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Genetically regulated expression in late-onset Alzheimer’s
disease implicates risk genes within known and novel loci
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Late-onset Alzheimer disease (LOAD) is highly polygenic, with a heritability estimated between 40 and 80%, yet risk variants
identified in genome-wide studies explain only ~8% of phenotypic variance. Due to its increased power and interpretability,
genetically regulated expression (GReX) analysis is an emerging approach to investigate the genetic mechanisms of complex
diseases. Here, we conducted GReX analysis within and across 51 tissues on 39 LOAD GWAS data sets comprising 58,713 cases and
controls from the Alzheimer’s Disease Genetics Consortium (ADGC) and the International Genomics of Alzheimer’s Project (IGAP).
Meta-analysis across studies identified 216 unique significant genes, including 72 with no previously reported LOAD GWAS
associations. Cross-brain-tissue and cross-GTEx models revealed eight additional genes significantly associated with LOAD.
Conditional analysis of previously reported loci using established LOAD-risk variants identified eight genes reaching genome-wide
significance independent of known signals. Moreover, the proportion of SNP-based heritability is highly enriched in genes
identified by GReX analysis. In summary, GReX-based meta-analysis in LOAD identifies 216 genes (including 72 novel genes),
illuminating the role of gene regulatory models in LOAD.
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INTRODUCTION
Late-onset Alzheimer’s disease (LOAD) is the most common
neurodegenerative disease in the world, occurring in >35% of
individuals age 85 years and older [1], and it is the sixth most
common cause of death in the US. LOAD has a substantial genetic
component, with heritability estimated to be between 40 and 80%
[2–4]. Despite this high heritability and numerous genome-wide
studies conducted to date, known LOAD-associated single
nucleotide polymorphisms (SNPs) explain only 30.62% of the
genetic variance [5], with the majority of risk attributed to variants
within APOE [5, 6]. Much of the SNP-based heritability of LOAD
remains unmapped to causal genetic factors; this so-called
“missing heritability”, is common to many complex diseases [7].
Recently developed methods leveraging transcriptomic data have
powered the identification of novel genetic risk factors, increasing
the proportion of heritability explained by known loci and
expanding our understanding of the biological processes under-
lying disease, such as cardiometabolic diseases and neuropsychia-
tric traits [8–10].
In the most recent large-scale meta-analysis of LOAD GWAS a

total of 25 genes were identified, including five novel genes, IQCK,
ACE, ADAM10, ADAMTS1, and WWOX [11]. Another recent meta-
analysis, maximized the sample size by including potential AD
cases based on parental AD status, identifying 13 novel loci [12].

Although these genes have been associated with LOAD by the
position of GWAS-identified SNPs, understanding and interpreting
the biological implications of LOAD associations is a difficult
challenge due to our limited knowledge of the underlying
mechanisms. Among the 1073 GWAS-identified LOAD variants,
only 2% are located in gene coding regions, and most do not have
a clear molecular function for LOAD [11]. Gene expression studies
provide an opportunity to investigate an important class of
molecular mediators and their consequent effects on disease
outcomes. Gene expression is regulated by complex mechanisms
involving various factors, e.g., genetic variation, age, and
environmental stimuli. The importance of gene expression is
demonstrated by the enrichment of GWAS-identified loci in
expression quantitative trait loci (eQTLs) [13]. As previously
estimated, over 70% of LOAD variant have the potential to
regulate the gene expression across all tissues [11]. A previous
transcriptome study in human brain tissues has identified 207
differentially expressed genes [14, 15]. In addition to identifying
more novel LOAD genes, transcriptome-informed studies offer a
potential genetic mechanism of disease. Previously, rs1057233
was reported as a CELF1 LOAD locus [16], but a further gene
expression study suggests it may cause LOAD via affecting SPI1
expression instead of CELF1 [17]. Therefore, investigating the
association between gene expression and traits of interest can be
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an effective way to understand the functional mechanism of
GWAS loci.
Although studying gene expression has improved our knowl-

edge about the genetic mechanism of LOAD, the difficulty of
collecting LOAD relevant tissues historically has limited the sample
sizes available for analysis, and the complexity of gene expression
regulation is also heavily affected by environment and other
uncontrollable factors. Genetically regulated expression (GReX)
association is an emerging method to test the association of gene
expression, imputed using common genetic variants, with
phenotype. Since genetic influence on phenotype is lifelong,
GReX reduces noise from temporal and environmental factors, and
instead identifies the direct impact of genetic effects that
influence gene expression on trait [18]. Also, the imputed GReX
is based on genetic variants, so we can leverage the sample size of
previous genetic LOAD studies to increase the statistical power of
this gene-based analysis. Moreover, GReX aggregates genetic
variants into a gene-level functional unit, based on gene
expression. As a result, GReX results are intrinsically related to
function in contrast to single variant GWAS where the results are
often found in intergenic regions and the relevant gene remains
unclear. The gene-level test also has the effect of increasing the
statistical power by reducing multiple testing burden.
In this study, we imputed tissue-specific GReX using Predixcan

for 12,162 LOAD cases and 13,614 healthy controls from 31
epidemiological studies of LOAD. PrediXcan trains models of gene
expression in a transcriptome reference panel linked to whole-
genome data, such as the Genotype Tissue Expression Project
(GTEx) and leverages the models to impute GReX in independent
genomic data [18]. In addition, S-PrediXcan was applied for
another eight LOAD studies (8451 cases and 24,044 controls) for
which individual genotype data were not available. S-PrediXcan
was developed to use GWAS summary statistics instead, and
estimates the gene-trait association based on these statistics and
reference linkage disequilibrium structure [19]. With both SNP-
based and GWAS summary statistic-based approaches, data on a
total of 58,713 individuals were examined in this study. Although
summary-based GReX has been successfully applied in various
traits [20–22], the fact that the allele frequency and linkage
disequilibrium data come from an external population may reduce
power to detect gene-trait associations, and its effects have not
been determined. Therefore, we compared the sensitivity of
genotype-based and summary statistic-based GReX methods to
quantify the benefit of using an internal LD structure. In addition
to tissue-specific GReX analysis, cross-tissue GReX has been
proposed to increase the power to detect gene-trait associations
[23]. Due to the high correlation of gene expression across tissues
[24], cross-tissue GReX models extract the co-expression across
selected tissues, thereby allowing for the identification of more
genes by aggregating their effects, especially for the identification
of genes with modest signals in several tissues that do not meet
single-tissue significance thresholds. Therefore, we also imple-
mented two cross-tissue models, one including all brain tissues
and one including all available tissues. Finally, to quantify the
improvement of GReX approaches over traditional GWAS, we
estimated the proportion of heritability captured by our identified
LOAD genes, demonstrating that the major component of LOAD
SNP-based heritability is captured by this approach.

SUBJECTS AND METHODS
ADGC Subjects
The ADGC GWAS data comprised 31 studies with different sample sizes
and ratios of controls to cases (Supplementary Table 1). Seven waves of
subjects were selected from the National Institute on Aging (NIA)
Alzheimer’s Disease Centers (ADCs), including the Adult Changes in
Thought (ACT) study [25], the Alzheimer Disease Neuroimaging Initiative
(ADNI) study [26], the National Institute on Aging Late-Onset Alzheimer’s

Disease Family (NIA-LOAD) study [27], the Mayo Clinic Jacksonville (MAYO),
the Multi Institutional Research of Alzheimer Genetic Epidemiology
(MIRAGE) Study [28], Oregon Health and Science University (OHSU), the
Rush University Religious Orders Study/Memory and Aging Project (ROS/
MAP) [29], the Translational Genomics Research Institute series 2 (TGEN2)
[30], the University of Miami/Case Western Reserve University/Mt. Sinai
School of Medicine (UM/CWRU/MSSM), University of Pittsburgh (UPitt) [31],
two waves from Washington University (WASHU), the Multi-Site Collabora-
tive Study for Genotype-Phenotype Associations in Alzheimer’s disease
(GenADA) [28], the Universitätsklinikum des Saarlandes (UKS), and the
Netherlands Brain Bank (NBB) [32], Biomarkers of Cognitive Decline Among
Normal Individuals: the BIOCARD cohort (BIOCARD), Chicago Health and
Aging Project (CHAP2), Einstein Aging Study (EAS), Mayo Clinic (RMAYO),
Washington Heights-Inwood Community Aging Project (WHICAP). A
detailed description of inclusion and exclusion criteria has been provided
in previous studies [11, 32, 33].
Genotyping was done with either Illumina or Affymetrix high-density

SNP microarrays. The criteria for minimal call rate and minor allele
frequency (MAF) were 0.95 and 0.02 for the Illumina chip, and 0.98 and
0.01 for Affymetrix. Genotype imputation was conducted using the HRC
r1.1 as the reference panel and minimac3 for imputation on the University
of Michigan Imputation Server [34]. Variants with MAF > 0.05 and
imputation score (R2 for MaCH/Minimac3 > 0.5) were included in further
analyses. A total of 25,776 samples of European ancestry, comprising
12,162 cases and 13,614 controls, were carried forward in the ADGC
analysis [16].

Imputing tissue-specific expression using PrediXcan models
Tissue-specific GReX in ADGC was imputed using PrediXcan with publicly-
available gene expression imputation models built-in reference transcrip-
tome data sets [18]. In total, 51 tissue-specific models were used, including
the whole blood model for DGN [35], the dorsolateral prefrontal cortex
(DLPFC) model from the CommonMind Consortium [21, 36], and another
49 tissues models from the Genotype-Tissue Expression (GTEx) project
(version v8) [37, 38]. DGN and DLPFC models were trained using an elastic
net approach, and the other models from GTEx v8 used multivariate
adaptive shrinkage (MASHR) [38]. These PrediXcan models leveraged cross-
tissue information in the model building step by applying a Bayesian
methodology, the multivariate adaptive shrinkage model (MASHR), which
allows for sparse effects and correlation in effect sizes across tissues [38].

Firth regression
Maximum likelihood estimation from conventional logistic regression may
suffer from bias due to the presence of rare events, such as in extremely
unbalanced data sets. For this reason, we used Firth logistic regression for
GReX association testing, which is less sensitive to bias due to case–control
imbalance [39]. To test the association between imputed gene expression
level and disease status, logistic Firth regression was performed within
each study using R package, logistf, with covariate adjustment for sex, age
(age-at-onset for cases and age-at-last-exam or age-at-death for controls),
and principal components analysis (PCA) to correct for population
structure [40] (from 2 to 4 components for each dataset, based on total
variance explained, as described in Naj et al. [33]).

Conditional analyses in known LOAD-associated regions
Because our PrediXcan results validated many previously reported LOAD
regions, for all PrediXcan significant genes located 10Mb upstream or
downstream of a known LOAD-risk SNP reported in Naj et al. [41], we
conducted conditional analyses two ways. Firstly, we adjusted for the
nearby previously reported SNP by including the additive genotype for
each SNP as a covariate in the Firth regression model. Secondly, we
similarly adjusted for GReX of the gene reported for the known SNP to
characterize independent residual effects. The known risk SNPs included
29 total SNPs located in 28 genes (Supplementary Table 2) [41]. If the
previously known SNP was not available in the set of high-quality imputed
variants in ADGC, a tag SNP was chosen, prioritizing SNPs in strongest
linkage disequilibrium with the risk SNP (r2 > 0.6 based on the 1000
Genomes Project CEU reference population). No SNPs with r2 > 0.6 were
available in most studies for eight SNPs of interest, and thus we did not
perform SNP-adjusted conditional analysis for rs75932628 (TREM2),
rs11218343 (SORL1), rs74615166 (TRIP4), rs138190086 (ACE), rs8093731
(DSG2), rs145999145 (PLD3), rs63750847 (APP), and rs7412 (APOE) (though
data was available for the other APOE ε2/ε3/ε4 haplotype SNP, rs429358).
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Conditional analyses were performed using logistic Firth regression in R,
adjusting for the same covariates used in the primary analysis, as well as
the dosage of the LOAD-risk SNP or the tissue-specific GReX of the gene
reported for the known SNP.

Cross-tissue analyses
To evaluate genetic effects across tissues, we used multivariate logistic
Firth regression. We considered two different cross-tissue analyses: (1)
cross-all tissues, combining expression data from all available GTEx tissues
(Supplementary Table 3), and (2) cross-brain tissues, combining expression
data from all available brain tissues in GTEx (Supplementary Table 3). Only
genes with prediction models in at least five (cross-all) or three (cross-
brain) tissues were included in these analyses. Because we expect
correlation in expression across tissues, to avoid collinearity, we computed
principal components for each gene using all available predicted gene
expression levels across (1) all tissues and (2) brain tissues only. Principal
components sufficient to explain >80% of variance were carried forward in
association tests. We conducted Firth regression including covariate
adjustment for sex, age-at-onset/age-at-last-exam, SNP-based principal
components (i.e., genetic ancestry) for the reduced model, Mreduced, and,
in addition, the expression-based principal components for the full model,
Mfull. Significance was tested by comparing Mfull and Mreduced using a
likelihood ratio test:

L ¼ 2ðlnðLfullÞ � lnðLreducedÞÞ

Here Lfull and Lreduced are the likelihood for the full and reduced models,
respectively. This likelihood ratio statistic has an asymptotic χ2 distribution
under the null hypothesis. We calculated the p-value using a χ2 test in
which the number of degrees of freedom is equal to the number of
principal components, which varies by gene.

IGAP subjects
The International Genomics of Alzheimer’s Project (IGAP) data used here
comprised eight European GWAS from seven studies with LOAD data: four
prospective cohort studies from the Cohorts for Heart and Aging Research
in Genomic Epidemiology (CHARGE) Consortium [42], including the
Atherosclerosis Risk in Communities (ARIC) Study [43], Cardiovascular
Health Study (CHS) [44], the Framingham Heart Study (FHS) [45], and two
waves of subjects from the Rotterdam Study (RS) [46]; the Genetic and
Environmental Risk in Alzheimer’s Disease (GERAD) Consortium [47]; the
European Alzheimer’s Disease Initiative (EADI) [48], and the Bonn Study
[49, 50]. A previous meta-analysis of these and other LOAD GWAS has
described sampling and phenotyping procedures as well as demographic
characteristics for each of these studies [11, 16]. Genotyping and
association analysis methods are also detailed in Kunkle et al. [11].
Summary statistics from each study were cleaned to remove low frequency
and low imputation quality using the same inclusion thresholds used for
ADGC (MAF < 0.01 and R2 < 0.5).

S-PrediXcan and S-MultiXcan
S-PrediXcan [19] infers GReX-trait association from GWAS summary
statistics using the same expression prediction models as for PrediXcan,
as well as linkage disequilibrium data from a reference population (here
1000 Genomes Project), which captures covariance of variants in the
prediction model. Summary statistics from the IGAP GWAS were pruned to
remove variants with low frequency (MAF < 0.01) and low imputation
quality (R2 < 0.5) and supplied as input to S-PrediXcan. We inferred cross-
tissue GReX-trait association based on summary statistics in IGAP using
S-MultiXcan. S-MultiXcan extracts cross-tissue GReX principal components,
and evaluates statistical significance by assessing model fitness using
an F-test. The same criteria for allele frequency and imputation quality
were applied. Two cross-tissue models were implemented, cross-all GTEx
tissues and cross-GTEx-brain tissues.

Meta-analysis and multiple testing correction
We performed fixed-effects meta-analysis of the single-tissue and the
cross-tissue results, separately, across studies (Supplementary Table 1).
Let zi and Ni be the z-score for a gene and sample size respectively from
study i. The weighted z-score statistic Zcombined is defined as:

Zcombined ¼
X

ðNiziÞ=
ffiffiffiffiffiffiffiffi
ΣN2

i

q

This statistic is distributed as a standard normal distribution, Nð0; 1Þ,
under the null hypothesis, yielding a p-value. We used METAL [51] for the
single-tissue results and the metap R package [52] implementation for the
cross-tissue model.
We applied the Benjamini–Hochberg method for study-wide multiple

testing correction [53]. The total number of tests for discovery was 733,844
(from single-tissue and cross-tissue analyses). We used B–H adjusted
p-value < 0.05 as the significance cutoff, corresponding to an original
study-wide p-value significance threshold of p = 1.02 × 10-4.

Causal inference
We conducted the FOCUS to clarify the importance of genes within the
same linkage disequilibrium region [54]. We tested all the multivariate
adaptive shrinkage models from GTEx v8, and the linkage disequilibrium
region was determined by the European ancestry population in 1000
Genomes. Only the regions containing GWAS p-value <1 × 10−5 were
used for the fine mapping. The LOAD GWAS was produced with all ADGC
studies. We used the marginal posterior inclusion probability (PIP) to
determine the gene’s importance, and used Spearman’s rank correlation
test to compare it with the Z-score from our GReX association test in
ADGC. Furthermore, we used Mendelian randomization to distinguish
the SNPs’ effect on LOAD whether through gene expression or not. The
same ADGC’s GWAS was used, and the eQTLs associations were from
GTEx v.8. We applied the median-based Mendelian randomization
(mr_median) in the R package, “MendelianRandomization”, on our
identified LOAD genes [55, 56].

Sensitivity analyses
To facilitate a direct comparison of the PrediXcan and S-PrediXcan
approaches, we completed an S-PrediXcan analysis using the same ADGC
data/samples used for the PrediXcan analysis. Summary statistics from the
ADGC GWAS performed above were pruned to remove variants with low
frequency (MAF < 0.01) and low imputation quality (R2 < 0.5) and supplied
as input to S-PrediXcan.
To evaluate the performance of individual tissue-specific models, we

used the true positive rate of the association test from GReX analysis in
each tissue, using the method described in Storey et al. [57].

Heritability analyses
We used linkage disequilibrium score regression (as implemented in LDSC
[58]) to estimate the heritability of LOAD and the proportion of heritability
attributable to our identified LOAD genes. LDSC estimates heritability
based on the relationship between GWAS summary statistics and linkage
disequilibrium. To quantify the overall increase in heritability explained in
our study, we used LDSC in summary statistics from a previous LOAD
GWAS [16]. We calculated the proportion of heritability explained by all
genes identified in our study, conducting an LDSC analysis including only
SNPs within 1 Mb of our identified genes, and compared this to the
previous estimate of heritability. We also estimated heritability explained
by the APOE region alone, including only SNPs within 10 Mb of APOE, and
compared this to the estimated heritability outside of the APOE region,
including all SNPs within 1 Mb of our identified genes but not within 10 Mb
of APOE. Finally, we calculated heritability from different tissue-specific
findings, including SNPs within 1 Mb of our findings from (1) only whole
blood and (2) only brain tissues.

RESULTS
We included two sources of data in this study. First, we utilized
imputed genotype data from Alzheimer’s Disease Genetics
Consortium (ADGC). ADGC contains 31 LOAD epidemiological
studies with 12,162 LOAD cases and 13,614 controls (Supple-
mentary Table 1). Genome-wide GReX were imputed by
PrediXcan with the whole blood model from Depression
Susceptibility Genes and Networks (DGN), dorsolateral prefron-
tal cortex model from CommonMind Consortium (DLPFC), and
49 tissue-specific models from GTEx v8. Second, we also
analyzed GWAS summary results from the International
Genomics of Alzheimer’s Project (IGAP) after excluding samples
overlapping with ADGC, comprising another eight LOAD studies
with 8451 cases and 24,044 controls. We applied S-PrediXcan to
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these summary statistics to identify gene-level associations with
LOAD. Across both data sets, a total of 23,625 unique genes
across 51 tissue-specific models were tested. To determine
study-wide significance, we used the Benjamini–Hochberg
procedure to control the false discovery rate. Genes with an
adjusted p-value of <0.05 were considered significant (p-value <
1.02 × 10-4 across 733,844 tests).
In the 51 single-tissue models, we identified 1459 tissue-specific

GReX from 208 unique genes significantly associated with LOAD
(Fig. 1, Table 1, and Supplementary Table 4). The strongest gene
association identified, TOMM40, falls within a large region of
43 significantly associated genes encompassing APOE and span-
ning 10Mb in either direction (lead signals for TOMM40 were
observed in GTEx V8 skin tissues, p-value = 1.28 × 10−600). After
adjusting for known LOAD SNPs nearby, 11 unique genes
maintained their significance, including LILRA5 from the APOE
region, TMEM163 from the BIN1 region, SIK2 from the SORL1 region,
and another 8 genes from the CELF1 region (Table 2). TOMM40 was
not statistically significant after conditional analysis. In addition, 72
genes are novel LOAD genes that are neither reported in previous
GWAS [59] (Table 1) nor within 10Mb of 31 well-known LOAD SNPs
from Naj et al. [41] (Supplementary Table 2).
In addition to the tissue-specific models, we performed two

cross-tissue analyses: cross-brain, including the 14 brain tissues in
GTEx, and cross-all tissues, including all 49 GTEx tissues across
organ systems. In the cross-all and cross-brain tissue models, 34
genes were significantly associated with LOAD; APOE was the
most strongly associated gene in both models (p-value = 4.3 ×
10−364 in the cross-all tissue model and p-value = 1.0 × 10−373 in
the cross-brain model, Fig. 2 and Table 3). Notably, eight genes
identified in the cross-tissue analyses were not significantly
associated with tissue-specific models, including ACOT8, ASPG,
CNN2, CTSA, ABP1, ISOC2, PLTP, and ZSWIM1.
To assess causal inference, we used the GReX fine-mapping

method FOCUS to identify the most likely causal genes, testing
34 genome regions across 49 tissues. The PIP was used to
evaluate the potential of our observed GReX association
representing a causal effect, and it was strongly correlated
with the Z-score from our GReX association tests (rho = 0.758).
Among the tested GReX signals, 152 from 21 unique genes were
considered likely causal (PIP > 0.9, Supplementary Table 5). We
also used Mendelian randomization to examine if the associa-
tion from eQTL to LOAD is mediated by gene expression.

Among 1395 identified LOAD-related GReX, 556 signals from
107 unique genes reached statistical significance (Benjamini &
Hochberg FDR-adjusted p-value < 0.05, Supplementary Table 6),
indicating that the effect of these eQTLs on disease status is
through their impact on gene expression.
Furthermore, we compared the sensitivity between PrediXcan

and S-PrediXcan in ADGC (Fig. 3). Overall, we observed a high
correlation between their log-transformed p-values (r2 = 0.90).
However, 66 signals were significant (FDR-adjusted p < 0.05) only in
PrediXcan, and 47 were only identified in S-PrediXcan, highlighting
the subtle change in power due to slight differences between the in-
sample and reference sample linkage disequilibrium patterns
(Supplementary Fig. 1). We also used the true positive rate to
evaluate the sensitivity of each tissue-specific model (Fig. 4). The
brain tissues had a similar true positive rate (π1, see “Subjects and
methods” section) compared to other tissues (mean = 0.039 in 14
brain tissues and 0.041 in others, p-value = 0.736), and the true
positive rate was not significantly correlated with the sample size for
model building (r2 = 0.144, p-value = 0.311).
We calculated LOAD heritability using summary statistics from

a previous LOAD GWAS [16]. Overall genome-wide heritability
from this study was 6.8%. We then estimated several partitions of
heritability based on our GReX findings. This resulted in three
primary findings. First, the 216 identified LOAD genes contain
only 7.1% of the SNPs used for heritability estimation, but
explain 60.9% of heritability, representing a significant enrich-
ment (p-value = 1.3E–04, Table 4). Among these genes,
implicated genes in the APOE region (comprising 0.5% of SNPs)
explain 16.1% of heritability, and the genes outside of this region
(comprising 6.6% of SNPs) explain 44.8%. Second, we estimated
the heritability from the brain and blood tissues alone. The brain
tissue models identified more LOAD genes (117 genes) than
blood tissues (62 genes) and explained slightly higher heritability
(47.4% in the brain vs. 43.1% in the blood). Third, we estimated
heritability using the 22 LOAD SNPs which were previously used
to generate an optimal polygenic risk score model for LOAD [60]
and SNPs in the surrounding ± 5 Kb regions; these SNPs
explained 16.8% of heritability.

DISCUSSION
To further understand the genetic mechanisms of LOAD, we
performed functionally oriented association analyses targeting

Fig. 1 Miami plot of tissue-specific GReX association tests with LOAD from meta-analysis of AGDC and IGAP (top) or ADGC-only (bottom).
The green region labels the ±10Mb of known AD loci, the blue dot indicates the novel gene, which locates outside the known AD region
(green) and is never reported in previous GWAS, and the brown dot in ADGC-only meta-analysis suggests the gene holds significance in
conditional analysis. P-values less than 1 × 10−15 were truncated (pink dot) to improve the clarity of peaks in other, less significant regions.
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Table 1. Strongest tissue-specific associations of novel LOAD genes.

ADGC & IGAP ADGC IGAP

Genes Tissue N Z p-value N Z p-value N Z p-value

TRIT1 Brain amygdala 58,713 4.615 3.92E-06 25,776 3.025 2.49E-03 32,937 3.487 4.89E-04

TSPAN14 Cells cultured fibroblasts 58,624 4.572 4.83E-06 25,687 2.224 2.61E-02 32,937 4.136 3.54E-05

LRRC8D Testis 58,713 −4.493 7.02E-06 25,776 −3.599 3.19E-04 32,937 −2.815 4.88E-03

SHARPIN Colon transverse 58,713 4.472 7.76E-06 25,776 3.426 6.13E-04 32,937 2.94 3.29E-03

MYCL Artery coronary 58,713 −4.437 9.13E-06 25,776 −2.947 3.21E-03 32,937 −3.316 9.12E-04

CLUAP1 Cells cultured fibroblasts 56,140 4.333 1.47E-05 24,133 3.948 7.89E-05 32,007 2.31 2.09E-02

LTBP2 Prostate 58,713 −4.314 1.60E-05 25,776 −2.677 7.44E-03 32,937 −3.392 6.94E-04

RERE Heart atrial appendage 58,713 −4.249 2.15E-05 25,776 −1.44 1.50E-01 32,937 −4.399 1.09E-05

ARHGEF10L Artery tibial 58,684 −4.198 2.69E-05 25,747 −2.698 6.97E-03 32,937 −3.218 1.29E-03

TMEM14EP DGN-WB 58,713 4.155 3.25E-05 25,776 3.344 8.27E-04 32,937 2.59 9.60E-03

SSBP4 Esophagus muscularis 58,713 −4.142 3.44E-05 25,776 −3.937 8.24E-05 32,937 −2.048 4.06E-02

MTDH Adipose subcutaneous 58,449 4.094 4.24E-05 25,512 3.338 8.42E-04 32,937 2.515 1.19E-02

LRRC25 Artery tibial 58,713 −4.081 4.48E-05 25,776 −2.8 5.11E-03 32,937 −2.972 2.96E-03

TRIB3 Breast mammary tissue 58,713 4.059 4.94E-05 25,776 3.234 1.22E-03 32,937 2.558 1.05E-02

AC007228.9 Muscle skeletal 56,813 −4.056 5.00E-05 23,876 −2.445 1.45E-02 32,937 −3.245 1.17E-03

SCARB1 Muscle skeletal 58,713 4.041 5.33E-05 25,776 2.576 1.00E-02 32,937 3.116 1.83E-03

EXOSC10 Skin not sun-exposed
suprapubic

58,713 4.027 5.64E-05 25,776 1.648 9.95E-02 32,937 3.92 8.86E-05

YDJC Brain putamen basal ganglia 58,713 −4.01 6.08E-05 25,776 −3.581 3.43E-04 32,937 −2.186 2.88E-02

VPS13D Brain cortex 58,713 −4.004 6.22E-05 25,776 −1.297 1.95E-01 32,937 −4.199 2.68E-05

ADA DLPFC 58,713 3.994 6.51E-05 25,776 2.25 2.45E-02 32,937 3.342 8.32E-04

AP000553.3 Nerve tibial 58,713 3.993 6.52E-05 25,776 3.487 4.89E-04 32,937 2.247 2.46E-02

CCDC116 Brain spinal cord cervical c-1 58,713 3.993 6.52E-05 25,776 3.487 4.89E-04 32,937 2.247 2.46E-02

MVB12B Artery aorta 58,713 −3.993 6.52E-05 25,776 −2.155 3.12E-02 32,937 −3.425 6.14E-04

NBAT1 Artery aorta 58,713 −3.973 7.09E-05 25,776 −2.623 8.71E-03 32,937 −2.984 2.84E-03

RABEP1 Adipose subcutaneous 58,713 3.973 7.10E-05 25,776 2.779 5.46E-03 32,937 2.846 4.42E-03

DDX41 Brain putamen basal ganglia 52,443 3.972 7.12E-05 23,391 3.442 5.77E-04 29,052 2.249 2.45E-02

SDS Brain frontal cortex BA9 58,713 −3.959 7.54E-05 25,776 −2.147 3.18E-02 32,937 −3.386 7.10E-04

UBE2L3 DGN-WB 58,713 −3.956 7.61E-05 25,776 −3.584 3.38E-04 32,937 −2.112 3.47E-02

HARS1 DGN-WB 58,713 −3.955 7.64E-05 25,776 −2.201 2.77E-02 32,937 −3.334 8.57E-04

AREL1 Brain cerebellar hemisphere 58,713 3.948 7.90E-05 25,776 3.037 2.39E-03 32,937 2.584 9.77E-03

MFSD2A Minor salivary gland 58,713 3.946 7.96E-05 25,776 2.959 3.09E-03 32,937 2.65 8.04E-03

FKTN Brain caudate basal ganglia 58,713 3.944 8.02E-05 25,776 1.11 2.67E-01 32,937 4.284 1.84E-05

MT1G Brain frontal cortex BA9 58,713 3.941 8.13E-05 25,776 0.741 4.58E-01 32,937 4.605 4.12E-06

ARHGEF3 DLPFC 58,713 3.934 8.34E-05 25,776 3.067 2.16E-03 32,937 2.54 1.11E-02

FOLR2 Minor salivary gland 58,351 3.918 8.92E-05 25,414 4.577 4.71E-06 32,937 1.195 2.32E-01

TRAM1 Esophagus gastroesophageal
junction

58,713 −3.912 9.14E-05 25,776 −3.57 3.57E-04 32,937 −2.066 3.89E-02

NTRK1 Artery tibial 58,713 3.886 1.02E-04 25,776 2.197 2.80E-02 32,937 3.245 1.17E-03

CLUL1 Brain caudate basal ganglia 58,713 −3.827 1.30E-04 25,776 −1.158 2.47E-01 32,937 −4.085 4.42E-05

ACP1 Testis 58,713 −3.802 1.43E-04 25,776 −3.889 1.01E-04 32,937 −1.636 1.02E-01

L3MBTL2 Heart atrial appendage 58,713 3.783 1.55E-04 25,776 4.126 3.69E-05 32,937 1.4 1.61E-01

CHADL Heart left ventricle 58,713 −3.773 1.62E-04 25,776 −4.201 2.66E-05 32,937 −1.321 1.87E-01

OSER1 DLPFC 58,713 −3.753 1.75E-04 25,776 −3.947 7.92E-05 32,937 −1.52 1.29E-01

EP300 Lung 58,713 3.715 2.03E-04 25,776 4.318 1.58E-05 32,937 1.141 2.54E-01

INPPL1 Ovary 58,351 3.686 2.28E-04 25,414 4.354 1.34E-05 32,937 1.081 2.80E-01

PATJ Esophagus mucosa 58,713 3.683 2.30E-04 25,776 1.138 2.55E-01 32,937 3.911 9.21E-05

RILPL2 Lung 57,358 −3.621 2.94E-04 24,421 −0.259 7.95E-01 32,937 −4.555 5.25E-06

SH3YL1 Adrenal gland 58,713 3.616 2.99E-04 25,776 3.909 9.27E-05 32,937 1.37 1.71E-01

COLCA2 Stomach 58,713 3.616 3.00E-04 25,776 4.206 2.60E-05 32,937 1.106 2.69E-01

ALKAL2 Brain substantia nigra 58,713 3.583 3.40E-04 25,776 3.898 9.69E-05 32,937 1.335 1.82E-01
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Table 1. continued

ADGC & IGAP ADGC IGAP

Genes Tissue N Z p-value N Z p-value N Z p-value

GDAP1L1 Artery tibial 58,713 3.575 3.51E-04 25,776 4.141 3.46E-05 32,937 1.11 2.67E-01

ECE1 Heart left ventricle 58,713 −3.574 3.52E-04 25,776 −0.686 4.93E-01 32,937 −4.164 3.12E-05

NAV3 Esophagus gastroesophageal
junction

58,713 −3.567 3.61E-04 25,776 −0.991 3.22E-01 32,937 −3.887 1.02E-04

NPC2 Brain hippocampus 58,713 −3.467 5.26E-04 25,776 −0.133 8.94E-01 32,937 −4.511 6.44E-06

MAP3K7 Pancreas 58,713 −3.43 6.04E-04 25,776 −0.721 4.71E-01 32,937 −3.941 8.11E-05

RBCK1 Testis 58,713 3.389 7.02E-04 25,776 0.108 9.14E-01 32,937 4.429 9.46E-06

PHB2 Brain cortex 58,713 −3.171 1.52E-03 25,776 −0.378 7.06E-01 32,937 −3.9 9.62E-05

EMG1 Skin sun-exposed lower leg 58,713 3.138 1.70E-03 25,776 0.183 8.55E-01 32,937 4.029 5.61E-05

AC026367.3 Cells cultured fibroblasts 58,713 −3.099 1.94E-03 25,776 −4.513 6.40E-06 32,937 −0.146 8.84E-01

TBC1D1 Cells cultured fibroblasts 58,713 3.057 2.23E-03 25,776 0.161 8.72E-01 32,937 3.94 8.16E-05

RABEPK Brain substantia nigra 35,698 3.013 2.58E-03 19,912 0.428 6.69E-01 15,786 4.051 5.10E-05

AC026367.2 Brain frontal cortex BA9 58,713 −2.985 2.84E-03 25,776 −4.364 1.28E-05 32,937 −0.124 9.01E-01

ZNF295−AS1 Minor salivary gland 58,713 −2.882 3.96E-03 25,776 −3.91 9.23E-05 32,937 −0.389 6.98E-01

KAT6B Cells cultured fibroblasts 58,624 2.842 4.49E-03 25,687 3.928 8.58E-05 32,937 0.323 7.47E-01

SPATA6L Brain cortex 58,713 2.832 4.63E-03 25,776 4.27 1.95E-05 32,937 0.003 9.98E-01

SUDS3 Esophagus mucosa 58,713 2.733 6.28E-03 25,776 4.169 3.07E-05 32,937 −0.039 9.69E-01

TMCC3 Brain cortex 58,713 −2.687 7.22E-03 25,776 −4.329 1.50E-05 32,937 0.243 8.08E-01

HSPA2 Colon sigmoid 58,175 2.521 1.17E-02 25,238 4.071 4.68E-05 32,937 −0.213 8.31E-01

RRS1 Heart left ventricle 58,713 −2.152 3.14E-02 25,776 −3.921 8.84E-05 32,937 0.595 5.52E-01

TRHDE Uterus 58,537 −2.11 3.48E-02 25,600 −3.886 1.02E-04 32,937 0.612 5.40E-01

LINC02664 Artery tibial 58,624 2.036 4.17E-02 25,687 4.385 1.16E-05 32,937 −1.156 2.48E-01

ADAMTSL3 Brain cortex 58,713 2.02 4.34E-02 25,776 3.949 7.84E-05 32,937 −0.797 4.25E-01

SH3GLB1 Adrenal gland 58,713 1.89 5.88E-02 25,776 3.91 9.25E-05 32,937 −0.935 3.50E-01

False discovery rate adjusted genome-wide significance: p-value < 1.02 × 10−4.

Table 2. The genes with significant effect independent to nearby known LOAD SNPs.

Unadjusted model Adjusted for SNP Adjusted for gene

Known LOAD SNP Genes Tissue N Z p-value Z p-value Z p-value

APOE (rs429358); APOE
(rs7412); CD33 (rs3865444)

LILRA5 Lung 21,924 −5.301 1.15E-07 −4.903 9.43E-07 −5.358 8.43E-08

BIN1 (rs6733839) TMEM163 Thyroid 25,776 −4.163 3.14E-05 −4.177 2.95E-05 −4.141 3.46E-05

CELF1 (rs10838725) C1QTNF4 Brain cerebellar
hemisphere

25,776 4.397 1.10E-05 4.055 5.01E-05 4.115 3.87E-05

FAM180B Artery coronary 25,776 −4.504 6.67E-06 −4.13 3.64E-05 −4.317 1.58E-05

KBTBD4 Kidney cortex 25,776 3.996 6.45E-05 3.911 9.19E-05 3.803 0.0001431

MTCH2 Skin sun-exposed
lower leg

25,776 −4.245 2.19E-05 −3.969 7.23E-05 −3.783 0.000155

NDUFS3 Cells cultured
fibroblasts

25,776 4.261 2.03E-05 3.899 9.64E-05 4.323 1.54E-05

PSMC3 Cells cultured
fibroblasts

25,776 −4.263 2.01E-05 −3.89 1.00E-04 −4.3 1.71E-05

PTPRJ Brain cortex 25,776 4.356 1.32E-05 4.274 1.92E-05 3.834 0.0001259

RAPSN Stomach 25,776 4.519 6.23E-06 4.205 2.61E-05 4.39 1.13E-05

SLC39A13 Adipose visceral
omentum

25,776 −4.279 1.88E-05 −3.903 9.49E-05 −4.771 1.84E-06

SORL1(rs11218343) SIK2 Brain cerebellar
hemisphere

25,776 4.462 8.14E-06 4.44 9.00E-06 NA NA
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tissue-specific and cross-tissue effects on LOAD-risk. We applied
GReX models in a total of 51 tissues to 20,613 LOAD cases and
37,658 controls. As a result, 72 novel genes and 136 genes from
known LOAD regions were identified after study-wide multiple
test correction (FDR < 0.05). In addition, we applied both cross-
brain-tissues and cross-GTEx models and we found eight
additional genes significantly associated with LOAD. Secondly,
we compared the SNP-based GReX approach to the summary
statistic-based approach, and demonstrated the benefit of SNP-
based methods, which leverage the internal LD structure of the
empirical data instead of an external panel. Finally, we estimated
the proportion of LOAD SNP-based heritability that can be
captured by our identified LOAD genes to represent the
improvement of GReX analysis over traditional GWAS. Our results
suggest over 60% of LOAD heritability can be captured by our 216
identified LOAD genes.
Most previously described LOAD genes have been identified

through GWAS, and we observe that for eight known genes,
APOE, BIN1, CLU, PTK2B, CR1, MS4A2, PICALM, IQCK, and TREML2,
their genetically regulated expression levels were significantly
associated with LOAD status as well. Several genes close to these
known genes were also significantly associated with LOAD. For
instance, results for TOMM40 in GTEx skin tissues were the
strongest association signals in all analyses; this strong effect
observed in skin tissues may be due to shared genetic regulation
between skin and brain tissues and increased power due to
more available expression data in skin tissues. Notably, skin
biopsies have been suggested as an approach to detect
dysregulated or abnormal protein levels in Alzheimer’s disease
between healthy participants, participants with LOAD, and
participants with dementia due to other causes [61]. TOMM40
encodes Tom40 protein, Translocase of the Outer Mitochondrial
Membrane, 40 kD, and is located in a region in high linkage
disequilibrium with APOE. Association of TOMM40 variants with
LOAD has been observed in previous genetic studies [62], and
several studies indicate that the effect of TOMM40 is indepen-
dent of APOE [63–65]. Lower expression of TOMM40 in blood has
also been reported in LOAD cases [66], with a consistent
direction of effect with our results in the DGN whole blood
model. Furthermore, we adjusted for the known LOAD variants
representing the APOE ε2/ε3/ε4 haplotype reported in Naj et al.
[41] in conditional analysis of this locus, and results indicate that
the effect of the genetically regulated expression on LOAD was

driven mostly by the index variants at APOE (rs7412, rs429358,
rs145999145, and rs3865444). We used FOCUS to clarify the
causal inference of identified genes from known LOAD regions,
and TOMM40 was also identified as a likely causal gene in many
tissues, e.g., muscle, brain cortex and pituitary gland. In addition,
our Mendelian randomization results also suggest that the effect
of eQTLs of APOE on LOAD were not significantly mediated by
the expression of APOE in many tissues, including both skin and
muscle tissues. These results suggest that previously identified
APOE SNPs may impact the risk of LOAD through coregulation of
the expression of nearby genes, such as TOMM40. We observed a
similar pattern throughout our results, indicating that previously
identified LOAD SNPs may co-regulate the expression of several
nearby genes rather than only the nearest gene. After adjusting
the nearby known LOAD SNPs, we still can identify 11 unique
genes that retained significance, including PTPRJ from the CELF1
region. PTPRJ encodes a protein of the family of tyrosine
phosphatase, and it has been reported as a shared genetic factor
of LOAD and major depression disorder [67].
However, we also identified 72 novel independent genes that

are >10 MB from previously reported signals, including TRIT1,
TSPAN14, and MTDH. TRIT1 encodes TRNA Isopentenyltransferase
1, which is targeted to mitochondria and modified the transfers
RNA. TRIT1 has been known as a tumor suppressor for several
forms of cancer [68], and its pleiotropy between LOAD and major
depressive disorder [67] or cardiovascular risk factor has been
previously noted [69]. TSPAN14 is a member of tetraspanins, a
family of compact and glycosylated transmembrane proteins.
Previous research has reported tetraspanins’ function on the
precursor of amyloid-beta (Aβ) peptide, amyloid precursor
protein, and their potential roles in the development of LOAD
[70]. In addition, MTDH encodes metadherin, which is also known
as astrocyte elevated gene-1 protein (AEG-1). The role of AEG-1
in tumor progression and neurodegeneration, especially HIV-
induced dementia, has been previously reported [71, 72]. The
GReX-based analysis has been applied in several previous small
LOAD studies [20, 73, 74]. With our larger sample size and
updated models, we successfully replicated their findings of
known LOAD genes, and identified additional novel genes
(Supplementary Table 4).
To explore which tissues contribute the most significant

effects to LOAD-risk, we also evaluated the true positive rate
for each tissue-specific model using the methods outlined in

Fig. 2 Miami plot of cross-all GTEx tissue (blue dots, top) and cross-brain tissues model (gray dots, bottom). p-values less than 1 × 10−15

(pink dots) were truncated to improve the clarity of peaks in other, less significant regions.
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Storey et al. [57]. Our findings suggest that non-brain tissues,
particularly whole blood, are important for detecting GReX
effects on LOAD and may imply the relevance of non-brain tissue
in LOAD pathology. Given the difficulty of characterizing
transcriptomic effects in brain tissue, the utility of alternate,
accessible tissues in understanding LOAD pathogenesis will be
key to future studies.
Motivated by the extensive observed shared genetic regula-

tion of gene expression across tissues [37], we conducted cross-
tissue analyses in addition to tissue-specific analyses. If a gene is
tissue-specific in its regulation, then a tissue-specific model
rather than a cross-tissue model, should have a better power to
detect its effect. However, if patterns of expression suggest that
a gene has shared regulation across many tissues and effects
are small but consistent across many tissues that may have
small sample sizes in GTeX (e.g., brain tissues), then a cross-
tissue model would be expected to have greater power than a
single-tissue model. A total of 34 genes were identified in our

cross-tissue analyses, eight of which were only identified in
cross-tissue analyses, while 188 were only identified by single-
tissue analysis. These results indicate that cross-tissue analysis
can detect additional significant associations at genes where
the effects are consistent across tissues, because cross-tissue
and tissue-specific analyses may provide complementary
information.
Moreover, we compared the use of SNP-based GReX analysis,

PrediXcan, and summary statistic-based GReX analysis, S-
PrediXcan, in the same dataset and found that the SNP-based
approach identified more significant signals. Since summary
statistic-based GReX prediction approaches rely on an external
linkage disequilibrium panel, the reduced significance of the
summary statistic-based method may be caused by differences
in linkage disequilibrium between the external panel and the
population in which the summary statistics were derived.
Though these differences in linkage disequilibrium are likely
subtle, our findings suggest that although the shifts in p-values

Table 3. The significant genes in cross-tissue models.

All GTEx tissues GTEx brain tissues

Genes N Tissues PCs p-value N Tissues PCs p-value

APOE 58,713 36.92 5.74 4.36E-364 58,713 9.72 1.59 1.00E-373

NECTIN2 58,713 45.18 8.23 9.22E-198 58,713 9.18 4.33 4.13E-75

APOC1 58,713 16.15 4.56 1.14E-165 19,246 3.00 2.00 4.02E-53

APOC4 58,713 9.90 3.13 1.49E-73 58,713 4.00 1.21 1.65E-88

BCAM 58,713 45.05 5.74 9.62E-20 57,358 12.00 2.00 8.11E-02

APOC2 58,713 47.28 4.95 2.90E-13 58,713 12.79 3.00 4.14E-06

BIN1 58,713 46.00 8.13 7.28E-11 58,713 13.00 4.92 7.03E-10

TRAPPC6A 58,713 26.97 3.05 7.01E-09 58,713 6.54 2.59 9.60E-10

ABCA7 57,358 44.32 7.68 2.94E-08 57,358 10.79 2.61 1.82E-06

CNN2 57,358 42.00 8.39 3.33E-08 57,358 12.34 3.79 3.91E-02

CLU 58,713 23.00 5.56 2.80E-07 25,776 3.00 2.00 7.16E-03

ZNF296 58,713 45.00 5.51 5.04E-07 58,713 10.00 2.21 2.13E-11

CLPTM1 58,713 31.18 3.87 8.41E-07 58,713 8.38 2.97 1.49E-08

EXOC3L2 58,713 29.92 4.18 2.87E-06 58,713 4.00 2.28 3.53E-03

CEACAM19 58,713 49.00 5.59 3.50E-06 58,713 13.00 1.05 4.97E-06

SLC39A13 58,713 47.00 3.77 1.45E-05 58,713 12.00 2.00 3.57E-04

ASPG 58,713 41.33 7.00 2.22E-05 58,713 11.51 3.64 8.72E-02

CTSA 58,713 19.10 4.67 2.50E-05 58,713 4.44 2.00 1.37E-02

ACP2 58,713 49.00 3.18 2.59E-05 58,713 13.00 2.03 3.86E-06

PICALM 58,713 41.00 5.00 3.72E-05 58,713 8.00 4.00 2.56E-05

PSMC3 58,713 44.00 3.05 4.54E-05 58,713 11.00 2.00 4.62E-06

ZSWIM1 58,713 32.00 4.49 6.49E-05 58,713 9.00 2.00 4.71E-03

FABP1 58,713 43.00 2.85 9.56E-05 58,713 13.00 2.62 7.91E-02

ACOT8 58,713 47.74 3.18 1.05E-04 58,713 12.90 2.26 6.21E-05

APH1B 58,713 47.59 4.41 1.49E-04 58,713 11.79 3.03 1.28E-06

MS4A4E 58,713 29.97 2.87 1.69E-04 25,776 3.00 1.00 5.62E-06

CR1 58,713 25.03 3.03 3.16E-04 58,713 9.21 1.41 1.55E-06

PVR 58,713 48.00 7.54 3.77E-04 58,713 12.00 2.92 7.14E-05

PLTP 58,713 44.41 6.23 1.38E-03 58,713 13.00 4.28 8.58E-06

SCARA3 58,713 36.21 8.00 3.97E-03 58,713 9.00 4.64 2.73E-05

DMWD 58,713 39.95 5.23 5.22E-03 58,713 6.00 2.00 1.11E-02

SYMPK 58,713 38.72 6.18 1.17E-01 58,713 7.00 2.03 8.97E-03

EML2 58,713 30.56 9.15 1.87E-01 57,358 7.21 3.71 5.91E-02

ISOC2 57,358 38.21 3.11 9.12E-01 56,328 7.84 2.38 8.84E-01
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were not large, for borderline signals, S-PrediXcan may have
slightly reduced power to detect true effects. We note, however,
that careful simulation will be needed to fully characterize
the impact of differences in linkage disequilibrium on the power
of these approaches, which is beyond the scope of the
present study.

To further validate our findings, we estimated the proportion
of LOAD heritability that can be explained by the identified
genes. Our results indicate that our 216 LOAD genes explain a
significantly enriched proportion of heritability (enrichment=
8.62, p-value= 1.3 × 10−4, Table 4). For comparison, we also
calculated heritability explained by the 22 LOAD SNP loci
(±5 kb) included in a recent LOAD polygenic risk score model
[60]. Although the loci containing the 22 SNPs used in LOAD
PGRS are strongly enriched, our identified LOAD gene set
explains more than three times the SNP-based heritability of
LOAD, demonstrating the benefit of applying the functionally
oriented approach to investigate the pathology of LOAD.
Furthermore, we compared the proportion of explained
heritability by the identified genes from brain tissue and blood
tissue. Even though the brain is considered to be the causal
tissue for LOAD, the blood tissues can capture similar
heritability with brain tissues, and it may emphasize the
importance of non-brain tissue in LOAD again. Also, a previous
study demonstrated that the blood transcriptome can well
predict the genes’ expression in other tissues [75], and it may
offer another explanation about our highly explained LOAD
heritability from blood.
There are several limitations of the present study. The gene

expression prediction models are primarily based on GTEx data,
and our power to detect associations is limited somewhat by
tissue-specific sample sizes in GTEx. In particular, limited
sample sizes for the brain tissues in GTEx reduced our ability
to identify associations between LOAD-risk and genes with
tissue-specific expression in the brain. To mitigate this
limitation, we included models built in the CommonMind data.
Also, some genes have expression patterns dependent on age
[76], and so our predicted genetically regulated expression
profile may reflect the age of the GTEx reference samples
instead of the advanced ages associated with LOAD, limiting
our power to detect such effects. Furthermore, our analysis
examines the association of predicted genetically regulated
expression, rather than directly measured expression levels.
These imputed levels may differ from true, measured expres-
sion, which is affected by other environmental or temporal
factors [77]. Although we may not perfectly impute the true
gene expression levels or capture the effect of gene-environ-
ment, the models of genetically regulated expression that we
applied here offer an opportunity to investigate age- and
environment-independent effects of gene regulation on LOAD.
Finally, our study populations are entirely European ancestry,
limiting our ability to detect some loci with effects that vary by
population and the generalizability of our results to other
populations. Further study in individuals of non-European
ancestry is needed to ensure that this limitation does not
persist and contributes to health disparities.
In conclusion, analyzing genetic data from 20,613 LOAD

cases and 37,658 controls from 39 epidemiological studies of
LOAD, we profiled the genetically regulated expression
genome-wide in 51 diverse tissues and expression data from
GTEx, CommonMind, and DGN using SNP-based and summary
statistics-based GReX approaches. Many of our significant
gene-based associations fall within 10 Mb distance of pre-
viously described loci, suggesting co-regulation by GWAS-
identified SNPs. In addition, we identify 72 novel genes from
either tissue-specific analysis or cross-tissue analysis. Together,
the 216 LOAD genes we identify explain over 60% of the SNP-
based heritability of LOAD in these data. While the role of
genes with differentially regulated expression levels in LOAD
progression is still unclear, and more functionally oriented
genetic studies of LOAD are needed, these findings highlight
the power of expression prediction approaches to identify
novel genes.

Fig. 4 Scatter plot of sample size used for model building against
the true positive rate. X-axis represents the number of subjects
used in PrediXcan model building and Y-axis represents the true
positive rate for each model in our analysis. Color represents tissue
source (red for brain tissues and gray for other tissues).

Fig. 3 Scatter plot of log-transformed p-values from SNP-based
(PrediXcan) and summary statistic (S-PrediXcan) GReX approach.
Each dot shows the gene-level p-value from a SNP-based approach
(PrediXcan, y-axis) and summary statistic approach (S-PrediXcan,
x-axis). Color indicates that the signal (tissue-specific GReX) was only
identified in PrediXcan (red, FDR < 0.05) or only in S-PrediXcan
(green, FDR < 0.05).
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