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Emotion dysregulation is central to the development and maintenance of psychopathology, and is common across many
psychiatric disorders. Neurobiological models of emotion dysregulation involve the fronto-limbic brain network, including in
particular the amygdala and prefrontal cortex (PFC). Neural variability has recently been suggested as an index of cognitive
flexibility. We hypothesized that within-subject neural variability in the fronto-limbic network would be related to inter-individual
variation in emotion dysregulation in the context of low affective control. In a multi-site cohort (N= 166, 93 females) of healthy
individuals and individuals with emotional dysregulation (attention deficit/hyperactivity disorder (ADHD), bipolar disorder (BD), and
borderline personality disorder (BPD)), we applied partial least squares (PLS), a multivariate data-driven technique, to derive latent
components yielding maximal covariance between blood-oxygen level-dependent (BOLD) signal variability at rest and emotion
dysregulation, as expressed by affective lability, depression and mania scores. PLS revealed one significant latent component (r=
0.62, p= 0.044), whereby greater emotion dysregulation was associated with increased neural variability in the amygdala,
hippocampus, ventromedial, dorsomedial and dorsolateral PFC, insula and motor cortex, and decreased neural variability in
occipital regions. This spatial pattern bears a striking resemblance to the fronto-limbic network, which is thought to subserve
emotion regulation, and is impaired in individuals with ADHD, BD, and BPD. Our work supports emotion dysregulation as a
transdiagnostic dimension with neurobiological underpinnings that transcend diagnostic boundaries, and adds evidence to neural
variability being a relevant proxy of neural efficiency.
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INTRODUCTION
Emotion regulation allows individuals to modulate, manage or
organize emotions in order to help them meet the demands of the
environment and achieve their goals [1–3], implicating various
processes and systems (e.g., cognitive, behavioral, social, biologi-
cal). In contrast, emotion dysregulation has been described as “a
pattern of emotional experience and/or expression that interferes
with appropriate goal-directed behavior” [4]. Emotion dysregula-
tion is a central feature of psychopathology, and is key to both the
development and maintenance of mood, personality and anxiety
disorders, among others [5–7]. Because it is both a risk factor for
psychopathology in the general population, and is common
across many forms of psychiatric disorders, a better understanding
of the neurobiological underpinnings of emotion dysregulation
may have important clinical applications, for instance in predicting
or measuring the efficacy of a therapeutic intervention [8, 9] in a
transdiagnostic setting.
Emotion regulation is thought to rely on a fronto-limbic

network, whereby the prefrontal cortex (PFC) exerts cognitive

control over the amygdala, a subcortical structure that is central to
emotion processing and salience perception [10–12]. Unsurpris-
ingly, alterations in this network are central to the pathophysiol-
ogy of bipolar disorder (BD), borderline personality disorder (BPD),
and attention deficit/hyperactivity disorder (ADHD), which are all
characterized by emotion dysregulation [13–18]. Notably, the
three disorders also share risk factors, such as childhood trauma
and genetic overlap [19–22]. This suggests that emotion
dysregulation might have underlying neurobiological mechanisms
that are shared across these disorders.
A measure that has received increasing attention in the past

few years is neural variability, obtained by computing within-
subject BOLD signal variability over the timecourse. First
considered as neural “noise”, it has since been proposed as an
index of local system dynamics [23]. Indeed, a certain level of
instability is thought to be required for the brain to flexibly
explore different functional network configurations and adapt to
various environmental demands [24–26]. Neural variability has
been shown to vary with age [27–32], task performance
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[28, 30, 33, 34], but also symptom severity [35–38]. However, these
relationships are often not linear (e.g., inverted U-shape in
development and aging), and are task-, difficulty-, and circuit-
dependent [33, 39, 40]. Nevertheless, this body of work
demonstrates the functional relevance of neural variability, and
that it can provide meaningful information that is complementary
to mean-based measures.
Studies investigating neural variability in clinical populations

have implicated neural circuits that are relevant for psychopathol-
ogy. Indeed, brain signal variability in the medial PFC during rest
was shown to correlate positively with increased ADHD symptoms
and inattention in children with and without ADHD [38].
Furthermore, brain signal variability has been shown to vary with
mood shifts. In patients with BD, opposing patterns of neural
variability were found in the default and sensorimotor networks
(SMN) between patients in the depressed and manic phases [37].
This pattern mirrored the psychomotor behavior (i.e., acceleration/
slowing), as well as the affective state (i.e., external/internal focus)
that characterize the manic and depressive phases, respectively.
Similarly, higher brain signal variability in the SMN was shown in
individuals with a cyclothymic temperament compared to those
with a depressive temperament in the general population [35].
Interestingly, it was suggested that increased neural variability in
specific circuits might facilitate local neuronal responses to
incoming stimuli, and lead to over-excitation of specific beha-
viors/symptoms, e.g., psychomotor behavior, ruminations [35, 37].
However, to date, most studies looking at neural variability have
relied on case–control comparisons, and few have tested for
transnosographic, dimensional relationships.
In contrast to traditional case–control reports, a recent move-

ment in psychiatry has advocated for a dimensional approach in
the search for neurobiological markers of psychiatric symptoms.
The NIMH’s Research Domain Criteria (RDoC) framework is one of
the initiatives working towards developing a neurobiologically-
based classification of mental disorders that integrates findings
from behavioral science, neuroscience, and genetics [41, 42].
Consequently, we favored a transdiagnostic approach in the
present work by leveraging a multi-site cohort of healthy
individuals and individuals suffering from conditions strongly
associated with emotion dysregulation (ADHD, BD, and BPD). We
aimed to identify an emotion dysregulation dimension with
associated patterns of blood-oxygen level-dependent (BOLD)
variability, present in varying degrees among all individuals from
our transdiagnostic cohort, which would suggest common
neurobiological mechanisms that transcend diagnostic bound-
aries. We relied on partial least squares, a multivariate data-driven
technique that extracts latent components by maximizing
covariance between spatial patterns of neural variability and
behavior (here, emotion dysregulation, as expressed by a
combination of affective lability, depression and mania assess-
ments). More specifically, we hypothesized that neural variability
in the fronto-limbic circuit would be related to individual variation
in emotion dysregulation.

MATERIALS AND METHODS
Participants
Data for this study were collected from three sites (Geneva, Paris, Grenoble;
see Fig. S1 for participants’ inclusion and exclusion criteria). All participants
gave their written informed consent. The research was conducted
according to the principles of the Declaration of Helsinki and was
approved by the University of Geneva research Ethics Committee (CER
13–081), the Paris CPP Ile de France IX Ethics Committee, and the Grenoble
University Hospital Ethics Committee (n° 2011-A00425-36). Inclusion
criteria for all participants were age between 18 and 55, no history of
alcohol or drug abuse/dependence, no current or past cardiac or
neurological disease. Exclusion criteria for all participants were a history
of neurological disease or head trauma with loss of consciousness, any
significant cerebral anatomic abnormality, and contraindications for MRI.

Individuals with BD were recruited from the outpatient Mood Disorder
Program of the Geneva University Hospital, from two university-affiliated
participating centers (AP-HP, Henri Mondor Hospitals Créteil and Fernand
Widal-Lariboisière Hospitals, Paris, France), and from the expert center for
BD of Grenoble University Hospital. The clinical diagnosis was established
using the DSM-IV-TR criteria by specialized psychiatrists and confirmed by
the Mini-International Neuropsychiatric Interview [43], the Structured
Clinical Interview for the DSM-IV [44], or the Diagnostic Interview for
Genetic Studies (DIGS) [45]. Individuals were under stable medication for
four weeks. Patients in Grenoble and Geneva were included in the study if
they reported having been euthymic for at least 1 month prior to scanning
and if they had a MADRS score <15 and a YMRS score <7. Patients in Paris
were not in the acute phase of BD at the time of scanning.
Individuals with BPD and ADHD were recruited from the outpatient

Emotional Dysregulation Unit for BPD and ADHD of the Geneva University
Hospital. BPD diagnosis was established with the SCID for DSM-IV Axis II
Personality Disorders [46], and ADHD diagnosis with the Diagnostic
Interview for ADHD in Adults (DIVA 2.0), by trained clinicians as part of the
standard procedure of these specialized programs. Some patients were
under psychotropic medication for comorbidities, as reported in Table 1.
Participants were instructed not to take psychostimulants on the day of the
study data acquisition.
Control participants were recruited via local databases as well as

through web advertisement and were matched with patients in terms of
age, sex, level of education, and handedness. Exclusion criteria were past
or present neurological or psychiatric disorders (Geneva, Grenoble),
personal or family history of Axis I mood disorder, schizophrenia, or
schizoaffective disorder (Paris), use of psychotropic medication, and
contraindication for MRI. All participants underwent clinical assessment
by trained raters using the DIGS [45].
In total, 122 individuals with BD were recruited on all three sites, 93

healthy controls (HC) were recruited on two sites (i.e., Geneva and Paris),
while 24 individuals with BPD and 21 individuals with ADHD were only
recruited on one site (i.e., Geneva). We excluded ten participants (8 BD, 1
BPD, and 1 HC) for excessive in-scanner motion; 69 participants (39 BD, 2
BPD, 1 ADHD, and 27 HC) because they had not completed the clinical
measures of interest; nine participants because they scored above 15 on
the MADRS (7 BD, 2 BPD) and 6 because they scored above 7 on the YMRS
(5 BD, 1 HC). The final sample thus comprised 166 participants, including
63 euthymic BD, 20 ADHD, 19 BPD, and 64 HC. The demographic, imaging,
and clinical data of the final sample are shown in Table 1.

Clinical assessment
We used the Affective Lability Scales (ALS [47]), the Montgomery-Åsberg
Depression Rating Scale (MADRS [48]), and the Young Mania Rating Scale
(YMRS [49]) to measure different facets of emotion dysregulation. The ALS
specifically measures affective lability, which refers to the frequency,
speed, and range of changes in affective states [50]. The ALS is a 54-item
self-reported questionnaire on which participants rate the tendency of
their mood to shift between a “normal state” and different affects
(depression, anger, anxiety, and elation), as well as their tendency to
experience shifts between elation and depression, and between anxiety
and depression. The total score was obtained by averaging across the six
subscales, i.e., anger, anxiety, anxiety/depression, depression, depression/
elation, elation. The MADRS and YMRS are both clinician-rated scales that
evaluate depressive and manic symptoms, respectively. The total score
(sum across all items) was used for both scales.

Magnetic resonance imaging acquisition
Briefly, participants were scanned on 3T MRI scanners (see detailed MRI
acquisition parameters in the Supplementary Methods). A resting state (RS)
functional magnetic resonance imaging (fMRI) sequence, as well as an
anatomical scan were acquired in all participants.

Resting state fMRI preprocessing
The first ten RS functional images were discarded to ensure signal
equilibration, and the remaining images were preprocessed using SPM12
tools (http://fil.ion.ucl.ac.uk/spm/software/spm12). Functional images were
first realigned, followed by co-registration of the mean functional image
with the anatomical scan. Functional images were normalized to the MNI
space with SPM12 “Segment”, resampled to 3mm isotropic voxels, and
then spatially smoothed with a 6 mm full-width-at-half-maximum (FWHM)
Gaussian filter. The average signal within a mask of white matter (WM) and
cerebrospinal fluid (CSF) were extracted using the Data Processing
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Assistant for Resting-State fMRI toolbox [51]. The effects of WM, CSF, and
six motion parameters were regressed out from the time-course, and a
bandpass filter (0.01–0.10 Hz) was applied. Motion scrubbing [52] was
applied to correct for motion artefacts; i.e., framewise displacement (FD)
was calculated as the sum of the absolute values of the six realignment
parameters, and scans with a FD higher than 0.5 mm, as well as one scan
before and two scans after, were excluded from the analysis. Participants
with a time-course containing less than 4min of scanning were excluded
(8 BD, 1 BPD, and 1 HC).

DARTEL group template
A group template was generated with the Diffeomorphic Anatomical
Registration Through Exponentiated Lie Algebra (DARTEL [53]) from the
gray matter and white matter tissue segments of all the participants
comprising the entire original sample (N= 250, see Fig. S1). Participants’ T1
images were first segmented using the Computational Anatomy Toolbox
(CAT12; http://www.neuro.uni-jena.de/cat/) “Segment Data” and the tissue
segments were normalized to the tissue probability maps by means of an
affine transformation. The group template was then normalized to the MNI
space, and additional registration to the ICBM template was applied.
Finally, the template was downsampled in order to match the dimensions
of the functional images, and then binarized to include only voxels with a
≥50% gray matter probability.
Because of incomplete cerebellar coverage in 33 participants, we

decided to exclude the cerebellum from the DARTEL template. To do so,
we used a bilateral mask of the cerebellum as defined in Hammers atlas
[54, 55], a probabilistic anatomical atlas based on 83 manually-delineated
regions drawn on MR images of 30 healthy adult subjects. In order to

encompass the whole cerebellum, we first smoothed the mask with a
25mm FWHM Gaussian filter, then downsampled the mask to match the
dimensions of the DARTEL template, and excluded the cerebellum mask
from the DARTEL template.

BOLD signal variability
Voxel-wise BOLD signal variability was obtained for each participant by
computing the standard deviation of each preprocessed time-course. This
approach is equivalent to the frequency-domain computation of the
amplitude of low-frequency fluctuations (ALFF) between 0.01 and 0.1 Hz
[56, 57], and is strongly correlated with mean-square successive differences
(MSSD) [28, 58]. BOLD signal variability maps were constrained to the
binarized DARTEL template (excluding the cerebellum), and were z-scored
across all voxels included in the template within each participant [57]. Age,
sex, scanner, and head motion (i.e., mean FD) were linearly regressed out
from the imaging data prior to the PLS analysis using a general linear
model on MATLAB.

Partial least squares (PLS) analysis
We used PLS analysis to identify BOLD signal variability spatial patterns
related to emotion dysregulation across all participants. PLS is a
multivariate data-driven statistical technique that aims to maximize
covariance between two matrices [59, 60]. The optimal relationship
between the two data matrices is represented as latent components
(LCs), which are weighted linear combinations of the original data that
maximally covary with each other. A LC is characterized by a spatial
pattern of neural variability and a behavioral pattern of affective lability,

Table 1. Demographic, imaging, and clinical profile of the sample used in the analyses (N= 166).

Bipolar (N= 75) ADHD (N= 20) Borderline (N= 21) Controls (N= 65) F/chi² p val

Demographics

Age, mean (SD) 37.22 (11.61) 24.00 (3.45) 27.05 (4.67) 35.06 (12.01) 10.82 1.61E−06

Sex (F/M) 30/33 7/13 19/0 37/27 20.39 1.41E−04

Education, mean (SD)a 13.22 (2.70) 16.00 (2.81) 14.84 (3.18) 12.67 (2.86) 8.34 3.97E−05

Imaging

Scanner (1/2/3/4) 16/21/10/16 20/0/0/0 19/0/0/0 16/48/0/0 68.21 1.03E−14

Framewise displacement, mean (SD) 0.17 (0.09) 0.14 (0.05) 0.13 (0.04) 0.17 (0.07) 7.59 8.83E−05

Clinical

ALS, mean (SD) 1.04 (0.64) 1.12 (0.48) 1.80 (0.46) 0.42 (0.40) 39.44 3.44E−19

MADRS, mean (SD) 4.84 (4.51) 3.55 (3.44) 7.68 (3.45) 1.23 (2.17) 20.90 1.69E−11

YMRS, mean (SD) 1.68 (1.87) 0.00 (0.00) 1.47 (1.39) 0.66 (1.39) 8.77 2.00E−05

Disease severity

Disease duration, mean (SD)b 14.59 (9.34) 6.80 (5.31) 9.23 (5.39) – – –

# Hospitalizations, mean (SD)c 3.95 (3.24) 0.05 (0.22) 1.94 (2.54) – – –

Medication (by target)d

Dopaminergic, No. (%) 44 (70%) 15 (75%) 1 (5%) 0 (0%) – –

Serotonergic, No. (%) 46 (73%) 1 (5%) 2 (11%) 0 (0%) – –

Glutamatergic, No. (%) 42 (67%) 0 (0%) 0 (0%) 0 (0%) – –

GABAergic, No. (%) 36 (57%) 0 (0%) 0 (0%) 0 (0%) – –

Norepinephrinergic, No. (%) 30 (48%) 15 (75%) 0 (0%) 0 (0%) – –

Lithium, No. (%) 38 (60%) 0 (0%) 0 (0%) 0 (0%) – –

No medication, No. (%) 30 (48%) 5 (25%) 17 (89%) 46 (72%) – –

Medication load, mean (SD) 2.14 (1.51) 0.85 (0.59) 0.16 (0.50) 0.31 (0.53) – –

Groups were compared with either ANOVAs (for continuous measures) or chi-squared tests (for categorical measures). All p-values that survived false discovery
rate (FDR) correction (q < 0.05) are indicated in bold. Disease severity and medication use are only shown for informative purposes, but were not compared
between groups.
aBased on 138 participants.
bBased on 82 patients.
cBased on 55 patients.
dMedication was sorted by the neurotransmitter system(s) affected by the medication used by participants, based on the Neuroscience-based Nomenclature
(NbN-2 [91, 92], http://nbn2r.com/). The list of medications and their categorization can be found in Table S5. Note that percentages may add up to more than
100% because some individuals take more than one medication.
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depression, and mania (imaging and behavioral saliences, respectively).
By linearly projecting the imaging and behavioral measures of each
participant onto their respective saliences, we obtain individual-specific
brain and behavior scores, which reflect the participants’ imaging and
behavioral contribution to each LC. Importantly, the PLS analysis was
agnostic on the diagnostic group, so that transdiagnostic brain-
behavior associations could be extracted.
The statistical significance of the LCs was assessed by constructing a null

distribution of the singular values using permutation testing (1000
permutations), whereby the behavioral data was permuted within each
diagnostic group, so that latent components would not be driven by group
differences. To determine which behavioral measures and voxels were
driving the significant LC, we computed Pearson’s correlations between
the original imaging data and brain scores, as well as between the original
behavioral measures and behavioral scores [61, 62]. A higher positive (or
negative) correlation for a particular behavioral measure for a given LC
indicates greater importance of the behavioral measure for the LC, while a
higher positive (or negative) correlation for a particular imaging measure
for a given LC indicates greater importance of that imaging value for the
LC. We estimated confidence intervals for these correlations with a
bootstrapping procedure that generated 1000 samples with replacement
from participants’ imaging and behavioral data, while accounting for
diagnostic groups (i.e., bootstrap resampling was performed within each
diagnostic group) in order to avoid spatial and behavioral patterns being
driven by group differences, since our aim was to find transdiagnostic
patterns of emotion dysregulation. Z-scores were computed by dividing
each correlation coefficient by its bootstrap-estimated standard deviation,
and were considered as strong contributors to LCs at absolute values >3,
corresponding to a robustness at a confidence interval of approximately
99% [60]. See Supplementary Methods for more details.

Posthoc analyses
Two-sample t-tests were performed to test whether brain and behavioral
scores were different between participants from different diagnostic
groups. Group differences in demographics, head motion, and clinical
measures were tested using one-way analysis of variance (ANOVA; for
continuous measures) or chi-squared tests (for categorical measures). We
also tested if there were any significant associations between PLS brain (or
behavioral) scores and disease severity, as well as medication use, using
either Pearson’s correlations (for continuous measures), or t-tests (for
binary measures). All posthoc analyses were corrected for multiple
comparisons at a false discovery rate (FDR) of q < 0.05.

Control analyses
A number of control analyses were computed to assess the robustness of
our results (detailed in the Supplementary Methods). Briefly, we used BOLD
signal variability maps that included the cerebellum; we accounted for
education level, early life trauma, or disease severity; we considered
patients only; and we considered only participants from the one site that
included individuals from all four diagnostic groups to control for scan
effects. Finally, group differences and the impact of disease severity on the
brain-behavior associations were examined.

RESULTS
Neural variability correlates of emotion dysregulation
We applied PLS to whole-brain BOLD signal variability and a
combination of clinical measures that characterize emotion
dysregulation in 166 participants that were either healthy or had
a diagnosis of ADHD, BD, or BPD. PLS revealed one significant
latent component (LC1). LC1 revealed a significant association
(r= 0.62, p= 0.044) between BOLD signal variability and emotion
dysregulation (Fig. 1a), accounting for 74% of the covariance
between the two matrices.
Healthy individuals had significantly lower brain and behavior

scores compared to all patient groups (Fig. 1b). Moreover,
individuals with BPD had significantly higher brain and behavior
scores compared to individuals with ADHD and BD. This
dimension was therefore expressed more strongly by individuals
with BPD, and less strongly by individuals with no psychiatric
diagnosis, although there was a large overlap among individuals
from all diagnostic groups (as shown on Fig. 1a).

Higher loadings on LC1 were associated with greater affective
lability and depression, whereas mania did not yield a strong
contribution (Fig. 1c and Table S1). On the imaging side, LC1 was
characterized by increased brain signal variability in the left
ventromedial PFC, bilateral dorsomedial PFC, subgenual ACC,
bilateral amygdala, right hippocampus, bilateral motor cortex, and
right insula, as well as decreased variability in occipital regions
(Fig. 1d and Table S2 for the list of all reliable peaks and their MNI
coordinates). This pattern partly recapitulates the emotion
regulation network, which is known to be dysfunctional in ADHD,
BD, and BPD [13–18]. We note however that LC1 also featured
brain regions whose role in emotion dysregulation is not clear
(e.g., occipital regions).
Post-hoc associations between brain (or behavior scores) and

disease severity, as well as medication use, can be found in Table 2
and Table S3. Using medication affecting the serotonergic system
was associated with higher behavioral scores. When categorizing
medication use by medication class, the use of stimulants was also
associated with higher brain scores.

Control analyses
Control analyses whereby we i) used BOLD signal variability maps
including the cerebellum; ii) accounted for education level or early
life trauma; iii) considered patients only (i.e., excluded control
participants); and iv) considered only participants from one site, all
yielded saliences that were similar to the original brain and
behavior saliences (see Table S4), all showing the reliability of our
findings. Detailed results are reported in the Supplementary
Results, Tables S5–S7, and Figs. S2–S4.

DISCUSSION
In this work, we aimed to identify spatial patterns of neural
variability related to emotion dysregulation in a multi-site
transdiagnostic cohort, using a multivariate data-driven approach.
We found that emotion dysregulation was associated with a
pattern of increased BOLD signal variability in the ventromedial
PFC, dorsomedial and dorsolateral PFC, amygdala, hippocampus,
insula and motor cortex, and decreased BOLD signal variability in
occipital regions. Our findings are in line with emotion dysregula-
tion being a dimensional construct that spans across individuals
with affective disorders such as ADHD, BD, and BPD, rather than
being specific to any of these disorders. Importantly, the spatial
pattern of brain signal variability associated with this dimension
bears a compelling resemblance to the fronto-limbic circuit that is
thought to subserve emotion regulation, and is impaired in ADHD,
BD, and BPD. Our findings therefore add evidence to brain signal
variability being a relevant proxy of neural efficiency, and support
emotion dysregulation as a transdiagnostic dimension with
neurobiological underpinnings that transcend diagnostic
boundaries.
The patterns of brain signal variability associated with greater

emotion dysregulation were mainly located in the fronto-limbic
system, which plays a key role in emotional control/regulation
[12, 63]. Critically, abnormalities in the fronto-limbic network are
thought to underpin emotion dysregulation in pathophysiological
models of BD and BPD [13–16, 18]. The suggested mechanism
involves hyper-activation of limbic regions responsible for
emotion generation—in particular, the amygdala, hippocampus,
and ventral striatum-, coupled with hypo-activation of the PFC,
which is responsible for cognitive control. This circuit has shown
structural abnormalities in individuals with BD [14, 64–66], BPD
[15, 16], but also ADHD [67], e.g., altered volumes of the amygdala
and hippocampus, and cortical thinning of the PFC. In BPD
patients, abnormal patterns of activity in the amygdala, hippo-
campus, ventrolateral PFC, and dorsolateral PFC were shown
during emotion processing [15, 16, 68], but also at rest, where the
ACC, medial PFC and dorsolateral PFC were found to be hyper-
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activated during resting state in BPD patients compared to control
participants [69]. Furthermore, neural activation and connectivity
of fronto-limbic regions, especially the ACC, amygdala, insula, and
ventrolateral PFC, showed changes following psychotherapy
aimed at improving emotion regulation in BPD patients [70].
Abnormal patterns of activity and connectivity of fronto-limbic
regions have been reported in euthymic BD patients, especially
involving the amygdala and the medial PFC at rest [71, 72], and
during emotion regulation tasks [73, 74]. Moreover, psychosocial
intervention in individuals with BD or at risk for BD may induce
functional and structural changes in these regions [75–77].
Emotion dysregulation is also prevalent in ADHD, and fronto-
limbic alterations involving the amygdala, orbitofrontal cortex,
ventral striatum, and PFC have also been reported in this
population [17]. We note however, that in addition to fronto-
limbic regions, spatial patterns of neural variability maps
associated with LC1 also featured brain regions whose role in
emotion dysregulation is not clear (e.g., occipital regions; see
Table S3 for a list of the BOLD signal variability clusters that
reliably contributed to LC1).
Previous studies of neural variability in ADHD [38, 78–80], BD

[37, 81–86], and BPD patients [87, 88] have failed to show any
consistent pattern, although some have reported alterations in
regions of the fronto-limbic network (mostly the PFC). In ADHD
patients, increased BOLD signal variability in the dorsolateral PFC,
inferior frontal and orbitofrontal cortex were found during a
Stroop task [78], as well as increased brain signal variability in the
ventromedial PFC during a vigilance task in adolescents with
ADHD compared to controls [80]. Moreover, greater MSSD in the

dorsomedial PFC during rest was related to greater ADHD
symptom severity, while greater MSSD in the ventromedial PFC
was positively correlated with inattention across children with
ADHD and typically developing children [38]. In BPD patients,
increased ALFF was shown in the hippocampus [88], while
increased ALFF in the ventral PFC, dorsolateral PFC, and insula
were found in euthymic BD patients [85], compared to controls.
The fronto-limbic circuit also overlaps with the DMN, in particular
the ventromedial PFC and hippocampus. We found increased
neural variability of the ventromedial PFC to be associated with
LC1, which was mostly driven by greater levels of depression. This
partly corroborates a previous study contrasting neural variability
patterns in the DMN and SMN, i.e., higher DMN/SMN ratio in the
depressive phase of BD and the inverse pattern during mania,
which were positively correlated with depression and mania
scores, respectively [37]. Therefore, our findings somewhat
corroborate previous reports of altered neural variability in these
clinical populations, but for the first time in a network directly
associated with emotion regulation.
Our findings may be in apparent contrast to the prevailing view

that brain signal variability facilitates neural flexibility by allowing
fluid transitions between brain states via a stochastic resonance
effect [24, 25]. However, while it appears to be beneficial to task
performance, heightened neural variability was also shown to
correlate with worse clinical symptoms in various conditions
[36–38]. As neural variability is thought to increase sensitivity to
incoming stimuli, it is possible that heightened neural variability
might lead to over-reactivity of specific neural circuits, as a
maladaptive strategy to prepare for potentially relevant events,

Fig. 1 The first latent component (LC1) is characterized by high emotion dysregulation. a PLS correlation between individual brain and
behavior scores for LC1. Each dot is a participant from any of the four diagnostic groups. b Group differences in brain and behavior scores for
LC1. Bold lines are mean scores for each group, while asterisks indicate two-sample t-tests that have survived to FDR correction (q < 0.05).
Controls have significantly lower brain and behavior scores compared to all patient groups. BPD patients have significantly higher brain and
behavior scores compared to ADHD and BD patients. c Greater depression and affective lability characterize the behavioral pattern of LC1 (see
Table S1). Mania did not have a strong contribution to LC1 (z < 3). Loadings are Pearson’s correlations between participants’ original behavioral
data and their behavior scores, and error bars indicate bootstrap-estimated standard deviations. d LC1 is characterized by increased BOLD
signal variability in the left ventromedial PFC, bilateral dorsomedial PFC, subgenual ACC, bilateral amygdala, right hippocampus, right insula,
and bilateral motor cortex, as well as decreased BOLD signal variability in occipital regions (see Table S2 for MNI coordinates of peaks of all
significant clusters). Loadings are z-scores obtained from bootstrapping, thresholded at absolute values ≥3 (p < 0.01).
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which instead supports the maintenance of emotion dysregula-
tion in affective disorders. Consequently, our findings support the
use of neural variability as a relevant proxy for dysfunctional
emotional processing, which might be useful in tracking symptom
severity and treatment efficacy [89].
The present study has several strengths including the use of a

multivariate data-driven approach and the relatively large
transdiagnostic cohort. Moreover, our approach aligns with recent
initiatives such as the RDoC [41, 42], that promote
neurobiologically-based approaches to investigate dimensions of
(ab)normal functioning, which often transcend classical nosologi-
cal categories. Computational techniques may help in this
endeavor by deriving brain-behavior associations that could serve
as potential phenotypes. Moreover, by quantifying their neuro-
biological correlates, data-driven machine learning approaches
such as PLS could help refine future taxonomies for mental
disorders.
However, this work also has several limitations. First, because of

poor cerebellar coverage in a number of participants, we decided
to exclude the cerebellum from our analyses, even though an
increasing number of reports implicate this structure in higher-
order processes. Moreover, the diagnostic groups were not
balanced across the three sites, which is a common shortcoming
in multi-site studies with different protocols. Most patients were
also using psychotropic medication at the time of scanning, which
is known to modulate intrinsic brain activity metrics [90]. Our
posthoc analyses showed mild associations (t < 3) between LC1
and medication use. Some control analyses were only exploratory,
as sample sizes were small because of missing data (e.g., N= 55
and N= 82 when accounting for hospitalizations and disease
duration, respectively). While PLS is a powerful technique for
identifying brain-behavior associations, they remain correlational
and do not claim to imply any causal relationship. Disease severity
effects may have impacted our findings, in particular the number
of hospitalizations which yielded high loadings when added to the
clinical variables (see Supplementary Results), however we note
that our cohort was not extensively phenotyped to investigate this

question in depth, as many patients were missing this information
(e.g., N= 55 when accounting for hospitalizations). Finally, some
of our control analyses suggest that LC1 might be partly driven by
group differences between the patient groups and control
participants. Future studies are needed to replicate and further
investigate these effects.
Despite some limitations, our findings have unveiled the neural

variability correlates of emotion dysregulation in the fronto-limbic
system, further improving our understanding of the pathogenesis
of affective disorders. Importantly, emotion dysregulation is a
transdiagnostic construct that has shown clinical utility as a
therapeutic target, as demonstrated by a decrease in maladaptive
emotion regulation strategy use and symptom severity (e.g.,
depression, anxiety, substance use, etc.), regardless of the
treatment protocol, the construct of emotion regulation that
was examined, and the targeted disorder [9]. Indeed, transdiag-
nostic protocols aimed at improving emotion regulation have
been shown to provide rapid and significant improvement in
individuals with various forms of severe mental illness [8]. In this
context, our approach might also provide a robust way of tracking
therapeutic effects of interventions aimed at enhancing emotion
regulation.

CODE AVAILABILITY
The code for the MRI preprocessing, BOLD signal variability extraction, as well as the
PLS outputs can be found on https://github.com/valkebets/BOLDsd_ED, while the
code for the PLS analysis is publicly available at https://github.com/danizoeller/
myPLS.
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