 repurposable compounds (e.g., FDA approved). We identified 16 compounds that were negatively associated with
CUD gene expression patterns across all brain regions (padj < 0.05), all of which outperformed current targets undergoing clinical
trials for CUD (all padj > 0.05). An additional 43 compounds were positively associated with CUD expression. We performed an in
silico follow-up potential therapeutics using independent transcriptome-wide in vitro (neuronal cocaine exposure; n= 18) and
in vivo (mouse cocaine self-administration; n= 12–15) datasets to prioritize candidates for experimental validation. Among these
medications, ibrutinib was consistently linked with the molecular profiles of both neuronal cocaine exposure and mouse cocaine
self-administration. We assessed the therapeutic efficacy of ibrutinib using the Drosophila melanogaster model. Ibrutinib reduced
cocaine-induced startle response and cocaine-induced seizures (n= 61–142 per group; sex: 51% female), despite increasing cocaine
consumption. Our results suggest that ibrutinib could be used for the treatment of cocaine use disorder.
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INTRODUCTION
To date, there are no medications approved by the Food and Drug
Administration (FDA) for human CUD or cocaine toxicity.
Approximately 18.1 million people use cocaine globally each year
[1] and roughly 30% of those users reside in the United States [2]
(US). In the US, nearly 1 million individuals meet criteria for
cocaine use disorder [2] (CUD) and 13% of the individuals in North
American substance use treatment facilities are treated for CUD
[1]. Cocaine use increases risk for cardiovascular disease, seizures,
and mental health disorders and contributes to roughly 40% of
drug-related emergency room visits in the US [3]. Cocaine exerts
adverse neurological effects in the brain, and at high doses can
lead to cardiovascular disease and death. Since 1999, cocaine-
involved overdose deaths have increased by 416% in the US and
resulted in 15,883 deaths in 2019 [4].
While behavioral treatments for CUD exist, they have limited

efficacy and are plagued by high dropout rates [5]. Over 20
pharmcologic agents are currently being tested for clinical trials
for CUD. Most of these medications include antidepressants,
antipsychotics, psychostimulants, cognitive enhancing drugs,
anxiolytics, repurposed medications for other substance use
disorders, anticonvulsants/muscle relaxants, and dopamine ago-
nists [6]. These treatments generally have mixed efficacy and often
only demonstrate effects in particular subpopulations.

Medications for cocaine toxicity are also limited. Emergency
room practitioners rely on beta-blockers for cocaine-induced
cardiotoxicity [7] and benzodiazapines for cocaine-induced
seizures [8]. Many candidate compounds for treating CUD and
cocaine toxicity rely on repurposing existing medications, lever-
aging knowledge of cocaine’s pharmacology, and/or the biologi-
cal mechanisms underpinning cocaine pathology. For instance,
therapeutics that enhance cocaine metabolism (cocaine esterases)
have been proposed to reverse cocaine overdose [9].
The molecular brain pathology of CUD is characterized by

persistent cellular and molecular adaptations across multiple brain
regions, particularly in the mesocorticolimbic “reward” pathway.
Molecular adaptations in this brain pathway mediate reward,
motivation, behavioral control, memory formation, incentive
salience, cue, drug and stress-induced drug taking/relapse. One
approach to investigate the molecular brain correlates underlying
CUD (and potentially cocaine toxicity) is to examine gene
expression profiles in post-mortem brain tissue by comparing
individuals with CUD to matched cocaine-free controls. Currently,
three studies are publicly available that assess CUD gene
expression profiles in brain regions associated with addiction:
the dorsal-lateral prefrontal cortex [10] (dlPFC), hippocampus [11]
and midbrain [12]. Previously, medications that consistently target
gene expression across meso-cortico-limbic brain regions have
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demonstrated robust effects for reducing binge drinking in mice
[13]. Thus, screening medications that target transcriptional
patterns across relevant brain regions may help identify FDA-
approved therapeutics that could be repurposed for treating CUD.
Drug-discovery analyses can cut costs and time for developing

effective therapeutics, which on average cost $1.4 billion and take
12–16 years to develop [14]. The NIH-funded Library of Integrated
Network-based Cellular Signatures (LINCS L1000) database facil-
itates drug development strategies by indexing over 1.3 million
expression profiles resulting from an extensive catalog of more
than 48,000 perturbagens (pharmaceuticals, small molecules,
shRNAs, cDNAs, and biologicals) in over 80 human cell lines [15].
This resource allows rapid screening of compounds that may
target the molecular mechanisms of a disease.
Here, we outline a neuronal mRNA drug-repurposing framework

that identifies and validates potential medications for CUD and/or
cocaine toxicity (see Fig. 1 for study overview).

METHODS
Drug-discovery input
Our human sample (n= 71) used publicly available gene expression data
from post-mortem brain tissue of individuals with cocaine use disorder
(CUD; n= 36) and matched cocaine-free controls (n= 35). Data were
obtained from three independent studies (GSM2642566 [10]; SRA029279
[11]; E-GEOD-54839 [12]; Supplementary Table S1).
We conducted drug discovery analyses leveraging the L1000 database,

which catalogues mRNA expression profiles of human cell types exposed to
therapeutic compounds [15]. The input for our drug discovery analysis
included three categories. The first category included all differentially
expressed genes (Benjamini–Hochberg False Discovery Rate (FDR) < 0.05)
associated with CUD in the dlPFC [16], hippocampus [17] and midbrain [12].
Differentially expressed genes might include genes attributed to cocaine-
induced toxicity, cardiac complications or psychiatric comorbidities. Thus,
our second category focused on the genes related to the behavioral
manifestations of CUD, by including the mRNA expression of genes from
the cocaine addiction pathway (Kyoto Encyclopedia of Genes and Genomes
[KEGG] database). The last category sought to further minimize potential
biases of measurement error by employing “landmark” genes (those
directly measured from L1000, rather than imputed) that were part of at
least one of the first two categories. We refer to the input genes for our
drug discovery analysis as CUD genes (Supplementary File S1).

Drug-discovery analyses
We used a signature matching technique to find potential therapeutics for
CUD or cocaine toxicity. Our analyses utilized the L1000 Connectivity

Mapping gene expression profiles from the Library of Integrated Network
Based Cellular Signatures (level 5 data from phase I: GSE92742 and phase II:
GSE70138). Since the focus of the study was to find repurposable
treatments for CUD, we selected all compounds that were FDA approved
or in stages 1–3 of clinical trials – as listed from the drug-repurposing hub
website (https://clue.io/repurposing#download-data; updated 3/24/2020).
We benchmarked our findings with treatments that were currently
undergoing clinical trials for CUD and specifically those that were reported
on the https://clinicaltrials.gov/ website.
We focused our drug discovery analysis on two neuronal cell types used

in the L1000 database: differentiated neuronal cells and neuronal
progenitor cells. In total, we evaluated the potential therapeutic value of
825 compounds, which spanned 3468 individual neuronal mRNA
signatures (in vitro gene expression profiles for a compound measured
at a particular dose, time, and cell line). For each signature, we estimated a
linear Pearson Product-Moment correlation coefficient with the CUD input.
Note that not all medications undergoing clinical trials for CUD were
included in the human neuronal cell lines from the L1000 database
(Supplementary File S2).
To identify potential treatments for CUD, we conducted multi-level

meta-regressions for all 825 compounds using the metafor package in R
[18]. Multi-level meta-regression provides a powerful and interpretable
framework that can accommodate complex data types. Our meta-
regressions adjusted for two random effects: human brain region (or
study) and the three input categories within studies (e.g. KEGGdlPFC,
KEGGHippocampus etc.). We treated each compound as a fixed-effect
incorporating the effect size (r) and sampling variability (se2r) for neuronal
signatures of a compound. Theoretically, if the transcriptional signature of
a compound is negatively associated with a disease, this compound may
‘reverse’ the underlying disease mechanisms and may increase the
likelihood of demonstrating clinical utility. Hence, we emphasized
compounds with negative meta-regression coefficients that also survived
correction for multiple testing (FDR < 0.05) and defined these compounds
as potential therapeutics. As medications with positive associations may
also exert a clinical benefit, we also explored medications that were
positively associated with CUD and report on these in the supplement.
We used a computational follow-up approach to prioritize the potential

therapeutics identified from our drug discovery analysis using two
independent transcriptome-wide datasets. We queried gene expression
studies via GEO on March 2020 to find gold standard preclinical models of
rodent self-administration datasets that matched brain regions and cell
types relevant to the human post-mortem data. The datasets used in our
study included a human neuronal cocaine exposure model [19] (SH-SY5Y
neuroblastoma cells; GSE71939) and a mouse model of cocaine self-
administration [20] (GSE110344). The neuronal cocaine exposure dataset
included 18 samples that assessed mRNA expression (via microarray) for
two time points (6 or 24 h post exposure) across three doses (0μΜ, 1μM
and 5μM; the latter two mimic clinically relevant cocaine levels found in
individuals with cocaine abuse). The mouse RNA-sequencing (RNA-seq)
data were collected from 12–15 male C57BL/6J mice using similar brain
regions to the human samples (ventral tegmental area (VTA), hippocampus
and PFC). Mice pressed a lever to receive intravenous infusions of cocaine
(1mg/kg; 2 h sessions for 2 weeks) or saline. Brain tissue was extracted 24 h
after the last self-administration session and mouse modeling was limited
to orthologous genes listed from the mouse genome informatics dataset
(http://www.informatics.jax.org/).
To maintain consistency, we harmonized the data processing and

analyses for our validation datasets to resemble the human brain data (see
Supplementary Methods). Using multi-level meta-regression, we assessed
whether the potential CUD treatments were also negatively associated
with the differential expression of the CUD genes in the neuronal cocaine
exposure and mouse cocaine self-administration datasets—accounting for
dose and time (neuronal exposure data) or brain region (mouse data) as
random effects. Results from the computational follow-up were used to
prioritize medications for experimental validation.

Behavioral assays
Drosophila melanogaster (Canton-S B strain) were reared on cornmeal-
molasses-yeast medium at 25 °C and 70% humidity under a 12 h light-dark
cycle (lights on at 6:00 am). Cocaine-HCl was obtained from the National
Institute on Drug Abuse under Drug Enforcement Administration license
RA0443159. Flies were food-deprived for 24 h followed by a 20m free-
feeding period. During this period, flies consumed one of four food
formulations containing either no treatment (n= 66 females, n= 61
males), cocaine only (n= 141 females, n= 140 males), cocaine and

Fig. 1 Pictoral overview of the study. This schematic outlines the
stages of the study from drug discovery (top), to computational
follow-up (middle) and in-vivo validation (bottom).
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ibrutinib (n= 142 females, n= 132 males) or ibrutinib only (n= 68 females,
n= 66 males). For all conditions, we observed no significant differences
between ibrutinib treated flies and flies undergoing no treatment (all t=
0.37994, all p > 0.704). Thus, we reported and visualized the differences
between the other three groups. The concentrations of cocaine-HCl and
ibrutinib (Tocris Bioscience; Bristol, UK; Product No: 6813; Batch No: 2A/
247900) were both 0.16% (w/w). The concentrations of cocaine used were
based on optimal concentrations that give rise to phenotypic effects
without causing lethality determined previously [21].
We quantified cocaine consumption in the Drosophila melanogaster

model. All food formulations included 1% (w/w) FD&C Blue #1 dye.
Following behavioral testing for each fly, dye was extracted into 300 µL of
deionized H2O using Fisher brand Bead Mill 4 (Speed: 4 m/s; Time: 15 sec).
To settle fly debris, tubes were centrifuged at 13,000xRCF for 1 min using
an Eppendorf Centrifuge 5430R. To quantify consumption, 100 µL of each
extract was dispensed in duplicate into wells of a 384-well microplate.
Absorbance was measured at 630 nm using a SpectraMax iD5 Microplate
Reader. Dye concentrations were calculated using a standard curve (FD&C
Blue #1 in deionized H2O; 0.0–6.0 µg/mL).
Immediately following exposure, each fly underwent behavioral testing

for startle response induced by a mechanical disturbance. A vial housing a
single fly was dropped through a chute from a height of 42 cm and then
secured in a horizontal position. During the next 45 s, the total time spent
moving and the occurrence of seizures were recorded. Seizure activity was
defined as significant disruption of normal movement with severe tremors
and muscle twitching (see Supplementary File S3). While immobile, seizing,
or grooming, flies were considered stationary. Startle response data were
analyzed using a two-way fixed effects factorial ANOVA model: Y=M+ S
+ T+ S*T+ ε, where Y is the phenotype, M is the mean, S is sex, T is
treatment, S * T is the sex by treatment interaction, and ε is the residual.
We used the type III Sums of Squares due to differing sample sizes across
groups. Post-hoc comparisons were performed using Student’s t tests.
Seizure data were analyzed using Fisher’s exact tests in R.

RESULTS
Drug-discovery input
A schematic overview of the study design is presented in Fig. 1.
Prior to our drug discovery analysis we examined the input data.
We observed minimal overlap among differentially expressed
genes identified across human brain regions (see Supplementary
File S1). Associations among KEGG cocaine addiction genes were
modest and sometimes negative (rmidbrain_hippocampus = −0.31, p =
0.044; rdlPFC_hippocampus = 0.02, p = 0.915; and rmidbrain_dlPFC = 0.36,

p = 0.019). This heterogeneity and individual variation may be one
factor contributing to the difficulty in finding an effective
treatment that targets multiple brain regions and is effective for
all individuals in a population.

Drug-discovery analyses
Our drug discovery analysis discovered 16 medications with gene
expression signatures that were negatively associated with gene
expression associated with CUD in the midbrain, hippocampus
and dlPFC (padj < 0.05; Fig. 2A). These medications had diverse
pharmacological mechanisms of action (Supplementary Table S2)
and outperformed the current pharmaceuticals undergoing
clinical trials for CUD (Fig. 2B). We also show the medications
that were positively associated with CUD in the supplement (see
Supplementary Fig. S2; see Supplementary File S4 for all results).
Next, we employed a computational follow-up of the 16

potential CUD medications using transcriptome-wide data from
preclinical in vitro and in vivo models. Only one compound,
ibrutinib, was negatively associated with neuronal cocaine
exposure (Mr = −0.017, ser= 0.006, p = 0.001; padj = 0.019) and
was trending to be negatively associated with the gene expression
profiles associated with mouse cocaine self-administration (Mr =
−0.017, ser= 0.007, p = 0.007; padj = 0.0732; Fig. 3). No other
medication that was negatively associated with CUD expression
demonstrated significant evidence among preclinical models (see
Supplementary Fig. S3). Using correlations between human CUD
brain data and the in vitro drug discovery data, we found negative
associations between ibrutinib and the expression of genes
involved in dopaminergic and glutamatergic neurotransmission
as well as various immediate early genes, intracellular signaling
cascade genes and putative neuroepigenetic transcripts (Fig. 4).

Validation of potential therapeutic efficacy of ibrutinib in the
Drosophila model
To validate the effectiveness of ibrutinib as a potential therapeutic
for CUD, we evaluated its effects on cocaine-induced phenotypes
in the Drosophila melanogaster model. Drosophila provides an
advantageous model system for studies on cocaine consumption
[22]. The Drosophila dopamine transporter contains a binding site
that can accommodate cocaine [23], and exposure to cocaine
gives rise to motor responses that resemble behaviors observed in

Fig. 2 Drug-discovery results for CUD using human brain data. Panel (A) shows repurposable compounds negatively associated with CUD
gene expression in the brain (all padj < 0.05). Panel (B) shows the results of the medications currently undergoing clinical trials for CUD. The x-
axis represents the weighted average of a compound’s correlation coefficients with the human brain CUD genes and each compound’s
weighted standard error bars. Also, note that the black circles represent the effect across all brain regions/studies and the points below are
color coded by brain region.
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rodents. In addition, flies develop sensitization to repeated
intermittent exposure to cocaine [24, 25].
We measured cocaine consumption, startle behavior and the

prevalence of seizure activity in male and female flies following
acute consumption of solid food, solid food supplemented with
cocaine, or solid food supplemented with cocaine and ibrutinib.
Male flies exposed to cocaine spent less time moving after being
subjected to a mechanical startle (Fig. 5A). This is likely due to the
occurrence of cocaine-induced seizures, which were scored as

stationary periods. Both male and female flies that consumed
ibrutinib with cocaine spent more time moving than flies that only
consumed cocaine (Fig. 5A). Male flies that consumed ibrutinib
and cocaine showed a significant decrease in the prevalence of
seizures (Fig. 5B). Fewer cocaine-induced seizures were also
observed in Ibrutinib treated females, but this observation did not
reach statistical significance since the incidence of cocaine-
induced seizures was lower in females than in males. To ascertain
that ibrutinib did not reduce food intake, we measured cocaine
consumption with food supplemented with ibrutinib alone and
found that ibrutinib increased cocaine consumption in male flies
and was trending to do so in female flies (see Fig. 5C; see
Supplementary File S5 for data). Altogether, these results indicate
that ibrutinib may be useful as a therapeutic to prevent various
neurobehavioral and toxic effects of cocaine use.

DISCUSSION
We identified potentially repurposable medications for CUD and/
or cocaine toxicity, which demonstrated more reproducible
associations across the brain’s reward circuitry than current
medications undergoing clinical trials in the US. Despite the low
correspondence of gene expression across datasets, ibrutinib was
consistently negatively associated with patterns of gene expres-
sion observed in brains of individuals with CUD across brain
regions and diverse samples as well as across two gold standard
preclinical models. Ibrutinib decreased cocaine-induced seizures
in the Drosophila model and thus is a promising repurposable
medication for cocaine-induced seizures and possibly for other
aspects of CUD that cannot readily be evaluated in Drosophila. We
did not attempt to validate medications positively associated with
CUD (see Supplementary Fig. S2).
Ibrutinib is an irreversible Bruton’s tyrosine kinase (BTK)

inhibitor and is approved by the FDA for various B cell cancers
including chronic lymphocytic leukemia [26]. BTK inhibitors have
demonstrated efficacy for multiple sclerosis [27]—via an anti-
inflammatory mechanism—and have also reduced binge drinking
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in mice [13]. BTKs are predominantly expressed in microglia in the
brain (https://www.brainrnaseq.org/) and amplify intracellular
signals from (B cell) receptors to the nucleus [28]. Cocaine
activates overlapping intracellular signaling pathways with cano-
nical B cell signaling pathways (e.g., JUN, RELA, and NFKB1 genes)
and is associated with a pro-inflammatory response in the brain

[29]. We postulate that inhibiting BTK via ibrutinib interferes with
the cocaine response via disruption of intracellular signaling
cascades and/or evoking anti-inflammatory processes.
In addition to ibrutinib, we discovered other potential medica-

tions that may correlate with brain profiles of CUD. Some of these
compounds may target molecular processes underlying chronic

Fig. 5 Ibrutinib influences cocaine-induced startle response, cocaine-induced seizures and cocaine consumption in Drosophila
melanogaster. Sample sizes were as follows: n = 61 (♂control), 140 (♂cocaine), 132 (♂cocaine + ibrutinib), 66 (♀control), 141 (♀cocaine), 142
(♀cocaine + ibrutinib). A Dotplot showing the cocaine startle response by condition. B Barplot showing the average seizure activity during the
startle response across conditions with 95% confidence intervals. C Dotplot showing cocaine consumption across conditions. Colored dots
represent individual flies and the black dot displays the average for each group and the standard error.ns p > 0.05. *p < 0.05. **p < 0.01.
***p < 0.001. ****p < 0.001.
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cocaine use. For instance, we found that dopamine was negatively
associated with the differential expression of CUD genes across
brain regions, which may counteract the hypodopaminergic state
induced by chronic cocaine use [30]. Various drugs identified by
our analyses have been previously used to treat cardiac complica-
tions, such as Rivaroxaban, Pinacidil, Iloprost, Gemfibrozil, Bexafi-
brate and Moxonidine. It is possible that these medications exert a
protective role for the cardiovascular consequences of chronic
cocaine use. Some of these medications may have both health and
behavioral benefits. For instance, Moxonidine reduces (cue-
induced) cocaine relapse [31] and ethanol withdrawal [32, 33] in
rodents. Of note, the pharmacological profiles of the potential CUD
medications we identified have shown to reduce various drug use
behaviors (PPAR alpha agonists [34]; PDE4 inhibitors [35, 36]).
Potential CUD medications also influenced catecholamine neuro-
transmission, potassium channels, hormonal signaling and mito-
chondrial processes, which have all been implicated in the
pathophysiology of cocaine use [37–40]. Our approach may serve
a dual purpose for indirectly unraveling molecular brain features of
human CUD while also identifying specific chemical compounds
that may demonstrate clinical utility for cocaine-related outcomes.
The results of our study should be interpreted with caution until

further validation studies are conducted in different species and
behavioral paradigms. We used all extant transcriptome-wide brain
data on human CUD, but these sample sizes were small,
ascertained from highly selected male cocaine users and generally
included heterogenous cell types in the brain. These data are
unable to differentiate specific symptoms of CUD and may have
bias relating to health and psychiatric comorbidities. Whereas the
Drosophila model can evaluate some behavioral effects following
acute consumption of cocaine, many aspects of cocaine use,
addiction, withdrawal, and death cannot be assessed in the fly
model, but require complementary studies in other model systems.
Future studies in mammalian models are warranted to determine
the efficacy, dose, and safety of ibrutinib for cocaine-related
outcomes. The L1000 drug discovery database assesses acute gene
expression profiles of medications in human cell lines and is thus
limited in understanding chronic therapeutic administration and
in vivo mechanisms of medications. The lead repurposable drug
from this study, ibrutinib, may not be an accessible treatment
option to many, as it can be costly and while it is generally well
tolerated it can have various side effects (e.g., diarrhea, infection
and fatigue) [41] and off target effects (arrhythmias, platelet
dysfunction, QTc prolongation) that may limit its utility for cocaine-
related disease indications. Additionally, it is unknown what dose
would be most effective and whether negative health conse-
quences arise when combining this medication with cocaine (or
crack cocaine). Despite these limitations, ibrutinib emerges as a
promising therapeutic with potential, at least for the treatment of
cocaine-induced seizures. In a broader context, our study provides
a proof of principle for a powerful, flexible and interpretable
strategy that can be used to identify and prioritize therapeutics
from genome-wide and transcriptome-wide datasets.
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