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Widespread attenuating changes in brain connectivity
associated with the general factor of psychopathology in 9- and
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Convergent research identifies a general factor (“P factor”) that confers transdiagnostic risk for psychopathology. Large-scale
networks are key organizational units of the human brain. However, studies of altered network connectivity patterns associated
with the P factor are limited, especially in early adolescence when most mental disorders are first emerging. We studied 11,875 9-
and 10-year olds from the Adolescent Brain and Cognitive Development (ABCD) study, of whom 6593 had high-quality resting-state
scans. Network contingency analysis was used to identify altered interconnections associated with the P factor among 16 large-
scale networks. These connectivity changes were then further characterized with quadrant analysis that quantified the directionality
of P factor effects in relation to neurotypical patterns of positive versus negative connectivity across connections. The results
showed that the P factor was associated with altered connectivity across 28 network cells (i.e., sets of connections linking pairs of
networks); pPERMUTATION values < 0.05 FDR-corrected for multiple comparisons. Higher P factor scores were associated with
hypoconnectivity within default network and hyperconnectivity between default network and multiple control networks. Among
connections within these 28 significant cells, the P factor was predominantly associated with “attenuating” effects (67%;
pPERMUTATION < 0.0002), i.e., reduced connectivity at neurotypically positive connections and increased connectivity at neurotypically
negative connections. These results demonstrate that the general factor of psychopathology produces attenuating changes across
multiple networks including default network, involved in spontaneous responses, and control networks involved in cognitive
control. Moreover, they clarify mechanisms of transdiagnostic risk for psychopathology and invite further research into
developmental causes of distributed attenuated connectivity.
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INTRODUCTION
Recent investigations into patterns of covariance across psychia-
tric symptoms consistently find a general factor of psychopathol-
ogy, termed the “P factor”, which is associated with most
prevalent psychiatric symptoms [1–4]. Concurrently, categorical
diagnostic approaches that currently predominate encounter
serious issues. Tellingly, one persistent problem has been excess
overlap across disorders in symptoms [5], neural mechanisms [6],
and genetic risk factors [7]—a problem that could be readily
explained if a domain-general P factor drives co-occurrence of
symptoms irrespective of diagnostic boundaries. Despite these
compelling features of the P factor model, key gaps in knowledge
remain, especially regarding the neural mechanisms that produce
broad expression of diverse psychopathologies and the develop-
mental pathways through which these mechanisms operate.
Network neuroscience [8–11] is well positioned to help fill in

this gap in knowledge. The human brain is organized into a
number of large-scale connectivity networks [12]. There is growing
understanding of distinct information-processing functions imple-
mented by these networks and by interacting network ensembles.

Recent psychological models of the P factor emphasize heigh-
tened generation of impulses and reduced executive regulation
[3, 13]. These findings raise the possibility that the P factor
involves alterations in networks involved in the generation of
spontaneous thought (default mode network, DMN) and bottom-
up attention (ventral attention network, VAN), as well as networks
involved in cognitive control (e.g., frontoparietal network, FPN,
dorsal attention network, DAN; cingulo-opercular network, CO)
[14]. Recent studies found altered functional-connectivity patterns
associated with transdiagnostic dimensions [15–21], but findings
have been mixed and await further clarification.
Network neuroscience can also illuminate the developmental

pathways that lead to psychopathology. Brain networks undergo
substantial maturation during adolescence [22–24]. Importantly,
this is also the time that many serious mental disorders first emerge
[5, 25, 26]. In neurotypical individuals, connectomic development is
characterized by the emergence of complex patterns of variation
across connections in positive connectivity, thought to represent
information integration [27], and negative connectivity, thought to
represent information segregation and/or inhibitory relationships
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[28], with the balance between integration and segregation
potentially related to cognitive control [29] and processing
efficiency [30]. However, though the P factor has been conceptua-
lized as impacting neurodevelopment [3], the role of the P factor in
modulating these complex patterns of positive versus negative
connectivity, for example by attenuating neurotypical patterns of
variation across connections, awaits detailed investigation.
The current study examines functional- connectivity patterns

across the whole connectome associated with the P factor in a
sample of 11,875 9- and 10-year olds in the Adolescent Brain and
Cognitive Development (ABCD) national consortium study,
Release 2.0.1 [31]. Recently, our group constructed and validated
a P factor model [32] in ABCD from the Child Behavior Checklist
(CBCL) parent report [33] using bifactor modeling, and performed
additional analyses that support a P factor structural model of
psychopathology in this sample [32, 34], see also similar work by
[16, 35]. For the present study, we produced resting-state
connectomes for 6593 youth who met stringent neuroimaging
quality-control standards. We next applied network contingency
analysis (NCA) [36–38] to link functional-connectivity patterns to
the P factor. NCA uses a count-based statistic to identify network
cells (connections linking pairs of networks) where the number of
connections linked to a phenotype of interest—in this case the P
factor—exceeds the number expected by chance (established
through non-parametric permutation tests). We demonstrate that
the P factor is associated with widespread altered connectivity
patterns prominently implicating networks involved in sponta-
neous response generation (DMN, VAN) and control networks
involved in response control (FPN, DAN, and CO). We further
establish that P-factor-related changes affect fine-grained patterns
of positive and negative connectivity across connections, and
these changes predominantly take an attenuating form: neuroty-
pically positive connections become less positive and neurotypi-
cally negative connections become less negative. Finally, we show
that these attenuating changes are unlikely to be explained by
head motion or household/neighborhood disadvantage [39–42].

METHODS
Sample and data
The ABCD study is a multisite longitudinal study with 11,875 children
between 9 and 10 years of age from 21 sites across the United States. The
study conforms to the rules and procedures of each site’s Institutional
Review Board, and all participants provided informed consent (parents) or
assent (children).

Data acquisition, fMRI preprocessing, and connectome
generation
Imaging protocols were harmonized across sites and scanners. High spatial
(2.4 mm isotropic) and temporal resolution (TR= 800ms) resting-state fMRI
was acquired in four separate runs (5 min per run, 20 min total). The entire
data pipeline described below was run through automated scripts on the
University of Michigan’s high-performance cluster, and is described below,
with additional detailed methods automatically generated by fMRIPrep
software provided in the Supplement.
Preprocessing was performed using fMRIPrep version 1.5.0 [43]. Full

details of the fMRIPrep analysis can be found in Supplemental materials.
Briefly, T1-weighted (T1w) and T2-weighted images were run through
recon-all using FreeSurfer v6.0.1. T1w images were also spatially
normalized nonlinearly to MNI152NLin6Asym space using ANTs 2.2.0.
Each functional run was corrected for field-map distortions, rigidly
coregistered to the T1, motion corrected, and normalized to standard
space. ICA-AROMA was run to generate aggressive noise regressors.
Anatomical CompCor was run and the top five principal components of
both CSF and white matter were retained. Functional data were
transformed to CIFTI space using HCP’s Connectome Workbench. All
preprocessed data were visually inspected at two separate stages to
ensure only high-quality data was included; after coregistration of the
functional data to the structural data and after registration of the
functional data to MNI template space.

Connectomes were generated for each functional run using the Gordon
333 parcel atlas [44], augmented with parcels from high-resolution
subcortical [45] and cerebellar [46] atlases. Volumes exceeding a framewise
displacement threshold of 0.5 mm were marked to be censored. Covariates
were regressed out of the time series in a single step, including: linear
trend, 24 motion parameters (original translations/rotations+ derivatives
+ quadratics), aCompCorr 5 CSF and 5 white matter components and ICA-
AROMA aggressive components, high-pass filtering at 0.008 Hz, and
censored volumes. Next, correlation matrices were calculated for each
run. Each matrix was then Fisher r-to-z transformed, and then averaged
across runs for each subject yielding their final connectome. A quality-
control resting-state functional-connectivity plot is shown in Supplement
Fig. S1.

Constructing a structural model of psychopathology
The general psychopathology factor (P factor) used here is based on the
parent-rated CBCL [33], age 6–18 form. A bifactor model was fit to eight
CBCL scales, with a general P factor that all scales loaded onto (average-
scale loading= 0.69) and two specific factors. This model is described in
detail in our previous studies in ABCD [32, 34] and in the Supplement.

Inclusion/exclusion
There are 11,875 subjects in the ABCD Release 2.0.1 dataset. Screening
was initially done using ABCD raw QC to limit to subjects with two or
more good runs of resting data, as well as a good T1 and T2 image (QC
score, protocol compliance score, and complete all= 1). This resulted in
9580 subjects with two or more runs that entered preprocessing. Each
run was subsequently visually inspected for registration and warping
quality, and only those subjects who still had two or more good runs
were retained (N= 8858). After connectome generation, runs were
excluded if they had less than 4 min of uncensored data, and next
subjects were retained only if they had two or more good runs (N=
6595). Finally, subjects who were missing data required for regression
modeling (P factor scores or any of the nuisance covariates) were
dropped. This left us with N= 6593 subjects across 22 sites for the
whole-sample NCA analysis. Further information about demographics
and psychopathology in this sample are shown in Supplement Tables S1
and S2.

Network contingency analysis
NCA is a count-based approach to quantifying altered connectivity (Fig. 1),
see our prior work [36, 37] for more details, and see also [47] for a related
statistical treatment. In the current application, we applied the approach to
“cells”; each cell is the set of connections linking a pair of the 16 networks
in the Gordon parcellation (120 total cells). In Step 1 of the analysis, we fit a
multiple regression model at each edge of the connectome with edge
connectivity weight as the outcome variable and P factor scores as the
predictor of interest, while including sex, race, age, age2, mean FD, and
mean FD2 as covariates. In Step 2, we identified all connections in which
the P factor effect exceeds (is more significant than) a p < 0.05 threshold
(“NCA threshold”). In Step 3, we counted the suprathreshold connections
separately for each cell, assessing whether this number exceeds the
number that would be expected by chance alone. The distribution under
chance was generated by non-parametric permutation tests [48]. We
randomly shuffled subjects’ edgewise connectivity weights 10,000 times
(i.e., subjecti’s edge weights were randomly switched with subjectj’s) and
recalculated the count of suprathreshold edges for each cell at each
iteration. Permutation p-values were then calculated and corrected for
multiple comparisons across 120 cells using the false discovery rate (FDR)
[49] with alpha set at p < 0.05. The procedure of Freedman and Lane [50]
was used to account for covariates. In addition, exchangeability blocks
were used to account for twin, family, and site structure and were entered
into Permutation Analysis of Linear Models (PALM) [51] to produce
permutation orderings, as described in detail in the Supplement.
For the main analysis, we set the NCA threshold at p < 0.05. We assessed

the robustness of our results by repeating the analysis using an average of
five thresholds, specifically {0.1, 0.05, 0.01, 0.005, 0.001}, following a
procedure based on [47] (see details in the Supplement). Because studies
in ABCD found brain changes in relation to household income [40, 42] and
neighborhood disadvantage [39, 41], we in addition re-ran the NCA
analysis with household income and an index of neighborhood
disadvantage (derived from work by Taylor and colleagues [41]) as
additional covariates (see details in the Supplement).
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Quadrant analysis of directionality of P effects in relation to
the neurotypical connectome
For all the cells identified as modulated by the P factor in the NCA analysis,
we next assessed the nature and direction of P-associated changes in
connectivity in these cells. In particular, we performed a quadrant analysis
[38] assessing how P factor effects relate to positive and negative
connectivity in the neurotypical connectome. First, we residualized effects
of nuisance covariates from each edge of the connectome (sex, race, age,
age2, mean FD, and mean FD2), and we then computed the mean for each
edge. Next, we located all the connections in the NCA-significant cells in
one of four quadrants according to directionality of mean connectivity (x
axis) and directionality of P factor effects (y axis). Importantly, the P factor
produces attenuating changes if there is a preponderance of connections
in quadrant 2 (negative mean connectivity, positive P factor effect) and
quadrant 4 (positive mean connectivity, negative P factor effect).
Analogously, amplification is indicated by a preponderance of connections
in quadrants 1 and 3. We assessed the significance of the observed
proportion of edges in the attenuating quadrants with non-parametric
permutation tests in which we randomly shuffled the 6593 subjects’ P
factor scores 10,000 times and recomputed the proportion of edges in the
attenuating quadrants at each iteration. Finally, we additionally performed
this quadrant directionality analysis separately at each NCA-significant cell.

Sensitivity analysis in a low-motion subsample
We assessed the sensitivity of our analysis to artifactual effects of head
motion by repeating the NCA analysis and follow-up quadrant analysis in a
low-motion set of subjects with mean FD < 0.2 (N= 3155). We qualitatively
assessed these results for similarity with those from the main sample. In
addition, we performed a low-motion difference test, which quantitatively
assesses whether NCA results from the low-motion subsample are lower than
the results derived from many random subsamples of the data with the same
number of subjects (further details are given in the Supplement). A positive
test provides evidence that motion is contributing to the observed results.

RESULTS
The P factor is associated with statically significant effects
across 28 network cells, with prominent effects on
connectivity of DMN and control networks
NCA analysis revealed statistically significant effects of the P factor
at 28 network cells (FDR-corrected pPERMUTATION < 0.05), see Fig. 2
and Supplement Table S3. P factor effects were prominent within
DMN and in DMN’s connections with three control networks, FPN,
DAN, and CO. These altered connectivity patterns are shown as 3D
brain space visualizations in Fig. 3, which highlights that higher P
factor scores are associated with reduced connectivity within DMN
and increased connectivity between DMN and control networks.
P-factor-related connectivity changes also prominently implicated
VAN, including its connections with DMN, FPN, DAN, and CO.
Additionally, P factor effects were notable in the “None” network
(i.e., no label assigned in the Gordon parcellation), which exhibited
altered connectivity with DMN, FPN, DAN, and CO. Brain space
visualizations of altered VAN and None connectivity are shown in

Supplement Figs. S2 and S3. Additionally, we repeated the
preceding NCA analysis using an average of five thresholds (see
“Methods” section Network contingency analysis), and the results
were highly similar (see Supplement Fig. S4). Also, we repeated
the preceding NCA analysis adding household income and an
index of neighborhood disadvantage as covariates. Once again,
the results were highly similar, with 25 significant cells versus 28 in
the original analysis (see Supplement Fig. S5). Finally, we repeated
quadrant analyses (see below) for both of the preceding analyses
(i.e., weighted average of five thresholds and household income/
neighborhood disadvantage as covariates). In both cases, percen-
tage of attenuating connections was nearly identical (67% and
68%, respectively) and their p-values remained highly statistically
significant (pPERMUTATION < 0.0001).

Within these 28 P-factor-affected cells, P factor effects were
primarily attenuating
We used quadrant analysis to assess the directionality of P factor
effects within the 28 cells found to be significant in NCA analysis.
As shown in Fig. 4, we found that 67% of connections resided in
quadrant 2 (negative neurotypical connectivity, positive P factor

Fig. 2 Network-to-network connections exhibiting significant P
factor effects. We performed network contingency analysis (NCA)
which identifies cells (i.e., sets of connections linking pairs of large-
scale networks) where the number of P-factor-related edges exceeds
the number expected by chance. A total of 28 cells exhibited
significant P factor effects (FDR < 0.05; shaded in the figure). P factor
effects were prominent in default network as well in control
networks (frontoparietal, dorsal attention, and cingulo-opercular).
Other networks prominently implicated were ventral attention and
“None” (i.e., no label assigned in the Gordon parcellation).

Fig. 1 Steps for network contingency analysis (NCA). NCA is a count-based method for quantifying altered connectivity at network cells, i.e.,
sets of connections linking pairs of large-scale networks. The method assesses, for each cell, whether the count of connections that are
significantly related to the phenotye of interest exceeds the number expected by chance (based on non-parametric permutation tests).
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effect) and quadrant 4 (positive neurotypical connectivity,
negative P factor effect)—a pattern that reflects attenuation of
neurotypical connectivity by the P factor. Permutation testing
revealed that this elevated percentage of attenuating P factor
effects is highly unlikely to have arisen by chance (pPERMUTATION <
0.0002). We additionally conducted quadrant analysis on each of
the 28 cells separately. We found a statistically significant
proportion of attenuation (i.e., elevated counts of connections in
quadrants 2 and 4) in 18 out of the 28 cells considered individually
(pPERMUTATION’s < 0.05).

The preceding results remained significant in a low-motion
subsample
We repeated the preceding NCA analysis and quadrant analysis in
a low-motion subsample of subjects with mean FD < 0.2

(N= 3155). We found that 25 out of 28 cells identified as FDR <
0.05 significant in the full sample remained FDR < 0.05 significant
in the low-motion subsample, see Supplement Fig. S6. In addition,
we found that 67% of the connections within NCA-significant cells
exhibited the attenuating pattern (the same percentage as in the
full sample), see Supplement Fig. S7. The associated p-value from
permutation testing was pPERMUTATION < 0.0001 (observed propor-
tion of attenuating effects was larger than all values in the
permutation distribution). Finally, low-motion difference tests
applied to NCA cell counts were not significant for all 120 cells
(mean p= 0.79), providing additional evidence that our NCA
analysis results are not due to head motion.

DISCUSSION
This study investigated brain-wide connectomic alterations
associated with the general factor of psychopathology (“P factor”),
a factor representing broad expression of prevalent psychiatric
symptoms, in 6593 9- and 10-year olds in the ABCD multisite
sample. The results support three major findings. First, by
combining large sample size, rigorous non-parametric network
methods, and explicit tests of sensitivity to motion, we provide
particularly compelling evidence that the P factor is associated
with widespread alterations in connectivity across the brain’s
intrinsic functional architecture. Second, we found especially
prominent alterations in networks involved in generation of
spontaneous responses (DMN, VAN) and control networks
involved in response control (FPN, DAN, and CO). Third, we
demonstrated that within the affected cells (i.e., sets of connec-
tions linking pairs of large-scale networks), P factor effects are
primarily attenuating: they disproportionately make neurotypically
positive connections less positive and neurotypically negative
connections less negative. Overall, these results advance under-
standing of network abnormalities associated with broad liabilities
for psychopathology during the transition to adolescence, a key
developmental window in which many serious psychopathologies
first emerge.
Recent theoretical discussions [3, 13, 34] conceptualize the P

factor in terms of a dysregulation model in which there is
heightened generation of spontaneous impulses (both negative
fear/distress emotions as well as reward-seeking impulses) and
reduced executive regulation of these impulses. This model is
suggestively reflected in our findings, where we found altered
connectivity in networks associated with spontaneous thought
(DMN) [52, 53] and bottom-up attention (VAN) [54], as well as
altered connectivity in control networks (FPN, CO, DAN) involved
in response control [14, 55]. Notably, other recent studies of the P
factor examining functional connectivity also found alterations in
networks involved in bottom-up processing, including DMN [16],
visual network [15], and somatomotor network [18]. Altered
functional connectivity in core control networks (i.e., FPN and
DAN), however, appears to be a relatively new finding reported
here, and our results thus provide firmer grounding for the
dysregulation model of the P factor. Of note, previous studies in
adolescents and young adults [56, 57] found P-factor-related
alternations in cerebellum and interpreted these results in terms
of cerebellar contributions to cognitive control (though studies of
adults failed to replicate this finding [58]). We here observed
alterations in connectivity between cerebellum and DAN, adding
to evidence linking cerebellar alterations to the P factor, especially
in younger individuals.
We additionally found that within P factor-modulated network

cells, the P factor’s effects were predominantly attenuating: the P
factor effect disproportionately makes neurotypically positive
connections less positive and neurotypically negative connections
less negative, thus effectively shrinking connection weights
towards zero. Moreover, we demonstrated these results were
unlikely to be due to head motion, since they remained, and

Fig. 3 Default mode network connections associated with the P
factor. The results from our network analysis showed that the P
factor is associated with hypoconnectivity within DMN and
hyperconnectivity between DMN and three control networks, FPN,
DAN, and CO. DMN= default mode network, FPN= frontoparietal
network, DAN= dorsal attention network, CO= cingulo-opercular
network.

Fig. 4 Quadrant analysis demonstrating attenuating effects of the
P factor on neurotypical functional-connectivity patterns. In the
main NCA analysis, we identified 28 cells (i.e., sets of connections
linking pairs of large-scale networks) that were significantly
associated with the P factor. In a follow-up quadrant analysis, we
placed these connections in one of four quadrants according to
directionality of mean connectivity (x axis) and directionality of P
factor effects (y axis); in the figure, each dot represents one
connection. We found 67% of connections reside in quadrants
corresponding to attenuating effects, i.e., quadrant 2 shown in red
(negative mean connectivity, positive P factor effect) and quadrant
4 shown in blue (positive mean connectivity, negative P factor
effect). Non-parametric permutation tests showed that this elevated
proportion of attenuating P factor effects was highly unlikely to
have arisen by chance (pPERMUTATION < 0.0002).
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indeed tended to be qualitatively stronger, in a low-motion
subsample (and tests assessing whether the results from a low-
motion sample differed from similarly sized random subsamples
were not significant). One explanation of the observed pattern of
distributed connectivity attenuation associated with the P factor is
based on neurodevelopment. The functional connectome under-
goes substantial maturation during youth [22–24]. During the
course of this neurodevelopmental sequence, individual connec-
tions gradually differentiate and exhibit fine-grained patterns of
variation in connectivity strength [23]. These changes occur
through complex and choreographed processes of integration
[59], in which connectivity between nodes is enhanced, and
segregation, wherein nodes become increasingly anti-correlated
[29, 60]. If this neurodevelopmental sequence is perturbed or
disrupted, strength of integration and segregation would be
diminished, thus producing a relatively attenuated pattern of
connectivity in the affected connectome relative to a neurotypical
connectome. Future work should attempt to better understand
the neurodevelopmental origins and consequences of the pattern
of widespread attenuation of connectivity identified in this study
as linked to the P factor. Of note, upcoming waves of data from
the ABCD longitudinal study could be particularly illuminating, as
they can shed light on whether this pattern of attenuated
connectivity worsens, improves, or holds steady with age, and
whether at the single subject level, attenuated connectivity co-
matures across adolescence with levels of the P factor.
Our results are relevant to interpreting previous functional-

connectivity studies in psychiatric imaging that mostly used
case–control designs [61]. These studies aimed to characterize
brain network abnormalities associated with individual disorders,
where these abnormalities were assumed to reflect disorder-
specific pathophysiology. Accumulated results, however, suggest
observed network alterations often lack specificity. For example,
two prominent network motifs we observed in the present study,
reduced connectivity within DMN and altered DMN/control net-
works connectivity, have elsewhere been demonstrated in a
number of individual psychiatric disorders, including hypoconnec-
tivity of DMN in autism [62], schizophrenia [63], and ADHD
[36, 64, 65], and reduced DMN/control network anti-correlation in
schizophrenia [66–68], bipolar disorder [69], and ADHD [36, 65]. The
present study potentially explains this lack of specificity by linking
motifs such as these instead to the P factor. The P factor represents
broad expression of diverse forms of psychopathology, and thus
P-linked connectomic motifs would be expected to show up
nonspecifically across diverse case–control disorder comparisons.
This study has several limitations. First, construction of a P factor

from symptom-scale data requires making certain modeling
choices (e.g., bifactor versus higher-order factor modeling, item-
or scale-level inputs, etc.). This concern is potentially mitigated,
however, by findings from our recent report [32] using the same
ABCD data used here, in which we showed that across 14 such
modeling choices, resulting P factor variables were highly
consistent (r’s > 0.90). Second, this study was conducted in 9-
and 10-year-old youth, many of whom had relatively low levels of
psychiatric symptomatology (Table S2). It is expected that
subjects’ psychopathology load will rise during the course of
adolescence [26], and it is possible that brain/behavior relation-
ships could correspondingly become stronger or otherwise
change, a hypothesis that can be directly tested in future waves
of longitudinal ABCD data. Third, the NCA method we used relies
on a prespecified parcellation of the brain into networks in order
to perform inference on connections linking pairs of networks
(note: we used the parcellation by Gordon and colleagues [44]). It
is possible that future work may identify parcellations that
perform still better for NCA-type inference. Finally, this study
exclusively examined brain/behavior relationships with resting-
state functional connectomes. Recent work links the P factor to
structural alterations [20, 56, 70] (gray matter reductions) and

white matter tract changes [56, 71], and concurrent investigation
of multiple modalities (multi-modal fusion methods) could yield a
more complete understanding of the brain basis of the P factor.
In sum, we found that during emerging adolescence, the P

factor is associated with distributed attenuation of connectivity in
networks involved in spontaneous response generation and
networks involved in cognitive control, critical elements of the
brain’s intrinsic functional architecture. These findings set the
stage for future studies in the ABCD sample that leverage
longitudinal waves of data to trace the psychological and neural
progression of the P factor during a critical window of vulnerability
to mental illness that spans adolescence to young adulthood.

DATA AVAILABILITY
The ABCD data used in this report came from ABCD Release 2.1, NDA Study 721,
10.15154/1504041, which can be found at https://nda.nih.gov/study.html?id=721.
The specific NDA study associated with this report is NDA Study 1365, https://doi.org/
10.15154/1523387.

CODE AVAILABILITY
Code for running this analysis can be found at https://github.com/SripadaLab/
ABCD_Resting_PFactor_NCA
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