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The relationship between mild behavioral impairment (MBI) and Alzheimer’s disease (AD) is intricate and still not well investigated.
The purpose of the study is to examine the roles of the AD imaging pathologies in modulating the associations of MBI with
cognitive impairments. We analyzed 1129 participants (563 [49.86%] female), who had measures of Neuropsychiatric Inventory
Questionnaire (NPI-Q), cognition, and amyloid PET AD biomarkers from the Alzheimer’s disease Neuroimaging Initiative (ADNI). We
assess the longitudinal neuropathological and clinical correlates of baseline MBI via linear mixed effects and Cox proportional
hazard models. The mediation analyses were used to test the mediation effects of AD pathologies on cognition. We found that MBI
was associated with worse global cognition as represented by Mini-Mental State Examination (MMSE) (p < 0.001), and higher
β-amyloid burden (p < 0.001). β-amyloid partially mediated the effects of MBI on cognition with the mediation percentage varied
from 14.67 to 40.86% for general cognition, memory, executive, and language functions for non-dementia individuals. However, no
significant associations were discovered between MBI and tau burden or neurodegeneration. Furthermore, longitudinal analyses
revealed that individuals with MBI had a faster increase in brain amyloid burden (p < 0.001) and a higher risk of clinical conversion
(HR= 2.42, 95% CI= 1.45 to 4.01 p < 0.001). In conclusion, MBI could be an imperative prediction indicator of clinical and
pathological progression. In addition, amyloid pathologies might partially mediate the influences of MBI on cognitive impairments
and AD risk.
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INTRODUCTION
Characterized by abnormal amyloid deposition, tau phosphoryla-
tion and neurodegeneration in pathology and cognitive and
behavioral impairments in clinic, Alzheimer’s disease (AD) has a
prolonged asymptomatic phase in the course of the Alzheimer’s
continuum before pathological biomarkers appeared [1–4].
Selecting individuals who are at high risk of suffering AD is the
critical step to give effect to accurate diagnosis and timely
intervention at the early preclinical and prodromal stages of AD
and drug development [5]. Neuropsychiatric symptoms (NPSs)
mainly manifested as disturbances of mood, perception, and
behavior linked with neurodegenerative disease, which are
regarded as noncognitive or behavioral and psychiatric symptoms
of dementia [6]. NPSs occurred in the prodromal or mild cognitive
impairment (MCI) stages of dementia and associated with an
increased risk of AD and pathologically associated with greater
plaque and tangle burden indicating that preventing NPSs could
be a promising way for early intervention [7–9].
The ISTAART-AA criteria for mild behavioral impairment (MBI)

has been developed by the International Society to Advance

Alzheimer’s Research and Treatment (ISTAART) NPS Professional
Interest Area to promote investigation into the correlation
between NPSs and dementia [1]. MBI characterized by the new
emerged and sustained NPSs may be an early manifestation of
neurodegenerative disease. The ISTAART-AA MBI criteria empha-
size the importance of a significant change from the person’s
usual behavior or personality persisting for at least 6 months in
the following domains: absence of drive and motivation;
emotional dysregulation; impulse dyscontrol; social inappropriate-
ness; and abnormal perception and thought content, assessed
individually and collectively for their impact on cognition. In
addition, psychiatric illness was explicitly excluded a priori. MBI is
easy to capture using several simple rated scales for NPSs [10]. For
instance, the Neuropsychiatric Inventory Questionnaire (NPI-Q)
could reflect NPI items into MBI domains. MBI therefore provides a
flexible and convenient method for selecting a population at
higher risk for cognitive decline and dementia.
Previous studies have demontrated that MBI was a marker of

cognitive decline in intact-elder individuals [11, 12] and also
associated with AD pathology [13]. However, although MBI and
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amyloid burden were revealed to contribute to cognitive decline
independently, it is still disputable whether amyloid could
modulate the relationships of MBI with cognitive functions. In
the current study, we hypothesis that the effects of MBI on
cognition may be modulated by AD pathology in non-dementia
elderly individuals. Herein, we test the hypothesis by evaluating
the relationships between the MBI scores, AD imaging biomarkers
including brain burden of β-amyloid, brain burden of tau and
neurodegeneration, and cognitive impairment in participants
without dementia. Detecting sensitive and specific markers of
very early AD progression is proposed to help develop new
treatments and to decrease the time and cost of clinical trials [14].

MATERIALS AND METHODS
Subjects
Data were obtained from the ADNI database (http://adni.loni.usc.edu). The
multicenter ADNI project is designed to predict the early onset of AD through
investigating clinical, imaging, genetic, and biochemical biomarkers and have
been recruited participants from more than 50 sites across the United States
and Canada. The participants are older adults aged 55–90 years and their
cognitive trajectories and the biomarkers were repeatedly assessed during the
follow-up period to track the pathology as the disease progressed. Written
informed consent was obtained on human experimentation at each institution
and detailed information can be found at http://adni.loni.usc.edu/study-design.
In the study, we selected 1129 participants without dementia, including

543 MCI and 586 CN individuals. The population included ADNI-1 and
ADNI-2 and GO participants enrolled into the MBI > 0 and MBI= 0 cohorts,
were tested for positron emission tomography (PET) and NPI-Q.

PET imaging measures
All PET data used were from the UC Berkeley and Lawrence Berkeley National
Laboratory. Florbetapir (AV45) SUVRs calculated by averaging across four
cortical regions (frontal, anterior/posterior cingulate, lateral parietal, lateral
temporal) were used for brain amyloid burden, and then divided by the whole
cerebellum as reference region. Brain tau deposit used a composite metaROI
was measured via the flortaucipir (AV-1451) processing method and the
bilateral entorhinal, amygdala, fusiform, inferior, and middle temporal regions
were considered for tau-PET assessment [15]. Brain neurodegeneration used
hypometabolism assessed by 18F-fluorodeoxyglucose (FDG) PET, which was
from the average of five metaROIs (left angular gyrus, right angular gyrus,
bilateral posterior cingular, left inferior temporal gyrus, right inferior temporal
gyrus) [16].

Assessment of mild behavioral impairment
The MBI checklist (MBI-C), which was ascertainable instrument for MBI, was
not yet incorporated into ADNI [10]. Thus, according to a published
algorithm, a transformation of NPI-Q scores was approximated to MBI
status [17]. Ten NPSs domains from the NPI-Q were subdivided into five
ISTAART-AA MBI domains of the absence of drive and motivation (NPI-Q
apathy), emotional dysregulation (NPI-Q depression/anxiety/euphoria),
impulse dyscontrol (NPI-Q agression/irritability/aberrant motor behavior),
social inappropriateness (NPI-Q disinhibition), and abnormal perception
and thought content (NPI-Q delusions/hallucinations). The ISTAART-AA MBI
criteria put an emphasis on the necessary of a distinct change from the
person’s usual behavior or personality persisting for at least 6 months in
the five domains [1, 13]. Finally, adding together the five transformed
domains to obtain the approximated MBI status. Participants with an MBI
score >1 were considered as MBI+ status and participants with an MBI
score of 0 were considered as MBI– status [18]. All individuals were over
the age of 55 and none of them met criteria for any major neuropsychiatric
disorder.

Cognitive assessment
We used multiple scales to assess cognitive functions, including the global
cognition by Mini-Mental State Examination (MMSE), the Montreal
Cognitive Assessment Scale (MoCA) and the cognitive section of
Alzheimer’s Disease Assessment Scale (ADAS). Participants also underwent
neuropsychological evaluation of three cognitive domains (executive,
memory and language functions), which were assessed by reviewing the
neuropsychological batteries to identify items that could be considered
indicators of these three domains [19, 20]. Above mentioned scales were
used to represent general and specific cognition functions.

Statistical analyses
Data were presented mean (standard deviation, SD) or number
(percentage, %) when appropriate. First, we examined the relationships
of MBI scores with cognition and AD PET imaging biomarkers in different
groups. Linear regression models were used to investigate the cross-
sectional relationships of MBI scores with PET imaging biomarkers and
cognitive measures. Then, the relation between MBI and clinical
progression was tested by calculating cumulative incidence using the
Kaplan–Meier method. Clinical progression was defined as: (1) diagnosed
as MCI/dementia for baseline CN individuals, (2) diagnosed as dementia for
baseline MCI individuals. Cox proportion hazards model was conducted to
estimate the hazard ratio (HR) with 95% confidence interval (CI). Individuals
who did not develop MCI/AD or who were lost were censored at the time
of their last evaluation.

Table 1. Baseline characteristics of participants according to groups.

Non-AD MCI CN

MBI > 0 MBI= 0 p value MBI > 0 MBI= 0 p value MBI > 0 MBI= 0 p value

No. n= 385 n= 744 n= 296 n= 247 n= 89 n= 497

Age 71.68 ± 7.25 72.35 ± 6.25 0.032 71.67 ± 7.57 72.48 ± 7.18 0.026 71.71 ± 6.07 72.23 ± 6.25 0.215

Education (year) 16 (14–18) 16 (15–18) 0.456 16 (14–18) 16 (14–18) 0.444 16 (15–18) 17 (15–18) 0.654

Female 162 (42.07%) 401 (53.89%) 0.321 110 (37.16%) 121 (48.98%) 0.219 52 (58.42%) 279 (56.13%) 0.341

APOE ɛ4 carriers 170 (44.15%) 267 (35.88%) 0.004 145 (48.98%) 111 (44.93%) 0.013 25 (28.08%) 156 (31.38%) 0.134

Florbetapir n= 349
1.206 ± 0.231

n= 591
1.147 ± 0.198

0.002 n= 275
1.238 ± 0.236

n= 217
1.201 ± 0.222

0.044 n= 74
1.087 ± 0.168

n= 374
1.116 ± 0.176

0.606

Flortaucipir n= 162
1.198 ± 0.158

n= 378
1.188 ± 0.168

0.125 n= 87
1.236 ± 0.205

n= 79
1.260 ± 0.246

0.146 n= 75
1.150 ± 0.096

n= 299
1.163 ± 0.136

0.067

FDG n= 353
1.256 ± 0.131

n= 524
1.291 ± 0.123

0.769 n= 281
1.243 ± 0.129

n= 240
1.270 ± 0.135

0.654 n= 72
1.308 ± 0.128

n= 284
1.310 ± 0.108

0.089

ADAS n= 339
9.18 ± 5.17

n= 588
7.40 ± 3.72

<0.001 n= 265
9.95 ± 5.27

n= 216
9.18 ± 4.06

0.222 n= 74
6.31 ± 3.56

n= 372
6.37 ± 3.07

0.688

MMSE n= 339
28.05 ± 2.05

n= 591
28.68 ± 1.47

<0.001 n= 265
27.80 ± 2.15

n= 217
28.08 ± 1.68

0.044 n= 74
28.97 ± 1.28

n= 374
29.02 ± 1.21

0.280

No. number of participants, MBI mild behavioral impairment, APOE ɛ4 apolipoprotein E gene, Non-AD participants without alzheimer’s disease, MCI mild
cognition impairment, CN cognitively normal, FDG 18F-fluorodeoxyglucose, ADAS Alzheimer’s disease assessment scale, MMSE mini-mental state examination,
MoCA Montreal cognitive scale.
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Next, the mediation analyses were used to evaluate whether the
association between MBI and cognition was mediated amyloid patholo-
gies. Baron and Kenny have proposed the calculation methods through
linear regression models fitting [21] and we also reference the detail
methods in an previous study [22]. The first equation regressed mediator
(PET imaging biomarkers) on the independent variable (MBI). The second
equation regressed the dependent variable (cognitive scores) on the
independent variable. The third equation regressed the dependent
variable on both the independent variable and the mediator variable.
Diagnosis was not considered as a covariate due to the close relationship
between cognitive score and clinical diagnosis (MCI vs CN) in the analyses
with cognitive scores as the dependent variables. The establishment of the
mediation effects must satisfy the following criteria simultaneously: (1) MBI
was associated with PET imaging biomarkers significantly; (2) MBI was
associated with cognitive measures significantly; (3) PET imaging
biomarkers were associated with cognitive measures significantly; (4) the
association between MBI and cognition was diminished when PET imaging
biomarkers (the mediator) were added in the regression model. In all
above analyses, age, gender, diagnosis, education, and APOE4 status were
controlled.
Finally, we used the linear mixed effects models to track the longitudinal

relationship between MBI and the imaging biomarkers. The PET imaging
biomarkers were considered as the dependent variable and MBI total
scores and MBI status (MBI scores >1 considered as MBI+ while MBI scores
= 0 considered as MBI−) were treated as independent variables. The linear
mixed effects models included random intercepts and slopes for time and
an unstructured covariance matrix for the random effects, and regarded
the interaction between time (continuous) and the dependent variable
(MBI+ vs MBI- or MBI total scores) as a predictor. We have adjusted age,
gender, education, diagnosis and APOE4 status as covariates in all analyses.
All statistical analyses and figure preparation were conducted on R

software (version 3.5.1). All above analyses were conducted by “lme4”,
“survival”, “ggplot2”, “ggpubr”, “magrittr”, “survminer”, “nlme”, “car” and
“mediate” packages in R 3.5.1 software. Two-sided P value < 0.05 were
considered as significance.

RESULTS
Characteristics of participants
A total of 1129 individuals without dementia (543 MCI and 586
CN) were included into the study. The mean (SD) age of the MBI=
0 cohorts was 72.35 (6.25) years old and females accounted for
53.89%. MBI > 0 cohorts have higher proportion of male, APOE4
positive and younger with mean age of 71.68 (7.25), and they had
poorer baseline global cognition scores and higher burden of
cerebral amyloid burden. Characteristics of participants grouped
by baseline diagnosis were summarized in Table 1.

Associations of MBI with PET imaging biomarkers and
cognitive measures
As Table 2 summarized, in the cross-section, individuals with
higher MBI total scores which means more NPSs had greater
cerebral amyloid deposition, as indicated by higher β-amyloid
(β= 0.018, p= 0.006) burden and lower FDG PET (β=−0.020,
p < 0.001) in older individuals without dementia. The relationship
reminded significant after controlling for age, gender, years of
education, diagnosis (in total samples), and APOE4 status. When
categorized the total sample into two subgroups, there is no
significant findings except the lower FDG PET in MCI group. Also,
no significant associations with tau PET were found in all groups.
In addition, non-AD individuals with higher MBI scores had lower
global cognitive measures as represented by MMSE (β=−0.113,
p= 0.037), MoCA (β=−0.508, p < 0.001), ADAS (β= 0.619,
p < 0.001) (Supplementary Table 1).

Causal mediation analyses
All the above findings suggested that MBI was not only an
independent risk factor for cognition decline, but also associated
with amyloid pathology. To examine whether amyloid pathology
was a potential modulator of MBI on cognition, we further
conducted mediation analyses. As the results showed, theTa
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relationship between MBI and cognitive impairment was
mediated mainly by β-amyloid (Fig. 1). In the total samples, in
the first equation, MBI was significantly associated with higher
levels of β-amyloid deposition (p= 0.033). In the second regres-
sion, MBI showed a significant association with poorer global
cognition measured by MMSE (p < 0.001), MoCA (p < 0.001), and
ADAS (p < 0.001). Finally, in the third equation, when put the
amyloid indicator and MBI simultaneously into the model, we
found that the influences of MBI on global cognition remained but
were significantly diminished. The effect was considered partial
mediation with the proportion of mediation varying from 14.67%
to 18.46%. The change rates of cognitive domains (memory,
executive and language functions) were also calculated. Similar
results were concluded for the three functional domains. The
proportion of mediation varied from 35.25% to 40.86% (p < 0.05).
These findings further supported the hypothesis that amyloid
pathology could at least partially modulate the influences of NPSs
on cognitive functions.
When stratified all individuals into MCI or CN groups, the

mediation effects were not established due to criteria were not
simultaneously satisfied (Supplementary Figs. 1 and 2). In MCI
group, interestingly, the mediation effects were not qualified,
because the second criteria (MBI was associated with cognitive
measures significantly) was not reached through the indirect
effects calculated in the model were all significant. That probably
due to the clinical diagnosis (MCI or CN) were intimate to
cognitive scores (MMSE, MoCA etc.), stratifying participants into
groups according to diagnosis weaken the relationship between
independent variable (MBI) and cognitive scores.
As mentioned above, given the lack of associations between MBI

and tau burden and FDG, the mediation relationships of the two
AD biomarkers between MBI and cognitive impairments have not
established in the present study (Supplementary Figs. 3 and 4).

Longitudinal relationship between MBI and amyloid
pathology
From total samples, numbers of individuals who provided the
necessary follow-up PET imaging data were detailed in Table 2

and the range and distribution of MBI scores were also detailed
(Supplementary Table 2). In the longitudinal section, controlling
for age, sex, education, APOE4 status, clinical diagnosis, partici-
pants with higher MBI total scores predicted higher β-amyloid
deposition in total samples (n= 633, β= 0.003, interaction with
time p < 0.001). We also found that higher MBI scores displayed
faster elevation of β-amyloid burden in both MCI (n= 300, β=
0.004, interaction with time p= 0.001) and CN (n= 333, β= 0.002,
interaction with time p= 0.048) groups. Then we categorized the
total samples into MBI+ and MBI− groups. Participants with a
baseline MBI total score of 1 were excluded from the study due to
diagnostic uncertainty [18]. As shown in Fig. 2 the burden of
cerebral β-amyloid deposition was significantly higher in MBI+
group compared with individuals of MBI− status, which indicated
the trends of greater annual accumulating rates. Same findings
were observed in CN and MCI groups. In the present study, no
relationships were established in the tau PET and FDG PET.

MBI and incident AD risk
The survival curves of MBI status and clinical progression were
calculated in participants who provided β-amyloid data and were
exhibited in Fig. 3. Individuals MBI+ group showed higher
conversion risk (Supplementary Table 3) in clinical progression,
based on MBI− group. In CN group, individuals with MBI+
presented a progression rate to MCI/AD dementia of 29.68% while
MBI- individuals presented 12.55% (HR= 2.81, 95% CI= 1.59–4.96,
p < 0.001). As the same, MBI+ individuals (31.18%) showed a
higher progression rate to AD dementia compared with MBI−
individuals (17.24%) in MCI group (HR= 1.93, 95% CI= 1.21 to
3.06, p= 0.005).

DISCUSSION
The present study provided several lines of evidence for the
associations of baseline MBI with Alzheimer’s pathologies and
clinical progression among non-dementia individuals. Furthermore,
it found that the influence of MBI on cognition was partially
mediated by amyloid pathology. As the results showed, individuals

Fig. 1 Mediation analyses with cognitive domains, MMSE, MoCA, and ADAS as cognitive outcomes in non-dementia individuals. The
relationship between MBI and global cognition measured by MMSE (A), MoCA (B), ADAS (C), as well as cognitive domain of executive (D),
memory (E) and language (F) function was mediated by β-amyloid. IE indirect effect. Path a, regression model of β-amyloid on MBI. Path b,
regression model of the cognitive scores on β-amyloid. Path c, regression model of cognitive scores on MBI. Path c′, regression model of
cognitive scores on both MBI and β-amyloid.
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with MBI possessed a faster accumulation of brain amyloidosis and a
higher risk of clinical conversion, suggesting a predictive link of MBI
with amyloidosis progression. In addition, higher MBI scores, as
reflected by serious NPSs, predicted a more severe future progress.
All these findings support that MBI can provide imperative
information for early detection and intervention. Base on the above
findings, it could be inferred that cerebral amyloid deposition could
mediate the effects of MBI on cognitive impairment.

The present study further verified that the predictive relationship
of baseline MBI in non-dementia individuals with the progress of
amyloid pathology and firstly revealed the relationship of MBI and
cognitive impairment may via amyloid pathology. It crucially
replenishes the gap in current research and further elaborates on
the impact of NPSs on subsequent pathological and clinical
progression. The previous study also suggested that drugs either
reducing amyloid, preventing tau hyperphosphorylation, or

Fig. 2 Longitudinal changes of amyloid, tau, and neurodegeneration according to MBI status. ABC Longitudinal changes of β-amyloid, tau,
and neurodegeneration in non-AD individuals; DEF Longitudinal changes of β-amyloid, tau, and neurodegeneration in MCI individuals;
GHI Longitudinal changes of β-amyloid, tau, and neurodegeneration in CN individuals.
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modifying neurodegeneration were reliable for earlier intervention
through feasible methods for early detection of preclinical AD [13].
MBI has been identified to be indicators of preclinical AD

previously [2, 12, 23]. A recent review about the role of NPSs in
diagnostic criteria for AD dementia has explained that MBI is the
harbinger of a progressive dementia syndrome occurred with MCI
or not [24]. It was reported as a representation of the
neurobehavioral axis of pre-dementia risk states and complemen-
ted the neurocognitive axis represented by subjective cognitive
decline and MCI. Actually, clinical and imaging biomarker studies
have generally accepted that MBI is a risk state and marker of early
disease [18]. Previous research has validated MBI as a preclinical
dementia syndrome and associated with amyloid positivity, before
tau and neurodegeneration in older adults with normal cognition,
which was consistent with our findings that MBI was a cause to
the cognitive decline mainly via β-amyloid, also in advance of tau
or neurodegeneration biomarkers, irrespective of the presence or
absence of subjective cognitive complaints [13]. In addition, the
relationship between dementia amyloid pathologies and NPSs
have also been supported by recent studies. For instance, NPSs
such as anxiety can be further investigated by staging β-amyloid
deposition in both cortical and subcortical regions [25], and
previous study has also reported that increased depression-
anxiety scores correlated to elevated cortical amyloid deposition
[26]. All these findings supposed the synergetic roles of MBI and
amyloid pathology, which was consistent with the mentioned
hypothesis. In the present study, we not only revealed that MBI
effected cognitive function regardless of amyloid burden, but also
found a mediation effect of amyloid pathology.
We did not find the influences of MBI on cognitive functions

were mediated by tau or neurodegeneration. The hypothesis of
the present study is that MBI was associated with early but not
with later-stage AD pathophysiology [27]. Though considering
that tau pathologies could lead to cognitive decline independent
of amyloid, significant tau aggregation is rarely observed in
cognitive intact individuals [13]. With regard to the neurodegen-
eration biomarker category, it is reported that early neurodegen-
eration related loss of biogenic amine nuclei can potentially
manifest as psychiatric symptomatology [28]. The negative
findings here might be explained as considering the lack of
association between MBI and tau burden and the temporal
ordering of AD-related pathologies. It has been reported that Aβ
pathophysiological processes became abnormal first and then
downstream neuronal injury biomarkers, such as tau pathology
and neurodegeneration markers became abnormal later [29–31].
But interestingly, in the cross-sectional analyses, we find that
higher MBI scores corresponding to lower FDG-PET, which has

been detected in other studies that pathways promoting Aβ and
neurodegeneration may initially occur independently [32–34]. All
above implied a hierarchical ranking of Aβ biomarkers over
downstream neuronal injury biomarkers, hence, our result is not
unexpected for the non-dementia individuals.
The etiology of MBI is still unclear and the mechanisms by

which MBI was involved in regulating amyloid pathology are not
wholly explained either. Prior study reported that depression, one
of the mainly symptom of the “emotional dysregulation” domain
[35], could increase neuroinflammatory cytokines and disorder
brain-derived neurotrophic factor by effecting hypothalamic-
pituitary-adrenal axis altered gamma-amino butyric acid system
and then provided a possible pathway hypothesis [36]. Another
study showed that NPSs were strongly linked to 3-methoxy-4-
hydroxyphenylethyleneglycol, which was the intraneuronal meta-
bolite of norepinephrine, and p-tau, that suggesting that the locus
coeruleus -norepinephrine may be pivotal to understand connec-
tions between AD pathology and behavioral deficits in AD [37].
Actually, though amyloid pathology and MBI as potential target of
early intervention to prevent AD respectively, their interactions
still warrant further investigation.
There are limitations in this study. First, the specificity of

estimating MBI via NPI-Q was lower compared to those with the
MBI-C, because the short reference range can result in poor
specificity, inappropriately capturing as cases subjects with
transient symptoms and reactive conditions, and therefore,
resulting in an inflated prevalence estimate [17, 38]. To elevate
the accuracy of this approach to capture MBI, when stratified the
MBI status as categorical variable, score of 1 were excluded, it may
prevent to categorize some participants as MBI+ falsely. In
addition, MBI affected multi-types of dementia [1, 39] and
specificity need to be of concerns. Further researches are required
to detect the specificity of MBI on multi-types of dementia.

CONCLUSIONS
In conclusion, the present study indicated that amyloid pathology
was not only contributed from MBI, but also a key mediator for
influences of MBI on cognitive impairments and AD risk.
Examining neurobehavioral outcomes (e.g., mood, social interac-
tion) was highly recommended to link the pathological process to
clinical symptoms, which contribute to delineate a time course
and depict the impact of it on functional decline prior to overt
symptom onset [40, 41]. These findings supported the hypothesis
that MBI represent an early manifestation of preclinical AD and
could be used to help define high-risk population who are suitable
for early prevention of the disease.

Fig. 3 Kaplan–Meier curves showing survival probability of clinical progression according to groups. A Progression from CN to MCI and
progression from MCI to AD dementia. B Progression from MCI to AD dementia. C Progression from CN to MCI or AD dementia.
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