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Severe worry is a complex transdiagnostic phenotype independently associated with increased morbidity, including cognitive
impairment and cardiovascular diseases. We investigated the neurobiological basis of worry in older adults by analyzing resting
state fMRI using a large-scale network-based approach. We collected resting fMRI on 77 participants (>50 years old) with varying
worry severity. We computed region-wise connectivity across the default mode network (DMN), anterior salience network, and left
executive control network. All 22,366 correlations were regressed on worry severity and adjusted for age, sex, race, education,
disease burden, depression, anxiety, rumination, and neuroticism. We employed higher criticism, a second-level method of
significance testing for rare and weak features, to reveal the functional connectivity patterns associated with worry. The analysis
suggests that worry has a complex, yet distinct signature associated with resting state functional connectivity. Intra-connectivities
and inter-connectivities of the DMN comprise the dominant contribution. The anterior cingulate, temporal lobe, and thalamus are
heavily represented with overwhelmingly negative association with worry. The prefrontal regions are also strongly represented with
a mix of positive and negative associations with worry. Identifying the most salient connections may be useful for targeted
interventions for reducing morbidity associated with severe worry in older adults.
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INTRODUCTION
Severe worry, defined as “a chain of thoughts and images,
negatively affect-laden and relatively uncontrollable” [1], is one
of the core components in the symptomatology of multiple
anxiety and depressive disorders [2]. Epidemiological studies
show that anxiety disorders are the most common neuropsy-
chiatric disorders with a lifetime prevalence of up to 28.8% [3],
and about one in four adults living with generalized anxiety
report first onset after the age of 50 [4]. Although worry is
traditionally associated with generalized anxiety disorder (GAD),
recent studies showed that only 20% of older adults with severe
worry qualify for a GAD diagnosis [5]. Studies have shown an
independent association between worry severity and the
development of hypertension and coronary heart disease [6].
Worry was also specifically associated with cognitive decline. A
longitudinal study indicated that at two-year follow-up, older
adults with severe worry had significant memory decline
compared with those with low worry [7]. In a recent study
combining neuroimaging data with machine learning, our group
has reported that severe worry was significantly associated with
accelerated brain aging [8]. Additionally, worry was associated
with several symptoms of psychological distress, independently
of the primary psychiatric diagnosis [9]. Considering the
transdiagnostic nature of worry, coupled with its high pre-
valence and broad consequences for both physical and mental
health, it is important to understand the neurobiological basis of
worry in order to develop effective treatment approaches.

Over the past decade, the focus of brain analyses has shifted from
localization to a network-based perspective. This is particularly
important for complex constructs such as worry, whose neurobio-
logical correlates are likely to be more intricate and rely on several
brain networks and network interactions [10]. In particular, the triple
network interaction model suggests that affective dysregulation
may be linked to intra-network and inter-network connectivity
involving the default mode network (DMN), anterior salience
network (ASN), and central executive network (sometimes also
called the executive control network, or ECN) [11]. Furthermore, this
model has been extended to transdiagnostic phenotypes reflecting
the heterogeneity of anxiety and depression, suggesting that the
inconsistent neuroimaging results associated with traditional
categorical diagnoses would be difficult to translate to individual
cases and, consequently, to help guiding treatment choices [12].
These three canonical brain networks and their interactions have
been implicated in the neural basis of several anxiety disorders and
phenotypes [13, 14], though very few studies have specifically
focused on worry, and even less so on late-life worry. The DMN and
ASN in particular have been a major focus as the neurobiological
correlates of anxiety and worry, though the results have not always
been consistent [15, 16].
Aging is associated with a reconfiguration of both structural

and functional connectivity [17], and multiple studies have
reported on age-related changes in the canonical brain networks
[17–20]. There is however a limited amount of data regarding
the association of late-life worry with functional connectivity
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indices [21, 22]. In late-life, greater worry severity has been shown
to be correlated with lower resting state functional connectivity
between the posterior cingulate cortex (PCC) and medial
prefrontal cortex (mPFC) [22] and greater connectivity between
right anterior insula and precuneus [23]. In younger adults, worry
has been associated with greater resting state connectivity
between the right amygdala and right superior frontal gyrus,
right anterior cingulate cortex (ACC), and right supramarginal
gyrus after worry induction [24]. Connectivity with the PCC, ACC,
and precuneus has been negatively correlated with anxious
apprehension, one of the affective facets of severe worry [25]. A
recent study on repetitive negative thinking, which includes both
worry and rumination, found greater resting state functional
connectivity between amygdala and PFC regions/precuneus
associated with greater worry severity [26]. A focused review
identified the dorsal ACC (dACC) and dorsomedial PFC (dmPFC) as
key regions for conscious threat appraisal, one of the cognitive
facets of worry [27]. A recent meta-analysis of GAD versus non-
GAD controls found a preponderance of results centered on the
dorsolateral PFC (dlPFC), ACC, amygdala, and hippocampus [28].
Of these four major regions, only the amygdala showed consistent
results with greater functional connectivity for participants with
GAD [13, 29]. The insula, PCC, precuneus, precentral gyrus,
superior temporal gyrus, ventrolateral PFC, orbitofrontal cortex
(OFC), and cerebellum are mentioned as other common regions of
interest, again with many mixed results. A recent meta-analysis of
task-based fMRI studies investigating worry notes a similar
inconsistency across the literature [30]. Across these studies of
the neurobiological basis of anxiety and worry, three common
themes are 1) a lack of consistent or reproducible results, 2) a lack
of studies investigating late-life worry, and 3) limited explorations
of connectivity that most often has been related to a specific seed/
network, thus offering an incomplete model of the neural basis
of worry.
To the best of our knowledge, the current study represents the

largest investigation of the neurobiological basis of worry in older
adults using resting state fMRI. Given our previous publication on
the association between worry and accelerated brain aging [8],
and in the context of the increased risk severe worry poses to
cardiovascular and cerebrovascular disease [6, 31, 32], it is
imperative to characterize the whole brain connectivity signature
of late-life worry. This is particularly significant considering the
transdiagnostic nature of worry and its prevalence across various
late-life psychopathologies [33]. Developing a better understand-
ing of the neuroimaging characteristics implicated in the
pathology of worry is essential for the development of interven-
tions targeting worry-specific regions and networks. In our study,
we use the statistical approach of higher criticism, which, to the
best of our knowledge, has not been used for neuroimaging
analysis. We believe this approach is optimally suited to identify
the multiple, but sometimes subtle, changes in brain connectivity
that may underlie the worry process. Higher criticism, described in
more detail in the methods section, is a second-level method of
significance testing for rare and weak features capable of
detecting the presence of a brain-wide signature of worry and
identifying the connectivities most likely to contribute to such a
neural signature. Using resting state fMRI, we investigated the
association between worry severity and node-wise functional
connectivity of the DMN, ASN, and left ECN (LECN) and employed
higher criticism to discriminate the most relevant connections.

MATERIALS AND METHODS
Participants and study design
This data was collected as part of the Functional Neuroanatomy Correlates
of Worry in Older Adults study (R01 MH108509) at the University of
Pittsburgh. The study proposed to enroll 150 subjects in order to have 80%
power to detect a correlation between worry and four pre-specified

seed-ROI functional connectivity indices with an individual R2 of 7% at the
5% significance level while using Bonferroni correction to control for
multiple comparisons. This midterm analysis seeks to answer a different
question and to analyze associations between worry and a more
comprehensive collection of connectivities with a potentially weak and
sparse signal. A basic power analysis using the HDDesign package [34] for
R based on higher criticism [35] indicates that an effect size of 0.1 with 100
important features is detectable with 81 participants, decreasing rapidly as
the number of important features increases. We recruited 110 participants
over the age of 50 into a cross-sectional study through Pitt+Me (a research
portal at the University of Pittsburgh), in-person recommendations, flyers,
and radio/television advertisements. Participants with and without DSM-V
diagnoses of anxiety and mood disorders were recruited to maintain
balance across the spectrum of worry. Diagnoses were assessed using the
structured clinical interview for DSM-V (SCID). Of the 110 participants, 28
(25%) had a DSM-V diagnosis of GAD, 27 (25%) were diagnosed with any
anxiety order other than GAD over their lifetime, and 25 (23%) were
diagnosed with MDD over their lifetime. We excluded participants with any
form of psychosis or bipolar disorder, mild cognitive impairment or
dementia, a history of substance abuse within the last 6 months, and
participants who use medications with known effects on the fMRI signal
(e.g., theophylline, aminophylline). Participants were psychotropic-free,
having undergone a 2-week washout if previously on an antidepressant
(6 weeks for fluoxetine). This study was approved by the University of
Pittsburgh Institutional Review Board. All participants gave written
informed consent prior to participating in the study.

Assessments
Basic demographic information was collected for each participant: age, sex,
race, and education. Several psychological measures were also collected:
depression was assessed with the Montgomery-Åsberg Depression Rating
Scale (MADRS) [36]; overall anxiety was assessed with the Hamilton Anxiety
Rating Scale (HARS) [37]; worry was self-assessed with the Penn State
Worry Questionnaire (PSWQ)[38]; rumination was self-assessed with the
Rumination Style Questionnaire (RSQ) [39]; neuroticism was self-assessed
with the subscale from the Five Factor Inventory (NEO-FFI) [40]; and
perceived stress was self-assessed with the Perceived Stress Scale (PSS)
[41]. Additionally, disease burden was evaluated with the Cumulative
Illness Rating Scale for Geriatrics (CIRS-G) [42].

MRI data acquisition
Imaging data was collected at the Magnetic Resonance Research Center at
the University of Pittsburgh with a 3T Siemens Prisma scanner using a 32-
channel head coil. Resting state data was acquired over a single 6-min
interval while participants were directed to fixate on a white crosshair in
the center of a black screen and told to not fall asleep. Whole-brain T2*-
weighted BOLD images were acquired axially using gradient echo-planar
imaging (EPI) sequence with the following parameters: repetition time
(TR)/echo time (TE)= 1000/30ms, flip angle (FA) 45°, FOV 96 × 96 with 60
axial slices, 2.3 mm3 isotropic resolution with 2.3 mm slice gap, and
multiband acceleration factor of 5. Three anatomical images were also
collected. Whole-brain T1-weighted images were acquired sagittally using
a magnetization prepared rapid gradient echo (MPRAGE) sequence with
TR/TE= 2400/2.22ms, FA 8°, FOV 300 × 320 with 208 sagittal slices,
0.8 mm3 isotropic resolution with no slice gap (total time 6.63min). A
sagittal, whole-brain T2-weighted sampling perfection with application
optimized contrasts using different flip angle evolution (SPACE) image was
collected with TR/TE= 3200ms/563ms, FA 120°, FOV= 320 × 300 with
208 slices, 0.8 mm3 isotropic resolution with no slice gap, and generalized
autocalibrating partial parallel acquisition (GRAPPA) with acceleration
factor of 2 (total time 5.95min). An axial, whole-brain T2-weighted fluid-
attenuated inversion recovery (FLAIR) was collected with TR/TE= 10,000/
91ms, FA= 135°, inversion time (TI)= 2500ms, FOV= 320 × 320 with
104 slices, 0.8 mm× 0.8 mm× 1.6 mm resolution with no slice gap, and
GRAPPA with acceleration factor of 2 (total time 5.95min). Participants
were in the MR scanner for approximately 45–60min as we collected other
MRI data as well (not presented).

MR image preprocessing
The structural MRI data was processed with the Statistical Parametric
Mapping (SPM12) toolbox [43] in MatLab 2018b (MathWorks, Natick, MA).
All interpolation was performed with a 4th degree B-spline and the
similarity metric used for coregistration between different image types was
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normalized mutual information. The T2 SPACE and FLAIR images were first
coregistered to the MPRAGE image. All three were input into the
segmentation routine to generate the deformation field to standard MNI
space and bias-corrected images, as well as probability maps for six tissue
classes [44]. Because of the high burden of white matter hyperintensities,
we adjusted the number of Gaussians used to identify white matter to two,
which improves identification of gray and white matter [45]. The MPRAGE
image was then skull-stripped so it could be used to coregister the
functional images—this was done by generating an intracranial volume
mask (thresholding gray matter, white matter, and cerebrospinal by 0.1
then conducting image filling and image closing in MatLab). This process
also generates a deformation field, which is used to normalize fMRI to
MNI space.
The resting state fMRI was processed with SPM12 in MatLab and the

FMRIB Software Library v6.0 Brain Extraction Tool (FSL BET) [46]. Images
were slice time corrected and motion-corrected to the mean functional
image with a rigid body transformation. Motion parameters in each of the
three translational and rotational directions were estimated during motion
correction. The functional images were skull-stripped using BET, visually
inspected, and coregistered to the MPRAGE image before being
transformed to MNI space using the deformation field generated in
structural processing. The images were spatially smoothed with an 8mm
Gaussian kernel and motion-induced spikes were removed using the
BrainWavelet toolbox [47]. Finally, the following were regressed out of
each voxel: six rigid-body motion parameters, first five principal
components of the white matter and cerebral spinal fluid, and sinusoids
corresponding to unwanted frequencies outside of the resting state band
0.008 and 0.15 Hz of interest for resting state analysis (i.e., a band-pass
filter). By doing this in one step, we do not reintroduce artifact/noise into
our signal [48]. We used the ArtRepair toolbox [49] to calculate several
subject-level parameters of motion including max translations, average
root mean squared, average scan-to-scan motion, and percent of headjerks
(>0.5 mm movements).

Resting state functional connectivity
The processed images were used to calculate the functional connectivity
with in-house scripts in MatLab. Network templates for the DMN, ASN, and
LECN were generated by selecting prominent hubs of the networks,
determining their central coordinate from the AAL3 brain atlas definition
of the nodes [50], obtaining the resting state connectivity maps for those
coordinates from the Neurosynth.org database of 1000 participants [51],
and combining the relevant brain maps.
The hubs utilized for network definition were the bilateral mPFC and

PCC for the DMN, the bilateral dACC and insula for the ASN, and the left
dlPFC and inferior parietal lobe for the LECN. Coordinates in MNI space for
these nodes are shown in Supplementary Table 1 and displayed in
Supplementary Fig. 1. A threshold of 0.1 (positive correlations only) was
used to binarize the brain maps. The resulting network maps, also shown
in Supplementary Fig. 1, were then segmented with the AAL3 definitions
to generate network-specific ROIs. The cerebellum labels were removed
from consideration due to insufficient coverage in the resting state data,
leaving 79 nodes in the DMN, 78 nodes in the ASN, and 55 nodes in the
LECN. Note that many regions are present in more than one network,
though the network-specific maps may differ if they do not cover the full
extent of that region. The mean time signal was calculated for each ROI
and the connectivity between the pair-wise regions was quantified with
the Pearson correlation, resulting in a 212 by 212 correlation matrix. We
refer to these 22,366 correlations as connectivities.

Statistical analysis
Statistical analysis was performed in R v4.0.2 [52] via in-house code
(available upon request). A Fisher Z-Transform was applied to the
connectivities to transform the correlation distribution to a normal
distribution. A linear model was fit to each correlation with PSWQ as the
predictor of interest and age, sex, race, education, CIRS-G, MADRS, HARS,
PSS, RSQ, and NEO-FFI as confounds. The MADRS score was converted to a
categorical variable with a threshold of 14 since the distribution of MADRS
scores is highly skewed. The relevant result was a regression coefficient for
worry with associated z-value and p-value for each of the 22,366
connectivities. In trying to assess significant connectivities associated with
worry, we encounter a challenging multiple comparisons problem. As we
expected few of the connectivities to be significantly associated with
worry, and we did not anticipate those significant associations to be
particularly strong, we required a statistical test capable of detection in

such an environment. For this, we leveraged higher criticism (HC) [53, 54]
as a second-level significance test specifically formulated for the rare/weak
regime.
While popular in the genomics field [55], this is the first application of HC

to neuroimaging data as far as we are aware. In light of this, we believe it is
worthwhile to provide some context for HC, particularly with respect to
how its results may be interpreted. The fundamental question HC
addresses is: “given some large number of statistical tests, is there enough
group significance to believe that the results did not occur by random
chance?” In our application of HC, the statistical tests are the 22,366
regressions. Given no association with worry, we would expect the
regression coefficients to follow a normal distribution centered about 0, of
which an average of 1118 would be significant at the 95% confidence
level. HC tests whether our data is consistent with this global null
hypothesis by looking at the distribution as a whole. Rather than
considering the regression coefficients directly, the resultant p-values are
compared to the null (uniform) distribution, which allows optimal
incorporation of both frequency and strength information. The p-values
are arranged in ascending order, pi for i∈(1,…,22,366), and at each point i
the empirical p-values are compared to the expected null (uniform)
distribution:

HCi ¼
ffiffiffi

n
p i=n� pi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

i=nð1� i=nÞp ;

This statistic is similar to a z-score with pi the observed variable, i/n the
expected value, and i

n ð1� i
nÞ=n the variance of a binomial distribution with

probability of success i/n. For large n, the central limit theorem dictates
that this statistic approaches a standard normal distribution, and hence a
value of greater than 2 would indicate a statistically significant deviation
from the null distribution of p-values at the 95% confidence level. Or in our
application, it would provide significant evidence to reject the global null
hypothesis that resting state functional connectivity has no association
with worry.
As a secondary outcome, HC identifies the group of tests which provide

the most evidence against the group null hypothesis. This is accomplished
by using the maximum of the HC statistic to define a cutoff point for
selection of the tests contributing the most evidence against the null
hypothesis. It is important to note that HC does not offer any predefined
type I error control at the individual level. This stands in contrast to typical
analyses that control for the number or rate of type I errors at a given
confidence level with family wise error or false discovery rate procedures,
respectively. This may also be considered somewhat analogous to ANOVA,
which can identify if there is a statistically significant difference between
group means but not which mean(s) differ(s) significantly, though HC does
identify the most likely contributors to the observed effect. To gain further
insight on the relative importance of each connectivity, 1000 bootstrap
iterations were performed tracking which (if any) connectivities were
identified by HC as most likely contributors to the observed effect. For each
iteration, the subjects were sampled with replacement, linear models were
fit for all 22,366 connectivities, and HC was applied to the results. If the
maximum HC statistic was less than 2, none of the connectivities were
tallied. Otherwise, the connectivities contributing to the maximum HC
statistic were tallied. Note that this is not a test of statistical significance
(since weak effects would not be expected to be identified in 95% of the
iterations), and merely a means to rank the importance of the
connectivities.
To summarize, HC can be used to identify the presence of global

functional connectivity significantly associated with worry (i.e., does worry
have a neurobiological signature observable through resting state
functional connectivity analysis?). If there is indeed a global difference,
HC also provides the individual connectivities that most contribute to this
determination, though it does not offer strict control of false positives in
this step.

RESULTS
Out of the 110 participants, 77 were included in the analysis; their
characteristics are summarized in Table 1. Seven participants failed
preprocessing steps, one had significant signal dropout in the
resting state scan, and three participants had excessive head
motion (defined as >20% of volumes with head jerks). Out of the
remaining participants, 22 were missing demographic data
necessary to perform the linear regressions, leaving 77
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participants with complete resting state data as well as clinical and
demographic data. The following measures were missing: educa-
tion (4), CIRS-G (7), PSWQ (1), MADRS (6), HARS (3), RSQ (8), NEO-
FFI (12). The demographic data is compared between the
participants included in the analysis and those excluded for
missing data (data presented in Supplementary Table 2).
Significant differences exist for race, education, PSWQ, HARS,
RSQ, and NEO-FFI at the 95% confidence level, driven primarily by
the 11 subjects excluded for scanner-related reasons.
Linear models were fit to predict all 22,366 connectivities from

worry, as well as the demographic and psychiatric confounds. The
empirical p-values associated with the regression coefficients for
worry were input to HC. The maximum HC statistic was 5.16,
providing very strong evidence against the null hypothesis that
resting state functional connectivity is not associated with worry
severity as measured by the PSWQ. Thus, there is a distinct resting
state signature of worry independent of other demographic and
clinical factors.
There were 154 connectivities identified by HC as contributing

the most evidence for a neural signature of worry. Included are
both positive associations with worry (i.e., greater worry severity
associated with greater connectivity between two nodes) and
negative associations with worry between and across the DMN,
ASN, and LECN. Table 2 provides a summary of the distribution of
these connectivities. The absolute beta coefficients and p-values
for the relevant connectivities are shown in Supplementary Table
3, ordered by their prevalence in 1000 bootstrap iterations.
Furthermore, we explore the group of relevant connectivities

within and between each network. Toward this goal, we employ
two graphical summaries of the connectivities in Figs. 1–3 and
Supplementary Figs. 2–4: chord diagrams to show the individual
connections and brain maps to show a weighted degree
centrality. For the chord diagrams, produced with the R package
circlize [56], the individual ROIs are sorted into default mode,
limbic, parietal, prefrontal, sensorimotor, subcortical, temporal,
and visual groups. Both the color and weight of the line
connecting any two ROIs indicate the magnitude of the regression
coefficient, or how strongly that connectivity is associated with
worry. Warm colors are used for positive associations with worry
(i.e., greater connectivity and greater worry) and cool colors for
negative associations (i.e., lower connectivity and greater worry).
The brain maps, visualized with BrainNet Viewer [57], are specific
to positive or negative associations to avoid cancellation. The
intensity of a region is simply the sum of the regression
coefficients standardized with respect to worry for positive or
negative connectivities involving that region. In other words, a
region can achieve a high intensity through its number of relevant
connectivities or through the strength of its connectivities’
association with worry.
Lastly, we verified that the HC approach was appropriate for this

analysis by checking for a network-wide association with worry

severity using template based rotation [58]. Using standard multiple
comparisons correction (statistical non-parametric mapping toolbox
[http://www.nisox.org/Software/SnPM13/] with cluster-forming
threshold of p= .001 with 10,000 permutations and controlling
the cluster-wise family-wise error rate p < .05), there were no
significant associations with worry in the DMN, ASN, or LECN,
providing further justification for the HC approach to identify rare/
weak features of interest.
The DMN contains the most relevant connections of the

networks, as shown in Fig. 1, two thirds of which are negatively
associated with worry (greater worry, lower connectivity). Lower
connectivities associated with greater worry are heavily concen-
trated in the cingulate (both ACC and PCC), cuneus, and temporal
lobes. Greater connectivities associated with greater worry are
concentrated in the right hippocampus and parahippocampus,
the parietal lobe, and the frontal regions, particularly the OFC. The
frontal regions show a particularly robust and complex pattern of
connectivity, including both positive and negative positive
associations with worry.
The ASN contains the fewest relevant connectivities of the

networks, as shown in Fig. 2. The relevant connectivities are
dominated by negative associations with worry severity, particu-
larly in the OFC, inferior frontal regions, ACC, and thalamus. Of the
three connectivities with a positive association with worry, all
involve the calcarine sulcus.
The LECN contains a more balanced proportion of connectiv-

ities with positive and negative associations with worry, as shown
in Fig. 3. The positively associated connectivities are focused in the
left PCC and right temporal lobe while the negatively associated
connectivities are focused in the frontal cortex.
The DMN-ASN interconnectivity, shown in Supplementary Fig. 2,

contains many relevant connections, with a preference toward
negative associations with worry. Notably, the cingulate and
cuneus are heavily represented with almost uniformly negative
associations with worry. Meanwhile, connectivities with the
parietal lobe are strongly skewed toward positive associations
with worry. The frontal regions again show a mix of positive and
negative associations with worry, with substantial representation
by the OFC.
The ASN-LECN network interconnectivity, shown in Supplemen-

tary Fig. 3, contains the most positive associations with worry,
particularly in the frontal regions and temporal lobes, but also in
the cingulate.
The LECN-DMN network interconnectivity, shown in Supplemen-

tary Fig. 4, presents several relevant connections. With the exception
of the temporal lobes, which are heavily represented and almost
uniformly carry a positive association with worry, the mix of positive
and negative associations defies a simple summary. However, we
note that in addition to the temporal lobe, frontal, visual, and default
mode regions are prominently represented.

Table 2. Distribution of relevant connectivities identified by HC within
and between the networks.

Network Positive association
with worry

Negative association
with worry

DMN 11 22

ASN 3 12

LECN 8 8

DMN-ASN 12 22

ASN-LECN 14 5

LECN-DMN 24 13

Greater worry is associated with greater connectivity (positive associations)
in the LECN-DMN network connectivities while greater worry is associated
with lower connectivity in the intra-DMN and DMN-ASN connectivities.

Table 1. Summary of participant demographics (n= 77).

Measure Mean Std. Dev.

Age (years) 61.8 8.2

Sex (no. female) 48 (62%) –

Race (W/B/MR) 87 (88%), 8 (10%), 1 (1%) –

Education 16.0 2.3

CIRS-G 3.7 3.5

PSWQ 48.2 14.6

MADRS 7.4 7.9

HARS 7.4 5.7

RSQ 37.0 12.9

NEO-FFI 19.2 9.9
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DISCUSSION
To summarize, our study identified a complex pattern of
connectivity within and between the canonical brain networks
associated with worry severity in older adults. The relevant DMN
connectivities had a predominately negative correlation with worry
severity spread throughout multiple regions, with a few relevant
positive correlations involving the right OFC, hippocampus/para-
hippocampus and the inferior parietal gyrus. The ASN has the fewest
relevant in-network connectivities, and these were overwhelmingly
negative (higher worry associated with lower connectivity with
regions such the OFC, ACC, thalamus, and inferior frontal gyrus). The
LECN showed a positive association with predominantly posterior
cortical areas and a negative association with predominantly frontal
areas. The between-network connectivity displays a few notable
associations: DMN–ASN interconnectivity is mostly negatively
associated with worry severity (more worry, less connectivity),
particularly in the anterior and mid-cingulate, while DMN-LECN and
ASN-LECN interconnectivity is mostly positively associated with
worry severity, especially in the prefrontal and temporal regions,
though there’s a relative paucity of results in the ASN–LECN.
Overall, the complex clinical phenomenology of worry (blend of

negative-affective and perseverative-cognitive processes) is
reflected at the neural level with engagement of both para-
limbic/other subcortical and multiple integrative cortical regions,
consistent with the conclusions of meta-analyses on GAD (of
which worry is a primary component) [28] and perseverative
cognition (i.e., worry and rumination) [59]. This intricate neuro-
biological signature combined with the observational bias
induced by methodological choices, particularly seed choice,
may explain the inconsistencies in the literature noted in the
introduction. Thus, there are several studies in the literature
describing the association of DMN hyperconnectivity with

perseverative negative cognitive processes [60, 61], others
describing hypoconnectivity in the DMN [22, 25], and some that
find no association at all within the DMN [26]. While the
heterogeneity in results may be connected to other methodolo-
gical differences (e.g., use of different scales like PSWQ versus
State-Trait Anxiety Scale), we may speculate that most of the
results offer an accurate but ultimately incomplete presentation of
the neurobiological basis of worry.
The intricate nature of worry’s neural signature does not

preclude the extraction of salient features, however. We noted a
bounty of connectivities involving the ACC negatively associated
with worry, which has a well-established role in conflict
monitoring [62] and cognitive reappraisal [63]. This suggests that
a more connected ACC may be better “wired” to effectively
implement emotion regulation strategies and downplay severe
worry. Concurrently, the perseverative cognitive aspects inherent
in the worry process appear more prominent as worry become
more severe, as evidenced by the predominantly positive
association of worry severity with LECN within and between
connectivity. This aspect is highly relevant for future potential
interventions such as transcranial magnetic stimulation, as they
may target regions associated with the difficult-to-control feature
of severe worry and, consequently, downgrade the worry process
to an easier to regulate negative affect.
Beyond the results of this study, the higher criticism methodology

may be of unique interest to the field of neuroimaging. The use of
HC allowed us to rigorously test for the presence of a neurobiolo-
gical signature, a step that is often taken for granted, and unveil
distinct patterns of connectivity that otherwise would have been
obfuscated by traditional methodologies. It is able to accomplish
this for rare and weak effects by offering a fundamentally different
approach to the multiple comparisons problem. While our

Fig. 1 Within DMN connectivities and regions associated with worry. A Chord diagram shows individual connections identified by HC with
both weight and color indicating the strength of the association with worry severity (positive values/warm colors indicate stronger
connectivity between regions is associated with greater worry, negative values/cool colors indicate stronger connectivity between region sis
associated with less worry). B, C Brain maps show the sum of the negative (B) and positive (C) associations with worry for each region.
Negative associations with worry are heavily concentrated in the bilateral ACC, PCC, and cuneus as well as the left temporal lobe. Prefrontal
regions show a mix of positive and negative associations with worry.
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Fig. 2 Within ASN connectivities and regions associated with worry. A Chord diagram shows individual connections identified by HC with
both weight and color indicating the strength of the association with worry severity. B, C Brain maps show the sum of the negative (B) and
positive (C) associations with worry for each region. Negative associations with worry dominate, especially in the ACC, thalamus, OFC, and
other inferior frontal regions.

Fig. 3 Within LECN connectivities and regions associated with worry. A Chord diagram shows individual connections identified by HC with
both weight and color indicating the strength of the association with worry severity. B, C Brain maps show the sum of the negative (B) and
positive (C) associations with worry for each region. Negative associations with worry all involve the PFC while positive associations are
focused in the left PCC and right temporal lobe.
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application fits satisfyingly in the HC framework, there may be other
creative uses for it in the field of neuroimaging, particularly as an
exploratory or feature reduction tool.
Our study has several limitations. While the moderate sample size

provided sufficient power to determine that there is a neurobiological
correlate of worry observable in resting state fMRI, a larger sample size
would allow us to more precisely pinpoint the primary contributor to
that signature. The focus on worry later in life (>50) also limits the
generalizability of the results to a wider age range. Our group has
previously demonstrated an age-by-anxiety interaction on resting
state functional connectivity [22], so we expect that the neural
signature of worry would also demonstrate an age dependence.
Other limitations are the inclusion of anxiety and rumination (and to a
lesser extent depression and neuroticism) as confounds in the
regression model, which may obscure aspects of worry intimately tied
to those measures, and the exclusive focus on intrinsic connectivity.
Furthermore, the resting state scan was acquired over a single 6-min
interval. A study exploring the effect of scan length found that 12-min
scans improve intra-session and inter-session reliability of resting state
connectivity [64], while 6-min scans represent the lower end of the
acceptable spectrum, which may limit the robustness of our results.
However, the intraclass correlation coefficient for network connec-
tions was 0.6 for 6-min scans, representing moderate reliability. The
effect of brain aging on the intricate model presented above will be
the subject of a separate report. We excluded 33 participants from the
total sample, who differed significantly on race, education, PSWQ,
HARS, RSQ, and NEO-FFI. While the exclusion criteria were nominally
objective, this represents a substantial and unfortunate source of bias.
Finally, the use of HC may be regarded as both a limitation and a
strength. While it allows us to establish the presence of a
neurobiological basis of worry, it limits our ability to localize that
signature in a manner that offers strict type I error control. However,
the benefits of this approach outweigh the drawbacks, especially for
the exploration of complex phenomena such as worry.
In conclusion, we use a novel approach to describe the within

and inter-network connectivity associations of worry in late-life, a
fine-grain approach that allows us to shed light on the neural
complexity underlying severe worry.
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