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Early psychosis is characterised by heterogeneity in illness trajectories, where outcomes remain poor for many. Understanding
psychosis symptoms and their relation to illness outcomes, from a novel network perspective, may help to delineate
psychopathology within early psychosis and identify pivotal targets for intervention. Using network modelling in first episode
psychosis (FEP), this study aimed to identify: (a) key central and bridge symptoms most influential in symptom networks, and (b)
examine the structure and stability of the networks at baseline and 12-month follow-up. Data on 1027 participants with FEP were
taken from the National EDEN longitudinal study and used to create regularised partial correlation networks using the ‘EBICglasso’
algorithm for positive, negative, and depressive symptoms at baseline and at 12-months. Centrality and bridge estimations were
computed using a permutation-based network comparison test. Depression featured as a central symptom in both the baseline and
12-month networks. Conceptual disorganisation, stereotyped thinking, along with hallucinations and suspiciousness featured as
key bridge symptoms across the networks. The network comparison test revealed that the strength and bridge centralities did not
differ significantly between the two networks (C= 0.096153; p= 0.22297). However, the network structure and connectedness
differed significantly from baseline to follow-up (M= 0.16405, p= <0.0001; S= 0.74536, p= 0.02), with several associations
between psychosis and depressive items differing significantly by 12 months. Depressive symptoms, in addition to symptoms of
thought disturbance (e.g. conceptual disorganisation and stereotyped thinking), may be examples of important, under-recognized
treatment targets in early psychosis, which may have the potential to lead to global symptom improvements and better recovery.
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INTRODUCTION
Psychosis is a disorder of complex psychopathology, with
heterogeneous illness trajectories, particularly in the early stages
[1]. Although early recognition and treatment bring substantial
benefit [2], outcomes remain poor for many with first episode
psychosis (FEP) [3]. Understanding how symptoms are structured,
and which key symptoms play a pivotal role in maintaining
psychopathology, may help to identify new treatment targets and
improve outcomes.
Symptom interactions in early stages of illness are likely to be

fluid and may change in strength and quality over time [4]. The
interconnectedness of positive, negative and co-morbid affective
symptoms in psychosis has previously been explored based on
latent structures of symptomatology [5, 6], whereby symptoms
may be connected via a single underlying latent variable
(psychosis), and non-psychosis symptoms considered of second-
ary importance [6]. However, it is also suggested that the flame of

positive symptoms is driven by affective dysfunction in the early
years, and primary negative symptoms become prominent only
after acute psychosis wanes [7, 8]. With the availability of novel
modelling statistics and large longitudinal data, it is now possible
to explore such assumptions. Network modelling of psychopathol-
ogy does not presume a latent variable: individual symptoms are
connected by statistical relationships, and large datasets can be
modelled to reveal new structures [9–11]. Network analyses
completed over different time-points can explore the connectivity,
stability, and structure of symptoms over time, which may provide
key information for interventions targeted at individuals likely on a
pathway to treatment resistance [12].
Network analysis studies in chronic schizophrenia have

identified central symptoms such as paranoid ideation, apathy,
avolition, and depression, which are reported to activate other
symptoms via a contagion effect, leading to the maintenance of
psychopathology [13–18]. Others have explored changes in
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network structure in those with and without remitted status
[15, 17, 19], or in response to antipsychotic treatment
[4, 14, 20, 21]. Whilst these findings are informative, they are
limited to older individuals with enduring illness, and have been
conducted with relatively small sample sizes.
Identifying early treatment targets in the ‘critical’ phase of

illness has the potential for greatest impact [22]. A small number
of studies have applied network modelling to understand
psychosis symptoms in young people. Preliminary findings
suggest that the strength of network architectures and symptom
connectedness may indicate psychosis liability. However, these
findings remain exploratory given the small (N= 16) cross-
sectional nature of Schmidt et al’s study [23], and the second
study by Wigman et al was based on a community (rather than a
clinical) sample with psychotic-like-experiences [24]. Finally, two
recent papers in FEP have demonstrated the potential role of
depression and general psychopathology with psychotic symptom
expression. In the first, Betz and colleagues (2020) showed that
general psychopathology mediated the relationship between the
burden of life events and expression of psychotic symptoms,
supporting an affective pathway to psychosis [6, 25, 26]. Second,
Herniman and colleagues (2021) demonstrated that depression
symptoms were highly interrelated with positive and negative
symptoms, suggesting that depression symptoms might be better
conceptualized as intrinsic to psychosis [27]. Though these studies
are informative, they are limited by their cross-sectional design
and small samples of young people with FEP.
In this present study, we used a large, diverse, national FEP

cohort to explore the structure and inter-relationships between
symptoms in early psychosis, using a robust network analyses
design to: (a) identify network structures at baseline and 12-
months follow-up; and b) identify key central and bridge
symptoms that may offer treatment targets for novel
interventions.

METHOD
Sample
The EDEN dataset is a longitudinal naturalistic study of 1027 individuals
with FEP, recruited from 14 early intervention services (EIS) across England
(2005 to 2010; ethical approval REC: 05/Q0102/44.); the methodology and
baseline characteristics have been outlined previously [28], but an
overview of sample characteristics can be found in Table 1. In summary,
observer rated assessments were conducted at baseline (upon entry to
EIS), and at a 6 and 12-month timepoint. Complete data on the variables of
interest were available for 718 participants by 12-month follow-up.
The authors assert that all procedures contributing to this work comply

with the ethical standards of the relevant national and institutional
committees on human experimentation and with the Helsinki Declaration
of 1975, as revised in 2008. All procedures involving human patients were
approved by Suffolk Local Research Ethics Committee, UK. Approval
number: 05/Q0102/44. Written informed consent was obtained from all
patients.

Assessments
The Positive and Negative Syndrome Scale (PANSS) [29]. PANSS consists of
30-items measuring severity of positive, negative and general symptoms.
Each item is scored between 1 (= absent) to 7 (= extreme). For this study,
the Positive Scale (seven items) and Negative Scale (seven items)
were used.
The Calgary Depression Scale for Schizophrenia (CDSS) [30]. The CDSS

includes a total of 9 depressive symptoms (eight structured questions and
one interviewer observation) and a scale that ranges from 0 (absent) to 3
(severe).

STATISTICAL ANALYSIS
Descriptive data analysis and network modelling were carried out
using R, Version 4.0.3 [31]. (Code for the network analysis is
available in the supplementary materials).

Missing data
For the full EDEN sample (N= 1027), there were 895 complete
cases at baseline, 757 complete cases at 12 months, and 618
complete cases across the two time points. Item level data were
missing for 6.2% of the sample at baseline, and 23·9% at 12-
months. Missing data were imputed using an iterative Markov
Chain Monte Carlo method, which can concurrently generate
Bayesian simulations for binary distributions for cases with
incomplete data for all cases [32]. While missing network data
can be problematic, there is a lack of simulation studies testing the
performance of imputation techniques alongside variable selec-
tion methods. We chose EBICglasso over pairwise / likelihood
techniques, based on prior research within the structural equation
literature showing superior performance of lasso-based methods
when the number of variables with missing is large, and when
there’s a range of parameters which are also likely to be
moderately or highly correlated [33]. Nevertheless, sensitivity
analyses were conducted using the complete cases to compare
any network differences when using the imputed data (please see

Table 1. EDEN Sample Characteristics at Baseline.

Baseline (n= 1027)

Age of Onset Mean (SD) 21.3 (4.98)

Sex Female: 318 (31.0)

n (%) Male: 709 (69.0)

Ethnicity Asian – Bangladeshi: 16 (1.6)

n (%) Asian – Indian: 28 (2.7)

Asian – Other: 12 (1.2)

Asian – Pakistani: 101 (9.8)

Black – African: 23 (2.2)

Black – Caribbean: 35 (3.4)

Black – Other: 13 (1.3)

Mixed – Other: 8 (0.8)

Mixed – White & Asian: 11 (1.1)

Mixed – White & Black African: 5 (0.5)

Mixed – White & Black Caribbean: 19 (1.9)

Other – Other: 6 (0.6)

White – British: 723 (70.4)

White – Irish: 6 (0.6)

White – Other: 21 (2.0)

Employment Home maker 22 (2%)

Status Other 11 (1%)

Student 199 (19%)

Unemployed 590 (57%)

Working (paid) 189 (18%)

Working (voluntary) 9 (1%)

n/a or data not known 7 (1%)

Living Status Alone 130 (13%)

Data unavailable

Other 137 (13%)

With parents/guardian 649 (63%)

With partner 108 (11%)

n/a or data not known 3 (0%)

Marital status Cohabiting 66 (6%)

Divorced 8 (1%)

Married and cohabiting 61 (6%)

Married and separated 21 (2%)

Single 871 (85%)
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results section). Finally, we decided not to include the 6-month
network due to the increased complexity it would add to the
analysis, reducing the interpretability.

Network estimation
Two networks were estimated using the full EDEN sample (N= 1027),
which included complete and imputed cases at baseline and 12-
months. We used the ‘bootnet’ package [11] which implements the
‘EBICglasso’ algorithm from the ‘qgraph’ package [34], in turn uses the
‘glasso’ algorithm from the ‘glasso’ package [35]. Network structures
were estimated using regularised partial correlation, with coefficients
ranging from -1 to 1, representing the association between two
nodes after controlling for all other possible information. Partial
correlations can be visualised in a weighted network structure with
each node representing a variable (e.g. symptom), and each edge
showing that two variables are not independent after conditioning all
other variables. The edge weights are their partial correlation
coefficients. Given the ordinal nature of the data, Spearman’s
correlations were used to create covariance matrix via the ‘lavaan’
package [36]. The resulting covariance matrix is inputted into the
‘EBICglasso’ algorithm which uses the least absolute shrinkage and
selection operator (lasso) regularisation [37], resulting in sparse
networks. ‘EBICglasso’ selects the lasso tuning hyperparameter (λ)
which minimises the Extended Bayesian Information Criterion (EBIC)
[38]; the EBIC hyperparameter (γ) was set to zero in this study.
There remains contention as to whether regularization estima-

tors, such as glasso, add benefit over more traditional frequentist
approaches when estimating psychological networks. Indeed, it
has recently been shown that classic methods, such as maximum
likelihood estimator (MLE), outperform regularization when
applied to low dimensional settings, common in psychology
[39, 40]. There is an inflated false positive rate inherent in
regularization estimators, such as lasso, when the ratio of
parameters to observations is low. We chose a regularization
algorithm in this study because of its superiority in performance
over non-regularized models when there is a wide range of
predictor variables, which are likely to be highly correlated
[33, 40]. In such instances, lasso models have much lower Type II
error rates, and are less likely to omit truly positive associations,
suiting the more exploratory nature of this study [40].
The network structures are plotted using the ‘qgraph’ function

(from ‘qgraph’ package) [34]; blue edges indicate positive partial
correlations, and red edges indicatingnegative partial correlations.
Nodes are placed using a modified version of the Fruchterman-
Reingold algorithm [41], constraining the layout to be equal across
the networks using the ‘averageLayout’ from the ‘qgraph’
package, enabling comparison. Maximum edge value was set to
0.5367 (the strongest edge identified across both networks);
meaning saturation and edge thickness can be compared across
graphs.

Network comparison test
A permutation-based test implemented within the ‘NetworkCom-
parisonTest’ package [42] compared the baseline and 12 month
symptom networks on global structure, overall connectivity level
by average strength of all edge weights, and the difference in
strength of individual edge weights. Finally, centrality estimates
were computed using the “test centrality” command, which
statistically assesses the centrality of symptoms across the two
networks.

Centrality and bridge centrality estimation
The strength of nodes within each network were established by
summing the absolute edge weights connected to a particular
node [43–45]. The importance of each node in acting as a bridge
to the three communities of symptoms (other than the commu-
nity it originates), was calculated using the recently defined
concept of bridge centrality implemented in the ‘networktools’

package [46]. We used the bridge strength estimate which
indicates a node’s total connectivity with other communities.
The top 20% scoring nodes (a cut-off giving an acceptable balance
between sensitivity and specificity) on bridge strength was also
indicated graphically [47].

Network accuracy and stability assessment
Bootstrapping methods were performed using the ‘bootnet’
package [48] to assess the accuracy and stability of the derived
network parameters. We bootstrapped 95% CIs around the edge
weights, the significance (α= 0·05) between the edges, and the
significance (α= 0.05) between the centrality metric of the nodes
for each network. The stability of the centrality indices was
assessed via a case-dropping bootstrap, which were summarised
using CS-coefficients (correlation stability), quantifying the pro-
portion of the data that can be dropped to retain a correlation of
at least 0.7 with 95% certainty. The CS-coefficient should be ideally
above 0.5 but at least above 0.25 [49].

RESULTS
Sample
Full demographic characteristics of the EDEN sample have
been outlined previously [28]. In summary, the sample (n=
1027) had a mean age of 21.3 years, 69% were male, and 70%
were White British. The baseline network had greater positive,
negative, and depressive symptoms compared to the 12-
month network (Table 2).

Baseline network
At baseline, 52.2% of all possible edges were retained in the
regularized networks. The network structure can be visualised in
Fig. 1a. Distinct symptom communities can be visualised based on
the three original symptom groups: PANSS Positive, PANSS
Negative and CDSS.
Depression (C1), Delusions (P1), and Lack of Spontaneity (N6)

had the highest node strength centrality in the baseline network
(Fig. 2). The top 20% scoring nodes on bridge strength (Fig. 3)
were: blunted affect (N1), stereotyped thinking (N7), conceptual
disorganization (P2), hallucinatory behaviour (P3), and suspicious-
ness (P6). Negative symptoms formed bridges with positive
symptoms: stereotyped thinking bridged with conceptual dis-
organisation, and blunted affect was negatively associated with
hostility. Depressive symptoms formed bridges with positive
symptoms: Hallucinations and suicide, and suspiciousness and
hopelessness were positively associated (Fig. 3a).

Table 2. Comparison of symptom scores across the baseline and 12-
month networks.

Baseline 12 months Paired t-test

PANSS Positive Symptoms Total

Mean (SD) 15.3 (6.0) 11.2 (4.4) t (1026)=
19.9

p= <0.001

PANSS Negative Symptoms Total

Mean (SD) 14.9 (6.5) 11.9 (5.2) t (1026)=
14.5

p= <0.001

CDSS Total

Mean (SD) 6.2 (5.3) 3.4 (4.2) t (1026)=
16.5

p= <0.001

PANSS Positive and Negative Syndrome Scale, CDSS Calgary Depression
Scale for Schizophrenia.
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12-month network
At 12-months, 50.02% of all possible edges were retained in the
regularized network. Similar visualisations for baseline network can
also be identified in the 12-month network, with strong positive
associations between items as visualised in the baseline network (Fig.
1b). Depression (C1) had the highest node strength in the 12-month
network (Fig. 2). The top 20% bridge symptoms included: depression
(C1), conceptual organisation (P2), stereotyped thinking (N7),
hallucinatory behaviour (P3), and suspiciousness (P6). Similar to the
baseline network, stereotyped thinking bridged with conceptual
disorganisation, and the depressive items bridged with positive
symptoms. Hallucinations and the suicide item were positively related,
in addition to positive associations between observed depression
with suspiciousness and hallucinations (Fig. 3b).

Network comparison
Our results indicate that the baseline and 12-month networks
differed significantly in overall structure (M= 0.16405, p=
<0.0001) and connectivity (S= 0.74536, p= 0.02), but did not
differ significantly in overall strength centrality and bridge
centrality (C= 0.096153; p= 0.22297).
The global strength and overall connectivity of the baseline

network was stronger. Similarly, for the structure, the baseline
network retained more edges than the 12-month network. Ten edges
were significantly different across the baseline and 12-month
networks. Excitement (P4) with emotional withdrawal (N2), delusions
(P1) with lack of spontaneity (N6), hallucinatory behaviour (P3) with
stereotyped thinking (N7), suspiciousness (P6) with depression (C1),
excitement (P4) with guilt ideas of reference (C4), passive social
withdrawal (N4) with pathological guilt (C5), pathological guilt (C5)
with morning depression (C6), grandiosity (P5) with early awakening
(C7), abstract thinking (N5) with suicide (C8), and depression (C1) with
observed depression (C9).

Network accuracy and stability
The bootstrap analyses showed that the networks were very stable
and edge weights were accurately estimated. The results for the edge
weight bootstrap, edge weights significance testing, and strength
centrality difference testing can be visualised in the supplementary

material (Please see Fig. 1–6 in the supplementary material). For the
subset bootstrap, the two networks showed acceptable centrality
stability (Figures 7 and 8 in the supplementary materials). These
results are consistent with the CS-coefficient, which was 0.75 for
strength for the baseline network, and 0.75 for strength in the 12-
month network, suggesting that the networks remained stable.

Sensitivity analyses
Because of the high level of missing data, sensitivity analyses were
conducted using the complete cases (N= 718). The data are
available in the supplementary material (Figures 9–19), but in sum,
the baseline and 12-month networks remained dense (47% and
50.6%, respectively), and stable (0.75). Key central and bridge
symptoms remained the same, though unlike the networks with
imputed cases, the overall network structure and connectivity was
not significantly different across the two time points.

DISCUSSION
This study presents the first analysis of symptom networks in a large,
representative FEP sample, over two timepoints. Key findings were as
follows: the networks differed significantly in terms of overall structure
and connectedness, but central symptoms did not differ significantly.
Depression featured consistently as a central symptom in the baseline
and 12-month network. Conceptual disorganisation, stereotyped
thinking, along with hallucinations and suspiciousness, remained
key bridge symptoms across the networks.
It has previously been shown that network structures and

connectedness differ for those in remission [15, 17, 19]. Within the
present study, the difference in network structure and connectedness
may reflect an improvement in symptoms by 12 months. However,
interestingly, we showed that symptom centrality remained
unchanged across the networks. Identifying key symptoms which
become prominent in the networks over this critical illness period
may serve as fruitful treatment targets to promote recovery.

Influential network symptoms
The emergence of depression as an influential symptom in the
baseline and 12 month network is in line with an affective

b 12 -month networka Baseline network

Fig. 1 Symptom network maps across timepoints. A network structure for baseline is depicted in 1(a), and 1(b) for the 12 month network.
Nodes (circles) represent individual symptoms. Orange nodes represent depressive items from the Calgary Depression Scale for Schizophrenia
(CDSS). Blue nodes represent 7 negative symptoms from the PANSS scale, and green nodes represent items from the PANSS positive scale.
Edge weights (lines) represent the strength of association between symptoms. Blue edges represent positive associations and red edges
represent negative associations; denser lines represent stronger connections. P1_=Delusions; P2= Conceptual Organization; P3=
Hallucinatory Behaviour; P4= Excitement; P5=Grandiosity; P6= Suspiciousness/Persecution; P7=Hostility; N1= Blunted Affect; N2=
Emotional Withdrawal; N3= Poor Rapport; N4= Passive/Apathetic Social Withdrawal; N5=Difficulty in Abstract Thinking; N6= Lack of
Spontaneity and Flow of Conversation; N7= Stereotyped Thinking; C1=Depression; C2= Hopelessness; C3= Self Depreciation; C4= Guilt
Ideas of Reference; C5= Pathological Guilt; C6=Morning Depression; C7= Early Awakening; C8= Suicide; C9=Observed Depression.
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pathway to psychosis, where psychosis symptoms may result from
heightened emotional reactivity [7, 26, 50]; potentially reflecting a
continuation of a longstanding developmental trajectory [51].
Recent network studies add to this evidence, demonstrating that
FEP is rooted in the context of both earlier sub-threshold
symptoms as well as non-psychotic symptoms [51]. A recent
cross sectional network study by Bet and colleagues also
demonstrated that the relationship between adverse life events
and psychosis symptoms was only present via general symptoms
such as depression and guilt feelings [25]. Burden of recent life
events predicted depression and guilt 3 months later, demon-
strating the temporal relationship between life event burden and
severity and persistence of affective psychopathology [25]. In the
present longitudinal paper, the presence of central depressive
symptoms early in the illness course may suggest that
affective symptoms may underly the expression of other psychotic
symptoms [52]. Though psychotic symptoms had significantly
reduced by follow-up, the centrality of affective symptoms might
mean that the network is descended into a state of vulnerability,
where a potential worsening of depressive symptoms (e.g.,
triggered by a burdensome life event), may lead to a global
worsening of psychosis symptoms.
An alternative explanation is that depressive symptoms may be

secondary to the resolution of frank psychosis. Post-psychotic
depression is prevalent following the initial episode and might
account for the high rates of suicidality following FEP [8, 53]. It
often arises as a result of negative illness appraisals once insight is
regained [8]. However, within our networks, depression remained

a central symptom from baseline, and consistent bridge-
symptoms between depression and psychosis symptoms were
observed.
When bridge-symptoms are present, the likelihood of other

communities of activated symptoms increases. Bridge-symptoms
can help to explain the continuity and comorbidity of depression
and psychosis [10]. Within this study, a bridge between
hallucinations and suicide was consistent across the two time
points. This complex interplay has been demonstrated previously;
predominantly, suicidality is associated with auditory hallucina-
tions [54]. We have shown that individuals with FEP and
depression experience greater perceived malevolence in voices
and greater engagement [8], and command hallucinations, where
a voice is perceived as power and omnipotent, is associated with
suicidal behaviour [55].
Within our networks, bridges also emerged between suspicious-

ness with depression and hopelessness; again, a phenomenon
reported in prior research where those with
persecutory delusions encounter depression, especially when

they feel less powerful than their persecutors [8, 56]. This
relationship is also replicated in previous network studies in
males with schizophrenia, and recently in young people with FEP
[15, 27]. Here, these studies also showed depression as being
intrinsic to psychosis symptoms. A longitudinal network approach
comparing individuals across different illness stages would be
necessary to establish the causal relationship between depression
and the expression of psychosis symptoms.
Finally, it is also notable that conceptual disorganisation and

stereotyped thinking, featured consistently as central and bridge
symptoms in the networks. Formal thought disorder, which is
characterised by disturbances in thought, language and commu-
nication [57], has been identified as a core feature in those with
enduring illness and is linked to adverse outcomes, including:
higher relapse and re-hospitalisation rates [58], and poorer social
and occupational functioning [59, 60]. Although the impact of
thought disorder on illness manifestation in the early stages of
illness is generally under-recognised, in a study of individuals at-
risk of psychosis, those with disturbances in thought and
communication were more likely to transition to psychosis and
have poorer functional outcomes [61]. This may suggest that the
emergence of thought and communication disturbances in early
psychosis may be a marker of long-term poor outcomes [59].
Indeed, it has previously been proposed that thought disorder is a
manifestation of a core deficit of ‘classical’ schizophrenia,
characterised by pervasive brain changes, cognitive impairment,
and entrenchment of poor functioning [62, 63]. This psychopatho-
logical trajectory also invokes the idea of Hebephrenia, and the
presence of these characteristic may indicate a more pervasive
course of illness [64].

Implications
Identifying key central and bridge symptoms in developing
psychopathology is potentially important, as they may activate
other symptoms in the network, creating self-reinforcing feedback
loops [15]. Targeting interventions at key symptoms may break
down this maintenance cycle and provide a boost in momentum
required for global improvement [4]. Symptoms of formal thought
disorder (e.g. conceptual disorganisation, stereotyped thinking
and excitement), in addition to depressive symptoms, showed
prominence in the networks at baseline and follow-up; these
symptoms may offer more refined targets for novel stratified
treatments in early phases of psychosis. It is apparent that a
number of individuals in FEP continue to have poor outcomes and
remain unresponsive to ‘gold standard treatments’ [65]. Those
with comorbid depression in psychosis are shown to have poor
outcomes [66, 67]. Conventional interventions for those with
particularly complex symptom presentations, such as those
presenting with early thought disorder, are also shown to be less

Fig. 2 Node Strength centrality estimates for the baseline and 12-
month networks. Red lines= baseline network; blue lines= 12-
month network. Standardized z-scores are plotted for ease of
interpretation. Higher scores represent higher centrality estimates
(i.e. the symptom has greater influence in the network).
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effective [68]. This highlights the need for better recognition of
these symptoms in early psychosis, in addition to improved, and
stratified interventions for subgroups who are unlikely to respond
to conventional treatments. Thus, a better understanding of the
mechanisms by which these underrecognized early symptoms
might facilitate change in the entire symptom network may prove
beneficial [4]. Future work may seek to clarify whether network
structures differ over time in those with and without a remitted
status. This would provide clarity on the causality of network
structures over time, and how this may relate to illness outcome
and progression. Further research is also necessary to establish
whether the influence of depression on psychosis symptoms is an
integral feature of the illness, or whether it most prominent at
particular time points, such as at 12 months, as we demonstrated
within our networks.

Strengths and limitations
A strength of this study is the examination of a heterogenous
sample from a large longitudinal national cohort of young people
early in their illness course. In addition, we add to previous
network studies in psychosis by including data from male and
female participants at two time-points, and use novel statistics to
compare network strength, centrality, and connectivity. Although
we report on a large national sample of young people with
psychosis, data were missing, and subsequently imputed for 23%
of our sample. However, results of our sensitivity analyses showed
consistent findings regarding network density, stability, and
symptom centrality. A second limitation is that we did not include
socio-demographic factors within our networks. Such factors (e.g.
sex, age of onset, level of education) are shown to influence illness
outcomes in schizophrenia, however, their influence on symptom
expression remains inconclusive, particularly in the early phase of
illness [69]. Two studies within FEP showed that despite
differences between males and females on age of onset,
premorbid functioning, and duration of untreated psychosis,
there were no differences in symptoms severity at presentation
[70, 71]. Whilst this warrants investigation at a network level,
inclusion of these factors within our network is beyond the focus
of our research question. Third, we acknowledge that the group-
level nature of our analysis does not allow for conclusions to be
drawn on an individual level. And finally, though PANSS scores
differed between the networks, overall, the scores are relatively
low. Comparisons with network structures in those with more

severe and enduring psychopathology, as well as those at clinical
high risk of psychosis, may be more informative in understanding
illness stage and progression. Within the current design, we were
not able to establish whether depression emerges as prominent
not just at 12 months, but potentially earlier, during the prodrome
or sub-threshold stages.

CONCLUSION
We provide novel findings of symptom networks in early
psychosis with robust data from a large longitudinal sample.
Depressive symptoms, in addition to conceptual disorganisation
and stereotyped thinking, which are often under-recognised in
early psychosis, may potentially serve as novel symptom targets,
which if adequately addressed, may have the potential to lead to
global symptom improvements and better recovery.
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