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Rape is associated with a high risk for posttraumatic stress disorder (PTSD). DNA methylation changes may confer risk or protection
for PTSD following rape by regulating the expression of genes implicated in pathways affected by PTSD. We aimed to: (1) identify
epigenome-wide differences in methylation profiles between rape-exposed women with and without PTSD at 3-months post-rape,
in a demographically and ethnically similar group, drawn from a low-income setting; (2) validate and replicate the findings of the
epigenome-wide analysis in selected genes (BRSK2 and ADCYAPT); and (3) investigate baseline and longitudinal changes in BRSK2
and ADCYAPT methylation over six months in relation to change in PTSD symptom scores over 6 months, in the combined
discovery/validation and replication samples (n = 96). Rape-exposed women (n = 852) were recruited from rape clinics in the Rape
Impact Cohort Evaluation (RICE) umbrella study. Epigenome-wide differentially methylated CpG sites between rape-exposed
women with (n = 24) and without (n = 24) PTSD at 3-months post-rape were investigated using the lllumina EPIC BeadChip in a
discovery cohort (n = 48). Validation (n =47) and replication (n = 49) of BRSK2 and ADCYAPT methylation findings were
investigated using EpiTYPER technology. Longitudinal change in BRSK2 and ADCYAP1 was also investigated using EpiTYPER
technology in the combined sample (n = 96). In the discovery sample, after adjustment for multiple comparisons, one differentially
methylated CpG site (chr10: 61385771/ cg01700569, p = 0.049) and thirty-four differentially methylated regions were associated
with PTSD status at 3-months post-rape. Decreased BRSK2 and ADCYAPT methylation at 3-months and 6-months post-rape were
associated with increased PTSD scores at the same time points, but these findings did not remain significant in adjusted models. In
conclusion, decreased methylation of BRSK2 may result in abnormal neuronal polarization, synaptic development, vesicle formation,
and disrupted neurotransmission in individuals with PTSD. PTSD symptoms may also be mediated by differential methylation of the
ADCYAP1 gene which is involved in stress regulation. Replication of these findings is required to determine whether ADCYAPT and
BRSK2 are biomarkers of PTSD and potential therapeutic targets.

Translational Psychiatry (2021)11:594; https://doi.org/10.1038/541398-021-01608-z

INTRODUCTION

Rape and sexual assault are associated with a high risk for the
development of posttraumatic stress disorder (PTSD) compared to
other trauma types [1, 2]. Prospective studies have reported PTSD
prevalence rates ranging between 35% and 45% at 3-months post-
rape, with many survivors of sexual assault continuing to experience
PTSD symptoms at 6-months and 12-months post-rape [3-6]. PTSD is
a complex, multifactorial disorder and an array of environmental and
genetic putative risk and protective factors mediate or contribute to
the development of the disorder [3, 5, 7]. Epigenetic mechanisms,
including DNA methylation, are known to respond to environmental
exposures such as trauma, leading to stable changes in gene
expression [8, 9. DNA methylation responses may confer risk or
protection for PTSD, as they may alter the ability to adapt to

traumatic events on a molecular level [10]. Using a hypothesis-
neutral, genome-wide approach to study epigenome-wide signatures
(while accounting for potential environmental and biological
confounding factors), and validating and replicating these findings,
may bring us closer to uncovering the complexity of the disorder [10].

To date, twelve epigenome-wide association studies (EWASs) of
blood DNA methylation differences in PTSD cases and controls
have been published (see Table 1 for details). In sum, the majority
of genes identified as differentially methylated in PTSD are linked
to central nervous system functioning (e.g., neuron development,
axonal outgrowth, synaptic connectivity, neurotransmitter release,
neuroinflammation, and apoptosis) [11-17] and the immune
response (T cell expression, cytokine and interferon release,
phagocytosis) [13, 14, 18, 19].
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A meta-analysis of three North American mixed-gender civilian
EWASs [13, 17, 18, 20] found that PTSD was associated with the
neuregulinl (NRG1) and hepatocyte growth factor-regulated
tyrosine kinase substrate (HGS), both of which are related to
central nervous system functioning [21]. The largest EWAS meta-
analysis to date included 796 participants with PTSD and 1100
healthy controls [22]. North American and European male and
female participants were drawn from three civilian cohorts
[13, 17, 18, 20] and seven combat-exposed cohorts [15, 16] were
included. Associations with PTSD were observed at four CpG sites
of the human aryl hydrocarbon receptor repressor (AHRR) gene,
which has been linked to both pro-inflammatory and anti-
inflammatory immune regulation [22, 23]. Ring finger protein 6
(RNF6) associated with immune function, ATPase phospholipid
transporting 9A (ATP9A), associated with glucose metabolism,
family with sequence similarity 75-like protein FLJ46321
(FLJ46321), associated with cell differentiation; microRNA 3170
(MIR3170), and the long intergenic non-protein coding RNA 599
(LINC00599) genes were also associated with PTSD [22].

None of the gene-specific findings have been replicated across
EWASs. Heterogeneity between and within EWASs may explain
the lack of consistent findings. The majority of EWASs have been
cross-sectional studies [11-15, 17-20, 22, 24, 25] and have
investigated differential methylation in combat-exposed popula-
tions and first responders [12, 14-16, 20, 24, 25]. PTSD symptoms
may manifest differently in combat-exposed samples (increased
hypervigilance and compulsive behavior) compared to civilian
samples [26, 27]. In civilians, PTSD symptom presentation, severity
and recovery rates also differ depending on trauma type
[26, 28, 29]. Civilian EWASs have investigated a mixture of traumas
and none have investigated rape exclusively [30]. Civilian EWASs
have also been predominantly conducted in mixed-gender
[11,13,18, 19, 25, 31], North American samples [11-13, 17-20, 25].

Ethnicity-specific and sex-specific characteristics may influence
methylation profiles [32-34]. Women have a two-fold increased
risk of developing PTSD compared to men [34]. Increased risk for
PTSD in women may be X-chromosome linked, given that PTSD
heritability is considerably higher among women compared to
men [35, 36]. Sex-specific expression of reproductive genes may
also mediate the increased risk for PTSD in women, for example,
estrogen levels have been associated with an altered
hypothalamic-pituitary-adrenal (HPA) axis stress response in
women [17, 37, 38] and differential methylation of estrogen
response elements (EREs) in genes associated with HPA-axis
functioning has been reported [17, 39].

We sought to address the design shortcomings and demo-
graphic differences in prior EWASs by conducting a cross-sectional
EWAS study, complemented by validation of the results, replica-
tion, and longitudinal investigation of a demographically similar
group of rape-exposed African black women in a low-income
setting. Specific aims were to: (1) identify genome-wide differen-
tially methylated CpG sites/regions associated with PTSD status at
3-months post-rape using an EWAS approach in a discovery
sample; (2) validate the significant EWAS results in selected genes
using an alternate methodology; (3) replicate the findings in 2
using a larger sample; (4) determine whether methylation levels of
selected genes at baseline predict PTSD status change over 6-
months; and (5) determine whether methylation changes in
selected genes covary with PTSD symptom scores over 6 months.

METHODS

Participant recruitment and setting

Participants were recruited through the Rape Impact Cohort Evaluation
(RICE) study conducted in South Africa (n = 852). A detailed description of
the methods of the RICE study has been published elsewhere [40]. In short,
female survivors of rape were recruited from rape clinics. Interested
participants were invited to the study site to enrol in the study following

SPRINGER NATURE

informed consent procedures. Recruitment was restricted to female
participants between 18 and 40 years who reported rape in the preceding
20 days of the baseline visit. In this study, we excluded women who: (1)
were pregnant or lactating during the course of the study; (2) met criteria
for PTSD at the baseline visit, as this would be indicative of PTSD due to a
past traumatic event other than the rape; and (3) had HIV-seroconverted.
Samples from 48 participants comprised the “discovery” sample, i.e., those
that were included in the epigenome-wide DNA methylation analysis.
These samples were subsequently utilized to technically validate the
results from the EWAS study using EpiTYPER Sequenom MassARRAY
technology (Agena Bioscience, California, United States). The “replication”
sample comprised 96 participants, 47 from the discovery sample and 49
additional samples.

Ethical approval for the RICE parent study was obtained from the Human
Research Ethics Committee at the South African Medical Research Council
(SAMRC; EC019-10/2013) and approval to conduct the sub-study was
obtained from the Health Research Ethics Committee at Stellenbosch
University (516/08/146).

Clinical measures

At the baseline visit, a research assistant supervised by a registered trauma
counselor or registered nurse assessed for PTSD (in relation to prior
criterion A traumas other than the rape) on the Mini-International
Neuropsychiatric Interview (MINI) version 7.0.0 [41]. An HIV rapid test,
pregnancy test, blood collection for DNA analysis, and assessment of body
mass index (BMI) were undertaken by a nurse at all time points (baseline,
3-months, and 6-months post-rape).

A research assistant administered a demographic questionnaire, a
modified version of the Childhood Trauma Questionnaire-Short Form
(CTQ-SF) [42], and a modified version of the Life Events Checklist (LEC)
[43, 44] at baseline. The Davidson Trauma Scale (DTS) [45], the Alcohol Use
Disorders Identification Test, alcohol consumption subscale (AUDIT-C) [46],
and the Center for Epidemiologic Studies Depression Scale (CES-D) [47]
was administered at all time points. The DTS was used to measure PTSD
symptoms with a cut-off score of forty or more considered indicative of
PTSD [45]. This cut-off was used to group participants into PTSD cases and
controls at 3-months post-rape (see supplementary material for more
details) [45]. All assessments were completed face-to-face and responses
were recorded and electronically captured in real-time on a secure server.
Item-level missing values were imputed using a multiple imputation model
whilst maintaining a multivariate normal distribution.

Demographic and clinical characteristics of the sample

The baseline demographic and clinical characteristics of the sample were
investigated using descriptive statistics. Differences in baseline demo-
graphic and clinical characteristics between the discovery/validation
sample and the replication sample were investigated using non-
parametric tests since most of the variables did not conform to a normal
distribution. Mann-Whitney U tests were used to compare groups on
continuous variables, i.e., age, body mass index (BMI), childhood trauma
score, number of childhood traumas endorsed, number of lifetime
traumas endorsed, alcohol use, and depression symptom scores.
Chi-square statistics were used to compare groups on several categorical
variables (completed secondary education, relationship status, smoking
status, HIV status, medication use, childhood neglect, witnessed domestic
violence in the childhood home, childhood emotional abuse, childhood
physical abuse, childhood sexual abuse, imprisonment, civil unrest or
war, serious injury, being close to death, murder of a family member or
friend, unnatural death of a family member or friend, murder of a
stranger, robbed at gun/knifepoint, kidnaped, hazardous alcohol use and
depression status).

The same variables and methods used to investigate baseline
demographic and clinical differences between the discovery/validation
and replication samples were used to investigate differences between
those with and without PTSD at 3-months post-rape.

Cross-sectional analyses (3 months post-rape)

Discovery sample. Forty-eight participants, 24 with PTSD and 24 without
PTSD at 3-months post-rape, were included in the discovery sample. We
selected the 3-months post-rape time point since it was the first time point,
in the parent study, at which a PTSD diagnosis could be made, based on
DSM-5 criteria [48] We implemented a cross-sectional, case-control design to
identify genome-wide differentially methylated positions (DMPs) and
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differentially methylated regions (DMRs) between individuals with and
without PTSD. Consecutive cases of PTSD at 3-months post-rape were
identified until the target number was reached. Controls were perfectly
matched to cases, based on HIV status and as closely as possible (in
descending hierarchical order of importance) on age, childhood trauma
scores, lifetime trauma exposure, BMI, smoking, education, and income. DNA
was extracted from peripheral blood samples and assayed using the Human
lllumina EPIC BeadChip array (lllumina, California, United States) [49].

Raw probe intensity data (iDAT) files produced by lllumina GenomeStudio
were decompressed and parsed into text format using the meffil R package
[50] in R statistics version 3.6.2 [51]. All EWAS analyses, including quality
control measures and beta normalization, were completed using the meffil R
package [50].

All samples passed the quality control checks (see Supplementary Material
for more details). Probes not passing the quality control checks (n =29936)
were excluded from the downstream analyses. Previously identified cross-
reactive probes for 43254 CpG sites were also excluded [52]. Probes
targeting CpG sites on the X chromosome were retained since all
participants included in the study were female.

The percentage of methylated alleles for each CpG site in each sample
was calculated as 8 = M/(M + U + 100) where M and U symbolize raw probe
fluorescent intensities for methylated and unmethylated signals, respectively
[53]. Technical bias and batch effects were corrected for using functional
normalization (Supplementary Material, Supplementary Figs. 1-5, Supple-
mentary Tables 1 and 2) [54]. Any residual effects were handled by including
surrogate variables as covariates in the EWAS models. These were estimated
following functional normalization using surrogate variable analysis (SVA)
[55]. Cell type composition was estimated by applying the Houseman
algorithm to the normalized DNA methylation profiles and a publicly
available blood cell type reference dataset (Gene Expression Omnibus
accession number GSE35069) [56]. Cell type composition was included in
the final EWAS models (Supplementary Fig. 6). Epigenome-wide associations
were investigated using logistic regression models to identify DMPs
associated with PTSD status. A Bonferroni correction was applied to correct
for multiple testing with an adjusted p-value < 0.05 indicating genome-wide
significance [57].

The dmrff R package was applied to EWAS summary statistics to identify
DMRs [58]. DMRs were defined as a region covering two or more CpG sites
with less than 100 bp between consecutive sites showing the same
direction of effect with an uncorrected p-value < 0.05 (see supplementary
material for more details) [58]. A DMR was considered significant on an
epigenome-wide level if a Bonferroni-adjusted p <0.05 was observed.
Coordinates resulting from the DMP and DMR analyses were annotated
using the lllumina EPIC_v-1-0_B4 manifest [53]. Co-variation in methyla-
tion levels between blood and brain tissue was explored using the online
Blood-Brain DNA Methylation Comparison Tool [59]. Prior findings
reporting a link between any exposure or phenotype and the CpG sites
identified from the EWAS were identified using the Medical Research
Council Integrative Epidemiology Unit (MRC-IEU) catalog of epigenome-
wide association studies [60] and the China National Center for
Bioinformation National Genomics Data Center epigenome-wide associa-
tion studies atlas [61]. Prior findings reporting a link between mood,
anxiety, or trauma-related disorders and any CpG site in the genes
identified from the EWAS were identified using the aforementioned
databases for EWAS studies, and the European Molecular Biology
Laboratory-European Bioinformatics Institute (EMBL-EBI) genome-wide
association study (GWAS) Catalog for GWAS studies [62]. Prior findings
reporting a link between PTSD and any CpG site in the genes identified
from the EWAS were identified through a literature search in PubMed [63].
All genomic coordinates reported in this study are in reference to the
Hg19/GRCh37 human genome assembly (see Supplementary Material for
more details).

Validation analysis. A candidate gene approach was used to validate the
findings of the EWAS in 47 of the 48 participants included in the discovery
sample. One participant was excluded from the validation sample due to
incomplete data at the time of validation analysis. Samples were assayed
using EpiTYPER. DNA methylation was investigated at CpG sites in two
selected regions at 3-months post-rape. Brain-specific serine/threonine-
protein kinase 2 (BRSK2) and adenylate cyclase-activating polypeptide 1
(ADCYAP1) were selected for validation since they contained CpG sites
found to be differentially methylated (prior to correction for multiple
testing) between cases and controls in the EWAS. Both genes were also
found to contain differentially methylated regions. A CpG site in BRSKT, a
paralog of BRSK2, was found to be differentially methylated in a prior PTSD
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EWAS study [14] and ADCYAP1 receptor 1 (ADCYAPIR1) has been linked to
the development of PTSD in several prior studies [64-66].

DNA methylation percentages were exported using the EpiTYPER
Analyzer software. The validation analyses were completed using IBM
SPSS Statistics 27.0. Logistic regression models were used to determine if
differential methylation of BRSK2 and ADCYAP1 at 3-months post-rape was
associated with PTSD status at 3-months post-rape.

The relationship between baseline confounding variables, PTSD status at
3-months post-rape, BRSK2 methylation at 3-months post-rape, and
ADCYAP1 methylation at 3-months post-rape was investigated using
Mann—Whitney U tests, Chi-square tests, and Spearman’s correlations.
Potential confounders included continuous variables (age, BMI, childhood
trauma score, number of lifetime traumas endorsed, alcohol use, and
depression) and categorical variables (HIV status, smoking, and medication
use). Confounding variables significantly associated with PTSD or BRSK2/
ADCYAP1 methylation were entered in logistic regression models as
covariates, in a stepwise manner.

Replication analysis. To replicate the validation analysis, an additional 49
consecutively selected participants from the parent study were included in
the DNA methylation replication analyses. These participants were not
matched on PTSD status or potential methylation covariates. Samples were
assayed using EpiTYPER.

Logistic regression models, including potential confounding variables,
were used to determine if differential methylation of BRSK2 and ADCYAP1
at 3-months post-rape was associated with PTSD status at 3-months post-
rape in the replication sample, following the same procedure applied in
the validation analyses.

Comparison of previous findings from candidate gene studies and EWASs.
Candidate gene studies and EWASs investigating the relationship between
methylation and PTSD were identified from published literature. For EWASs,
the lllumina CpG identification number for significant findings was manually
recorded and cross-checked against the findings of the current EWAS. For
candidate gene studies, the genomic coordinates of the sites were identified
from the publications and converted to Hg19/GRCh37 positions using the
BLAT function of the University of California, Santa Cruz (UCSC) genome
browser (if not already indicated as Hg19/GrCh37 positions). The genomic
locations were manually recorded and cross-checked with the lllumina
EPIC_v-1-0_B4 manifest to determine if the sites were included on the
llumina EPIC array. Significant CpG sites resulting from the current EWAS and
corresponding to prior findings are reported in the results.

Agreement between the lllumina EPIC array and EpiTYPER. Spearman’s
correlation coefficients were used to investigate the level of agreement
between methylation levels resulting from the lllumina EPIC array at
3-months post-rape and methylation levels resulting from EpiTYPER at
3-months post-rape.

Longitudinal investigation (baseline, 3-months, and 6-months
post-rape)

Combined sample. The validation and replication samples were combined
and methylation data from the baseline and 6-month post-rape samples
were added to the dataset, for the same combined group. The group
consisted of 96 participants with methylation data at all time points
(baseline, 3-months, and 6-months). The samples were assayed using
EpiTYPER. We investigated the same BRSK2 and ADCYAP1 CpG sites
investigated in the validation and replication samples but followed a
longitudinal cohort design with PTSD symptom scores as the outcome,
instead of a cross-sectional case-control design with PTSD status at
3-months as the outcome.

PTSD scores at each time point were compared between the discovery/
validation sample and the replication sample using Mann-Whitney U
tests. The relationship between PTSD, BRSK2 methylation, ADCYAPT
methylation (at all time points), and potential baseline confounders (age,
BMI, childhood trauma, lifetime traumas, alcohol use, depression, HIV
status, smoking, and medication use) was investigated using Mann-
Whitney U tests, Chi-square tests and Spearman’s correlations.

Baseline ADCYAP1 and BRSK2 methylation levels were investigated as
predictors of change in PTSD symptom scores over six months, in the first
set of mixed regression models. In the second set of mixed regression
models, we investigated change in BRSK2 and ADCYAP1 methylation
levels over six months in relation to change in PTSD symptom scores over
six months. Confounding variables significantly associated with PTSD or
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BRSK2/ADCYAP1 methylation at any time point were entered in the mixed
regression models as covariates, in a stepwise manner.

RESULTS

Baseline demographic and clinical characteristics of the
sample

Table 2 presents the baseline demographic and clinical character-
istics of the discovery/validation and replication samples. The
samples were similar with regard to demographic and clinical
characteristics. The only variable that differed between the samples
was the prevalence of lifetime exposure to the murder of a family
member or friend, which was more frequently endorsed in the
discovery/validation sample compared to the replication sample
(25.5% vs. 8.2%, respectively; x’ = 5.2, p = 0.022).

Comparison of baseline demographic and clinical
characteristics between the PTSD groups at 3-months
post-rape

Table 3 presents group comparisons by PTSD status (at
3-months post-rape) in the discovery/validation sample and
the replication sample, consecutively. Participants with and
without PTSD had similar baseline demographic and clinical
characteristics in the discovery/validation and replication
samples. However, in the discovery/validation sample, those
with PTSD were more likely to endorse being robbed with
a gun or knife compared to those without PTSD (50% and
21.7%, respectively; z=4.1, p=0.044). In the replication
sample, those with PTSD endorsed less lifetime traumas
(M=0.5, SD=0.7) compared to those without PTSD (M = 1.4,
SD=13,z=-2.5,p=0.014).

Table 2.

Discovery/validation
sample (n =47)

n (%) M (SD)
Age? 47 (100) 259 (5.4)
Secondary education completedb 32 (68.1)
Employed® 13 (27.7)
In a relationship/marriedb 38 (80.9)
BMI? 47 (100) 26.0 (6.5)
Smoker® 5(10.6)
HIV positiveb 27 (57.4)
On ARVs® 12 (25.5)
On medications for STIP 2 (4.3)
Other medication use®* 1(.1)
Childhood trauma score?® 47 (100) 17.2 (4.1)
Neglect® 23 (48.9)
Domestic violence® 10 (21.3)
Emotional abuse® 12 (25.5)
Physical abuse® 18 (38.3)
Sexual abuse® 10 (21.3)
Number of childhood traumas® 47 (100) 1.6 (1.6)
Number of lifetime traumas®® 47 (100) 1.6 (1.5)
Imprisonmentb 2 (4.3)
Civil unrest or war® 3 (6.4)
Serious injuryb 8 (17.0)
Being close to death® 13 (27.7)
Murder of family/friendb 12 (25.5)
Unnatural death of family/friendb 9 (19.1)
Murder of stranger® 10 (21.3)
Robbed with gun/knife used® 17 (36.2)
Kidnaped® 3 (6.4
PTSD symptom score® 47 (100) 67.1 (21.7)
Alcohol use severity score® 47 (100) 14 (2.2)
Hazardous alcohol use® 12 (25.5)
Depression symptom score® 47 (100) 32.4 (13.9)
Depression status® 41 (87.2)

Baseline demographic and clinical characteristics of the discovery/validation and replication samples.

Replication sample Comparison of discovery/

(n = 49) validation sample to
replication sample

n (%) M (SD) X z P

49 (100) 24.6 (5.5) -1.3 0.178
25 (51) 29 0.089
9 (18.4) 1.2 0.279
38 (77.6) 0.2 0.691
49 (100) 25.8 (5.7) —0.1 0.956
7 (14.3) 0.3 0.589
19 (38.8) 34 0.067
14 (28.6) 0.1 0.738
2 (4.1) 0.0 0.966
2 (4.1) 0.3 0.582
49 (100) 16.2 (2.5) —-0.8 0.410
18 (36.7) 1.5 0.227
8 (16.3) 0.4 0.534
11 (22.4) 0.1 0.724
19 (38.8) 0.0 0.962
11 (22.4) 0.0 0.890
49 (100) 14 (1.5) —0.6 0.530
49 (100) 1.13(1.2) -1.7 0.092
1 (2.0) 0.4 0.533
1(2.0) 1.1 0.287
3 (6.1) 28 0.094
14 (28.6) 0.0 0.921
4 (8.2) 5.2 0.022*
5(10.2) 1.5 0.214
5(10.2) 2.2 0.135
18 (36.7) 0.0 0.954
4(82) 0.1 0.737
49 (100) 65.7 (18.6) —-0.8 0.431
49 (100) 1.9 (2.5) —1.2 0.242
15 (30.6) 0.3 0.580

49(100) 31.7 (12.1) —0.2 0.854
45 (91.8) 0.5 0.461

PTSD Posttaumatic stress disorder, M mean, SD standard deviation, BMI body mass index, ARV antiretrovirals, ST/ sexually transmitted infection.

#Continous variables.

PCategorical variables.

“Medication prescribed for chronic sinusitis (n = 1) and hypertension (n = 2).
dLifetime traumas refer to directly experiencing the trauma; *p < 0.05.
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Discovery sample: genome-wide differentially methylated
genes associated with PTSD status at 3-months post-rape
Table 4 presents selected findings from the top twenty DMPs
that were associated with PTSD before correction for multiple
comparisons (p < 0.05) (see Supplementary Table 3 and Supple-
mentary Figs. 7-9 for more details). Only one DMP, cg01700569,
remained significant after correcting for multiple testing
(adjusted p <0.05). This intergenic site (cg01700569) is located
24694 bases downstream of solute carrier family 16 member 9
(SLC16A9). Other genes previously linked to mood, anxiety, or
trauma-related disorders included protein zeta-1 (FEZ1),
ADCYAP1, BRSK2, catenin alpha 3 (CTNNA3), and par-3 family cell
polarity regulator (PARD3).

Thirty-four DMRs were identified from the regional analysis after
Bonferroni correction for multiple testing. The regions previously
linked to mood, anxiety, or trauma-related disorders included
coiled-coil and C2 domain-containing protein 2 A (CC2D2A), BRSK2,
and ADCYAP1. The findings related to these genes are also
presented in Table 4.

Validation and replication sample: differential methylation of
BRSK2 in relation to PTSD status at 3-months post-rape

The BRSK2 region (chr11:1463541-1463670; adjusted p < 0.05)
identified from the EWAS included five CpG sites (CpG1-
€g12186219, CpG2-cg14064268, CpG3-cg10590925, CpG4-
cg17429870, CpG5-cg18651858) that showed decreased methy-
lation in participants with PTSD (see Fig. 1). Based on prior
findings, DNA methylation of these CpG sites in blood was
highly correlated with DNA methylation in the prefrontal cortex,
superior temporal gyrus, and the cerebellum (see Supplemen-
tary Fig. 10a-d) [59] Three of the five CpG sites (CpG3, CpG4, and
CpG5) were investigated in the validation and replication
sample. We could not investigate CpG1 or CpG2, as the mass
of CpG1 was too low to be measured by the EpiTYPER mass
spectrometer, and CpG2 contained a silent peak that overlapped
with the non-methylated peak for this site (see Supplementary
Table 4 for the genomic coordinates and sequence for CpG3,
CpG4, and CpG5).

Baseline age, HIV status, BMI, smoking status, childhood
trauma score, lifetime trauma, alcohol use, depression, and
medication use were not associated with BRSK2 methylation at
3-months post-rape in either the validation or replication
samples. PTSD status at 3-months post-rape was associated
with lifetime trauma (z=—2.47, p=0.014) in the replication
sample only (see Supplementary Tables 5 and 6).

In the validation analysis, methylation levels of BRSK2 CpG3
(B = —0.04, p=0.050, OR 0.96) and CpG4 (8 = —0.04, p = 0.052,
OR 0.96) at 3-months post-rape were not significantly asso-
ciated with PTSD status at 3-months post-rape. Decreased
methylation of BRSK2 CpG5 (8 = —0.04, p =0.048, OR 0.96) at
3-months post-rape was significantly associated with PTSD
status at 3-months post-rape, but the association was no longer
significant when lifetime trauma was added as a covariate to
the model (see Supplementary Tables 7). In the replication
analysis, methylation levels of BRSK2 CpG3 (8= -0.00, p=
0.889, OR 1.00), CpG4 (8 = —0.01, p = 0.667, OR 0.99) and CpG5
(8=0.00, p=0.866, OR 1.00) were not significantly associated
with PTSD status at 3-months post-rape (see Supplementary
Table 8).

Validation and replication samples: differential methylation of
ADCYAP1 in relation to PTSD status at 3-months post-rape

The ADCYAPT region (chr18:905177-905180) identified from the
EWAS included only two differentially methylated CpG sites
(CpG1 - cg22388954, CpG2 - cg11773720) which both showed
increased methylation in participants with PTSD (see Fig. 2).
Based on prior findings, DNA methylation of these CpG sites in
blood was not correlated with DNA methylation in brain tissue

SPRINGER NATURE

(Supplementary Fig. 11a, b) [59]. EpiTYPER signals for ADCYAP1
CpG1 and CpG2 were combined for analysis, due to their
proximity to each other (see supplementary Table 9 for the
genomic coordinates and sequence of CpG1 and CpG2).

Baseline age, HIV status, BMI, smoking status, childhood
trauma score, lifetime trauma, alcohol use, depression, and
medication use were not associated with ADCYAPT methylation
at 3-months post-rape in the validation or replication samples
(see Supplementary Tables 5 and 6). In the validation analysis,
methylation levels of ADCYAPT CpG1&2 (8= —0.09, p=0.382,
OR 0.92) were not significantly associated with PTSD status at
3-months post-rape (see supplementary Tables 7). In the
replication sample, methylation levels of ADCYAP1 CpG1&2
(B=-0.06, p=0.639, OR 0.94) were also not significantly
associated with PTSD status at 3-months post-rape (see
supplementary Table 8).

Agreement between the Illumina EPIC array and EpiTYPER
Large positive correlations were found when comparing the
Illumina EPIC array and EpiTYPER methylation levels for BRSK2
CpG3 (r=0.881, p<0.000), CpG4 (r=0.900, p<0.000), and
CpG5 (r=0.831, p =0.831) at 3-months post-rape (see Supple-
mentary Table 10). Small, non-significant correlations were
found when comparing the Illumina EPIC array and EpiTYPER
methylation levels for ADCYAP1 CpG1&2 (r = 0.254, p > 0.05; see
Supplementary Table 11).

Replication of previous candidate gene and EWAS findings
Differential methylation of five CpG sites previously investigated
was replicated in this EWAS study, prior to correction for multiple
testing (see Supplementary Table 12 and 13). These sites
were located in the HTR3A (chr11:113846004, cg20621129, p =
0.028) [67], AHRR (two CpG sites: chr5:373378, cg05575921,
p =0.033; chr5:377358, 926703534, p=0.031) [22], DUSP22
(chr6:291882, cg21548813, p=0.032) [15] and TPR
(chr1:186344558, 924577137, p=0.0008) genes [13]. Since
decreased methylation of AHRR is strongly linked to smoking,
[22] we investigated the link between smoking and AHRR
methylation (based on the values obtained from our EWAS) and
found decreased AHRR methylation levels in smokers (M =78.91,
SD =14.95, n=5) compared to non-smokers (M =93.88, SD =
1.45, n =42) at cg05575921 (z=—2.92, p = 0.001).

Combined sample: longitudinal relationship between BRSK2,
ADCYAP1, PTSD scores, and confounding variables

Baseline childhood trauma, alcohol use, and depression were
associated with PTSD scores at one or more time points. Baseline
childhood and lifetime trauma scores were associated with BRSK2
methylation at one or more time points. Baseline HIV status was
associated with ADCYAPT methylation at 3-months post-rape (see
supplementary Table 14).

Combined sample: longitudinal change in PTSD symptom
scores

The mean PTSD scores at baseline, 3-months, and 6-months,
stratified by sample (discovery/validation, replication, combined),
are presented in Fig. 3. There were no significant differences
between the discovery/validation samples and the replication
sample for either baseline (z=—0.79, p=0.431), 3-month (z=
—1.37, p=0.172), or 6-month (z= —0.15, p = 0.883) PTSD scores.
There was a significant decline in PTSD scores from baseline to
3-months (p < 0.000) and from 3-months to 6-months (p = 0.021),
in the combined sample.

Combined sample: baseline BRSK2 and ADCYAP1 methylation
levels and longitudinal change in PTSD scores

Table 5 presents the results of the mixed regression models
investigating baseline BRSK2 and ADCYAP1 methylation as

Translational Psychiatry (2021)11:594
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Posttraumatic stress disorder (PTSD) status and BRSK2 methylation percentage. Boxplots indicating methylation levels between

participants with and without PTSD for the five CpG sites in the BRSK2 region found to be associated with PTSD at 3-months post-rape in the

epigenome-wide association study.
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Fig. 2 Posttraumatic stress disorder (PTSD) status and ADCYAP1 methylation percentage. Boxplots indicating methylation levels between
participants with and without PTSD for the two CpG sites in the ADCYAP1 region were found to be associated with PTSD in the epigenome-

wide methylation study.

predictors of change in PTSD symptom scores over time.
Decreased baseline BRSK2 CpG3, CpG4, and CpG5 methylation
levels were significant predictors of increased PTSD symptom
scores at 3-months (CpG3 8= —0.39, p <0.001, CpG4 8 = —0.33,
p =0.005, CpG5 B=-0.27, p=10.009) and 6-months (CpG3
B=—0.49, p<0.001, CpG4 B=—0.44, p<0.001, CpG5 B=
—0.38, p<0.001) post-rape. However, the relationships
between BRSK2 CpG3, CpG4, and CpG5 methylation levels and
PTSD scores at 3-and 6-months post-rape were no longer
significant when childhood trauma, alcohol consumption,
depression, and lifetime trauma were added to the models as
covariates.

Increased baseline ADCYAPT CpG1&2 methylation was a
significant predictor of increased PTSD scores at baseline
(8=5.34, p<0.001) and decreased PTSD scores at 6-months
(8 =-3.52, p =0.004) post-rape, but the associations were no
longer significant when covariates were added to the model.

Translational Psychiatry (2021)11:594

Combined sample: longitudinal change in ADCYAP1 and
BRSK2 methylation levels in relation to longitudinal change in
PTSD scores

Table 6 presents the results of the mixed regression models
investigating change in BRSK2 and ADCYAP1 methylation over
time as predictors of change in PTSD symptom scores over
time. Decreased BRSK2 CpG3 (8= —0.39, p <0.001), CpG4 (8=
—0.36, p =0.001), and CpG5 (8= —0.32, p=0.001) methylation
at 3-months post-rape was associated with increased PTSD
scores at 3-months post-rape. Decreased BRSK2 CpG3 (8 = —0.49,
p <0.001), CpG4 (8= —0.46, p < 0.001), and CpG5 (8= —0.43,p<
0.001) methylation at 6-months post-rape was also associated
with increased PTSD scores at 6-months post-rape. The relation-
ship between PTSD score at 3-month post-rape and methylation
of BRSK2 CpG3 (8= —0.30, p =0.049) was the only association
that remained significant after the addition of covariates to the
models.

SPRINGER NATURE
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Fig. 3 Posttraumatic stress disorder (PTSD) symptom trajectory. Symptoms over 6 months for the discovery/validation samples, replication

sample, and combined sample.

Increased baseline ADCYAPT CpG1&2 methylation was asso-
ciated with increased PTSD scores at baseline (8 = 4.67, p <0.001),
while decreased ADCYAP1 CpG1&2 methylation at 3-months
(B=-2.61, p=0.001) and 6-months (8= —5.01, p<0.001) was
associated with increased PTSD scores at 3-months and 6-months
post-rape. The associations were no longer significant when
covariates were added to the model.

DISCUSSION

In this study, we identified one DMP (cg01700569) and thirty-four
DMRs associated with PTSD at 3-months post-rape on an
epigenome-wide level. The gene closest to the aforementioned
DMP is SLC16A9. Although investigating this DMP further may
have been of value, little is known about it in the context of
mental health. The site (cg01700569) is located in an intergenic
region, which further complicates the interpretation of the clinical
significance of the finding.

We investigated two DMRs in the BRSK2 and ADCYAP1 genes
further. We were able to validate, but not replicate, the BRSK2
CpG5 finding, confirming decreased BRSK2 methylation in rape-
exposed participants with PTSD at 3-months post-rape, compared
to those without PTSD. We also found that decreased baseline
BRSK2 CpG3, CpG4, and CpG5 methylation was associated with
increased PTSD scores at 3-months and 6-months post-rape.
Decreased BRSK2 methylation at 3-months and 6-months post-
rape was associated with increased PTSD scores at the same time
points. However, the associations between decreased BRSK2 CpG3
methylation at 3-months post-rape and increased PTSD scores at
3-months post-rape were the only ones that remained significant
after childhood trauma, alcohol consumption, depression, and
lifetime trauma were added as covariates to the models.

We were unable to validate or replicate our ADCYAPT CpG1&2
findings. We found that decreased baseline ADCYAPT CpG1&2
methylation was associated with increased PTSD scores at
6-months post-rape. Decreased ADCYAPT methylation at 3-and
6-months post-rape was also associated with increased PTSD
scores at the same time points, while decreased baseline ADCYAP1
CpG1&2 methylation was associated with decreased PTSD scores
at baseline. The findings did not remain significant after PTSD
covariates were added to the models.

Decreased methylation of the BRSK2 paralog, BRSK1 [68], has
been associated with a PTSD diagnosis in a prior EWAS [14]. BRSK1
and BRSK2 share a 68% overlap in genetic sequence, both are
highly expressed in the brain, and decreased expression of both

SPRINGER NATURE

has been linked to disorganized presynaptic vesicle formation,
uncoordinated release and reuptake of neurotransmitters, altered
axonal development, and abnormal neuronal polarization in
animal studies [68-73]. In human studies, a BRSK2 polymorphism
(rs1881509) has been associated with heroin dependence [69],
and functional variants of BRSK2 have been associated with autism
spectrum disorder, cognitive impairment, intellectual disability,
and speech delays [74, 75].

BRSK1 and BRSK2 are expressed most strongly in the
cerebellum and the hippocampus [69]. The hippocampus is
closely linked to PTSD since it is involved in memory consolida-
tion [76]. When memories are not consolidated into autobio-
graphical memory networks, they may involuntarily resurface
(e.g., flashbacks, intrusions, nightmares, and dissociation) and
activate the limbic system, which induces the fight-or-flight
response [77]. Differential methylation and expression of BRSK2
may also alter the expression of neurotransmitters previously
found to be associated with PTSD (norepinephrine, epinephrine,
dopamine, and serotonin) through altered presynaptic vesicle
and synaptic cleft development [78, 79].

In addition to their functions in the brain, BRSKT and BRSK2 have
been linked to metabolic processes and glucose homeostasis
[80, 81]. Animal studies have found increased expression of BRSK1
and BRSK2 in pancreatic cells and knockdown of BRSK2 resulted in
a significant increase in serum insulin levels [80, 81]. In a human
study, BRSK2 was found to be highly expressed in human
pancreatic insulin-producing B cells, and activation of BRSK2 was
linked to reduced insulin secretion [81]. Moreover an EWAS found
that participants with type 1 diabetes and neuropathy showed
decreased methylation at four CpG sites in the BRSK2 gene
compared to participants with type 1 diabetes without neuro-
pathy [82].

The BRSK2 CpG sites investigated in this study were located in
intron 4 of the gene. The function of methylation in gene bodies is
not well established, but methylation is abundant in these regions
and is generally positively correlated with expression [83].
Assuming the latter, we can hypothesize that decreased methyla-
tion of BRSK2 may contribute to adverse neuronal development,
neuronal maintenance, and dysregulated blood glucose levels
which may explain the increased risk for diabetes and cardiovas-
cular disease observed in prior PTSD studies [84, 85]. The
relationship between BRSK2 methylation and adverse neuronal
development and maintenance is further supported by prior
findings of a high correlation between BRSK2 blood methylation
and methylation in brain tissue [59].

Translational Psychiatry (2021)11:594
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Table 5.

Model

1B

1C

2A

2B

2C

Baseline BRSK2 CpG3 methylation
Baseline x CpG3 (baseline)
3-months x CpG3 (baseline)
6-months x CpG3 (baseline)
Baseline x CpG3 (baseline)
3-months x CpG3 (baseline)
6-months x CpG3 (baseline)
Baseline x childhood trauma
3-months X childhood trauma
6-months X childhood trauma
Baseline x alcohol consumption
3-months X alcohol consumption
6-months X alcohol consumption
Baseline x depression
3-months X depression
6-months X depression
Baseline x CpG3 (baseline)
3-months X CpG3 (baseline)
6-months x CpG3 (baseline)
Baseline x childhood trauma
3-months X childhood trauma
6-months X childhood trauma
Baseline x alcohol consumption
3-months x alcohol consumption
6-months x alcohol consumption
Baseline x depression
3-months x depression
6-months x depression
Baseline X lifetime trauma
3-months X lifetime trauma
6-months X lifetime trauma

Baseline BRSK2 CpG4 methylation
Baseline x CpG4 (baseline)
3-months x CpG4 (baseline)
6-months x CpG4 (baseline)
Baseline x CpG4 (baseline)
3-months X CpG4 (baseline)
6-months x CpG4 (baseline)
Baseline x childhood trauma
3-months X childhood trauma
6-months X childhood trauma
Baseline x alcohol consumption
3-months X alcohol consumption
6-months X alcohol consumption
Baseline x depression
3-months x depression
6-months x depression
Baseline x CpG4 (baseline)
3-months X CpG4 (baseline)

Translational Psychiatry (2021)11:594

B

0.07
—0.39
—0.49
—0.12
—0.16
-0.12

1.54

1.21

—035
—1.36
—0.96
—1.65

0.73

0.00

0.49
—0.10
—0.15
—0.10

1.12

1.12
—0.67
—1.40
—0.98
-1.70

0.77

0.01

0.53

2.06

0.79

2.47

0.07
—0.33
—0.44
—0.08
—0.14
—0.19

1.44

1.20
—0.09
—1.41
—1.00
—1.60

0.71
—0.01

0.53
—0.04
—0.12

Std error

0.10
0.10
0.10
0.10
0.15
0.15
0.49
0.66
0.66
0.76
1.23
1.23
0.14
0.22
0.22
0.10
0.15
0.15
0.52
0.73
0.72
0.76
1.24
1.23
0.14
0.23
0.23
1.36
2.24
222

0.11
0.12
0.12
0.12
0.15
0.15
0.51
0.70
0.69
0.77
1.23
1.22
0.14
0.23
0.22
0.12
0.16

0.71
—3.81
—4.76
—-1.17
-1.09
—0.81

3.13

1.84
—0.53
-1.79
—0.78
-1.35

5.29

0.00

2.19
—1.01
—1.03
—0.68

245

1.54
—0.93
—1.85
-0.79
—1.38

5.50

0.06

235

1.51

0.35

1.11

0.59
—2.85
—3.83
—0.70
—0.93
-1.29

2.84

1.73
—0.12
—1.84
—0.81
—-1.32

5.08
—0.05

240
—0.36
—0.75

0.482
0.0002*
0.000004*
0.247
0.276
0418
0.002*
0.069
0.598
0.077
0.438
0.181

0.0000008*

1.00
0.031*
0.314
0.305
0.496
0.016*
0.126
0.355
0.067
0.432
0.170

0.0000003*

0.952
0.021*
0.134
0.727
0.270

0.558
0.005*
0.0002*
0.486
0.357
0.201
0.005*
0.086
0.902
0.069
0.421
0.191
0.000002*
0.963
0.018*
0.720
0.458

Summary statistics of the mixed regression models investigating baseline BRSK2 and ADCYAPT methylation as predictors of change in
posttraumatic stress symptoms scores over time.

95% Cl
Lower Upper
—0.13 0.27
—0.60 -0.19
—0.70 —0.29
—0.33 0.08
—0.45 0.13
—0.41 0.17
0.57 2.51
—0.09 2.52
—1.65 0.96
—2.87 0.15
—3.40 1.48
—4.09 0.78
0.46 1.01
—0.45 0.45
0.05 0.93
—0.31 0.10
—0.44 0.14
—0.39 0.19
0.24 2.30
—0.32 2.56
—2.10 0.76
—2.90 0.10
—343 1.48
—4.13 0.73
0.49 1.04
—0.44 0.47
0.08 0.98
—0.65 4.76
—3.66 523
—1.95 6.88
—0.16 0.29
—0.56 —0.10
—0.67 —0.21
—0.31 0.15
—0.44 0.16
—0.49 0.10
0.43 2.44
—0.17 2.58
—1.45 1.28
—2.93 0.11
—3.44 1.45
—4.02 0.82
0.43 0.98
—0.46 0.44
0.09 0.98
—0.27 0.19
—0.42 0.19
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Table 5 continued

Model

3A

3B

3C

4A

4B

6-months x CpG4 (baseline)
Baseline x childhood trauma
3-months x childhood trauma
6-months X childhood trauma
Baseline x alcohol consumption
3-months x alcohol consumption
6-months X alcohol consumption
Baseline x depression
3-months x depression
6-months x depression
Baseline x lifetime trauma
3-months x lifetime trauma
6-months X lifetime trauma
Baseline BRSK2 CpG5 methylation
Baseline x CpG5 (baseline)
3-months x CpG5 (baseline)
6-months x CpG5 (baseline)
Baseline x CpG5 (baseline)
3-months X CpG5 (baseline)
6-months x CpG5 (baseline)
Baseline x childhood trauma
3-months x childhood trauma
6-months X childhood trauma
Baseline x alcohol consumption
3-months x alcohol consumption
6-months X alcohol consumption
Baseline x depression
3-months X depression
6-months x depression
Baseline x CpG5 (baseline)
3-months X CpG5 (baseline)
6-months x CpG5 (baseline)
Baseline x childhood trauma
3-months x childhood trauma
6-months X childhood trauma
Baseline x alcohol consumption
3-months X alcohol consumption
6-months x alcohol consumption
Baseline x depression
3-months X depression
6-months X depression
Baseline x lifetime trauma
3-months X lifetime trauma

6-months X lifetime trauma

Baseline ADCYAP1 CpG1&2 methylation

Baseline x CpG1&2 (baseline)
3-months X CpG1&2 (baseline)
6-months X CpG1&2 (baseline)
Baseline x CpG1&2 (baseline)
3-months X CpG1&2 (baseline)

SPRINGER NATURE

—0.16
1.20
1.17

—0.34

—1.47

-1.03

—1.67
0.74
0.00
0.57
2.1
0.71
2.19

0.16
—0.27
—0.38
—0.06
—0.12
—0.06

1.60

133
—0.27
—1.44
—1.01
—-1.72

0.72

0.00

0.48
—0.03
—0.10
—0.03

1.34

1.28
—0.58
—1.49
—1.04
—-1.78

0.75

0.01

0.52

2.12

0.74

2.52

5.34
—1.03
—3.52
—0.73

2.75

Std error

0.15
0.53
0.77
0.76
0.76
1.24
1.22
0.14
0.23
0.22
1.39
2.27
2.23

0.10
0.10
0.10
0.10
0.14
0.14
0.50
0.66
0.66
0.77
1.23
1.23
0.14
0.23
0.22
0.10
0.14
0.14
0.53
0.73
0.73
0.76
1.24
1.22
0.14
0.23
0.23
1.39
2.26
223

1.02
1.12
1.18
0.88
1.39

—1.01
2.24
1.53

—0.45

—-1.93

—0.83

—1.37
5.28
0.01
2,52
1.52
0.32
0.98

1.60
—2.66
—3.73
—0.57
—0.84
—0.44

3.21

2.01
—0.41
—1.88
—0.82
—1.41

5.13

0.01

2.14
—0.29
—0.71
—0.22

2.56

1.74
—0.80
—-1.96
—0.84
—1.46

5.33

0.06

2.29

1.53

0.33

1.13

5.26
—-0.92
—2.97
—0.83

1.98

p 95% CI
Lower

0.314 —0.46
0.027* 0.14
0.130 —-0.35
0.654 —1.84
0.056 —2.99
0.407 —3.49
0.175 —4.09
0.0000008* 0.46
0.996 —0.45
0.013* 0.12
0.132 —0.65
0.753 —-3.79
0.329 —2.24
0.112 —0.04
0.009* —0.47
0.0003* —0.58
0.573 —0.25
0.405 —0.39
0.657 —-0.33
0.002* 0.61
0.047* 0.02
0.683 —1.58
0.064 —2.96
0.412 —3.46
0.163 —4.16
0.000002* 0.44
0.991 —0.45
0.035* 0.03
0.774 —-0.23
0.477 —038
0.827 —0.31
0.012* 0.30
0.085 —0.18
0.425 —2.03
0.054 —3.01
0.402 —3.50
0.148 —4.21
0.0000007* 0.47
0.950 —0.44
0.024* 0.07
0.129 —0.63
0.75 —3.74
0.262 —1.92
0.0000009* 333
0.360 —3.25
0.004* —5.86
0.407 —2.47
0.050 —0.00
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Upper
0.15
2.25
2.69
1.16
0.04
1.43
0.75
1.02
0.46
1.01
4.88
522
6.62

0.35
—0.07
—0.18

0.14

0.16

0.21

2.58

2.65

1.04

0.08

143

0.71

1.00

0.45

0.93

0.17

0.18

0.25

239

273

0.86

0.02

1.41

0.65

1.03

047

0.97

4.88

5.22

6.96

7.36
119
-1.17
1.01
5.50
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Table 5 continued

Model B
6-months X CpG1&2 (baseline) 1.66
Baseline x childhood trauma 1.84
3-months X childhood trauma 1.11
6-months X childhood trauma —0.29
Baseline x alcohol consumption —1.48
3-months X alcohol consumption —1.43
6-months X alcohol consumption —1.91
Baseline x depression 0.73
3-months X depression —0.13
6-months x depression 0.42

4C Baseline x CpG1&2 (baseline) —0.54
3-months X CpG1&2 (baseline) 2.76
6-months X CpG1&2 (baseline) 1.59
Baseline x childhood trauma 1.87
3-months X childhood trauma 1.06
6-months X childhood trauma —0.36
Baseline x alcohol consumption —1.44
3-months X alcohol consumption —1.43
6-months X alcohol consumption —1.91
Baseline x depression 0.74
3-months x depression —0.13
6-months x depression 0.42
Baseline x HIV status —4.51
3-months x HIV status —0.39

6-months X HIV status

1.24

Std error t p 95% Cl

Lower Upper
1.39 1.20 0.235 —-1.10 4.4
0.47 3.95 0.0001* 0.92 2.76
0.59 1.88 0.062 —0.05 2.26
0.59 —0.49 0.625 —1.45 0.87
0.77 -1.93 0.057 —3.01 0.05
1.22 -1.18 0.242 —3.85 0.98
1.21 —1.57 0.120 —4.32 0.51
0.14 5.29 0.0000008* 0.46 1.01
0.22 —0.59 0.554 —0.56 0.30
0.22 1.96 0.052 —0.00 0.85
0.89 —0.61 0.541 —2.30 1.22
1.42 1.95 0.055 —0.05 5.57
1.41 1.13 0.263 —1.22 4.40
0.47 4.01 0.0001* 0.95 2.80
0.59 1.79 0.076 —0.11 224
0.59 —0.60 0.550 —1.53 0.82
0.76 —1.88 0.063 —2.96 0.08
1.22 —-1.17 0.247 —3.86 1.01
1.22 —1.56 0.121 —4.34 0.52
0.14 5.33 0.0000006* 0.46 1.01
0.22 —0.61 0.546 —0.56 0.30
0.22 1.92 0.058 —0.01 0.85
3.54 —-1.27 0.206 —11.55 2.53
5.65 —0.07 0.945 —11.61 10.84
5.65 0.22 0.827 —9.99 12.46

Cl confidence interval, BRSK2 brain-specific serine/threonine-protein kinase 2, ADCYAP1 adenylate cyclase activating polypeptide 1.

We investigated ADCYAP1 further, since its protein product,
PACAP, has been identified as a master regulator of the HPA-axis
and the stress response [86]. The highest concentration of
PACAP in the brain is found in the hypothalamus [87]. PACAP
binding in the hypothalamus triggers the release of
corticotrophin-releasing hormone (CRH) and signals the activa-
tion of the stress response [86]. In the adrenal medulla, PACAP
binding to PAC1R (product of ADCYAPIRT) stimulates the release
of catecholamines as part of the sympathetic nervous system
(SNS) [88]. PACAP binding to PACR1 in preganglionic neurons
triggers the release of phenylethanolamine-N-methyltransferase
(PNMT) and tyrosine hydroxylase (TH) in effector organs of the
SNS. PNMT and TH are catecholamine-synthesizing enzymes and
sustain the release of catecholamines in the effector organs
during the stress response [88].

Researchers investigating PACAP/ADCYAP1 and PACR1/
ADCYAPIR1 in relation to PTSD in a predominantly African—
American sample with a mixture of trauma types found that, in
women more than men, increased PACAP blood levels were
associated with increased PTSD symptom severity and an
increased acoustic startle reflex response [64, 89]. They also found
that women carrying the ADCYAPIRT rs2267735 CC genotype
showed decreased ADCYAPTRT mRNA expression, increased PTSD
symptom severity, increased dark-enhanced startle response, and
increased amygdala and hippocampal activity in response to
viewing threatening face stimuli [64-66, 89]. In both men and
women, increased methylation of ADCYAPTR1 was associated with
decreased cortical mMRNA expression and increased PTSD symp-
tom severity [64, 90]. However, the functional effects of ADCYAP1

Translational Psychiatry (2021)11:594

and ADCYAPIR1 seem to be more pronounced in women
compared to men [64-66], due to the presence of several
estrogen response elements (EREs) in the ADCYAPTR1 promoter.
The CC genotype of rs2267735 has been associated with
decreased binding of estrogen receptor alpha to the EREs and
decreased expression of ADCYAPTR1 [91]. The role of estrogen in
ADCYAPIR1 and HPA-axis activity may in part explain why women
have an increased risk of PTSD compared to men [35, 92].

The two ADCYAP1 CpG sites investigated in this study are located
in a CpG island spanning the 1st intron of the gene. Methylation in
CpG islands and in the 1st intron of a gene is generally associated
with decreased expression of the gene [93-95]. Our longitudinal
findings, therefore, correspond with prior findings since decreased
methylation of ADCYAPT is likely to result in increased expression of
PACAP and increased PTSD symptom severity [65, 66, 91, 96].
Decreased PACAP is also likely to result in decreased binding to PAC1
and reduced activation of the HPA-axis [86, 88].

Based on prior findings, ADCYAPT CpG1&2 DNA methylation in
blood was not significantly correlated with DNA methylation at
the same sites in brain tissue [59]. However, the brain regions
investigated did not specifically focus on the region where PACAP
is most abundantly expressed i.e., the paraventricular nucleus of
the hypothalamus, and investigating blood-brain methylation in
this region may show different results [37]. It is also likely that the
expression of PACAP in the endocrine system has a more
profound effect on the regulation of the HPA-axis compared to
PACAP expression in the brain [37].

We found that, before correction for multiple testing, CpG sites
in HTR3A [67), AHRR [22], DUSP22 [15], and TPR [13] were
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Table 6. Summary statistics of the mixed regression models investigating change in BRSK2 and ADCYAPT methylation over time as predictors of
change in posttraumatic stress symptoms scores over time.

Model B Std error t p 95% Cl
Lower Upper
Baseline BRSK2 CpG3 methylation

1A Baseline x CpG3 (baseline) 0.07 0.10 0.71 0.482 —-0.13 0.27
3-months x CpG3 (3-months) -0.39 0.10 —3.81 0.0002* —0.60 —-0.19

6-months x CpG3 (6-months) —0.49 0.10 —-4.76 0.000004* —0.70 —-0.29

1B Baseline x CpG3 (baseline) —0.16 0.10 —1.60 0.111 —0.37 0.04
3-months x CpG3 (3-months) —0.31 0.15 —2.06 0.041* —0.60 —0.01

6-months x CpG3 (6-months) —0.15 0.14 —1.02 0.308 —0.44 0.14

Baseline x childhood trauma 1.43 0.49 293 0.004* 0.47 240

3-months X childhood trauma 1.39 0.66 2.11 0.037* 0.08 2.70

6-months X childhood trauma —0.51 0.66 —0.78 0.436 —1.81 0.78

Baseline x alcohol consumption —1.31 0.76 —-1.72 0.088 —2.381 0.20

3-months X alcohol consumption —0.86 1.22 —0.71 0.481 —3.28 1.56

6-months X alcohol consumption —1.60 1.24 —-1.29 0.199 —4.06 0.86

Baseline x depression 0.74 0.14 5.34 0.0000006* 0.46 1.01

3-months x depression 0.06 0.22 0.26 0.793 —0.38 0.50

6-months x depression 0.50 0.23 2.16 0.034* 0.04 0.97

1C Baseline x CpG3 (baseline) —0.15 0.10 —1.42 0.157 —-0.35 0.06
3-months X CpG3 (3-months) —0.30 0.15 —-1.99 0.049* —0.60 —0.00

6-months X CpG3 (6-months) —0.12 0.15 —0.80 0.423 —0.41 0.17

Baseline x childhood trauma 1.18 0.52 2.89 0.024* 0.16 221

3-months X childhood trauma 1.34 0.73 1.84 0.068 —0.10 2.78

6-months X childhood trauma —0.82 0.73 -1.12 0.263 —2.25 0.62

Baseline x alcohol consumption -1.35 0.75 -1.79 0.077 —2.84 0.15

3-months X alcohol consumption —0.88 1.23 —0.71 0.477 —3.31 1.56

6-months x alcohol consumption —1.66 1.24 -1.34 0.184 —4.11 0.80

Baseline x depression 0.77 0.14 5.55 0.0000002* 0.49 1.05

3-months X depression 0.07 0.23 0.31 0.761 —0.38 0.52

6-months X depression 0.53 0.23 2.27 0.026* 0.07 1.00

Baseline X lifetime trauma 2.02 1.36 1.48 0.141 —0.68 4.72

3-months x lifetime trauma 0.57 222 0.26 0.797 —3.84 4.98

6-months x lifetime trauma 2.28 2.27 1.01 0317 —2.23 6.79

Baseline BRSK2 CpG4 methylation

2A Baseline x CpG4 (baseline) 0.03 0.11 0.32 0.749 -0.17 0.24
3-months x CpG4 (3-months) —0.36 0.11 —3.40 0.001* —0.57 —0.15

6-months X CpG4 (6-months) —0.46 0.11 —4.92 0.00003* —0.68 —0.25

2B Baseline x CpG4 (baseline) —-0.13 0.11 —-1.21 0.230 —-0.35 0.84
3-months X CpG4 (3-months) —0.30 0.15 —2.04 0.043* —0.59 —0.01

6-months x CpG4 (6-months) —-0.22 0.15 —1.49 0.138 —0.51 0.07

Baseline x childhood trauma 1.36 0.49 2.75 0.007* 0.38 234

3-months X childhood trauma 1.48 0.69 2.14 0.034* 0.11 2.84

6-months X childhood trauma —0.28 0.69 —0.40 0.689 —1.64 1.09

Baseline x alcohol consumption —1.35 0.76 -1.77 0.080 —2.87 0.16

3-months X alcohol consumption —0.85 1.22 —0.70 0.488 —3.27 1.57

6-months X alcohol consumption -1.59 1.22 -1.30 0.197 —4.02 0.84

Baseline x depression 0.72 0.14 5.15 0.000001* 0.44 0.99

3-months X depression 0.07 0.22 0.32 0.751 —0.37 0.52

6-months x depression 0.55 0.23 2.38 0.020* 0.098 1.01

2C Baseline x CpG4 (baseline) —-0.10 0.11 —0.88 0.379 —0.32 0.12
3-months x CpG4 (3-months) —0.28 0.15 —1.88 0.062 —0.58 0.14
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Table 6 continued

Model B Std error t p 95% ClI

Lower Upper

6-months x CpG4 (6-months) -0.19 0.15 —1.25 0.215 —0.48 0.1

Baseline x childhood trauma 1.12 0.52 2.14 0.035* 0.08 2.15

3-months x childhood trauma 1.46 0.76 1.93 0.056 —0.04 2.96

6-months X childhood trauma —0.53 0.76 —0.70 0.488 —2.03 0.97

Baseline x alcohol consumption —1.41 0.76 —1.85 0.067 —2.92 0.10

3-months x alcohol consumption —0.87 1.23 —0.71 0.478 —3.31 1.56

6-months X alcohol consumption —1.64 1.22 —1.34 0.183 —4.08 0.79

Baseline x depression 0.75 0.14 5.34 0.0000006* 0.47 1.02

3-months x depression 0.79 0.23 0.35 0.730 —0.37 0.53

6-months x depression 0.58 0.23 248 0.015* 0.12 1.04

Baseline X lifetime trauma 2.00 1.39 1.44 0.154 —-0.76 4.75

3-months x lifetime trauma 0.49 222 0.22 0.826 —3.93 491

6-months X lifetime trauma 2.12 2.25 0.95 0.345 —233 6.59

Baseline BRSK2 CpG5 methylation

3A Baseline x CpG5 (baseline) 0.10 0.09 1.07 0.285 —0.08 0.28
3-months x CpG5 (3-months) —-0.32 0.09 —3.40 0.001* —0.51 —0.14

6-months x CpG5 (6-months) —0.43 0.10 —4.42 0.00002* —0.62 —0.24

3B Baseline x CpG5 (baseline) —0.11 0.10 —-1.10 0.275 —0.30 0.09
3-months X CpG5 (3-months) —0.25 0.14 —1.81 0.073 —0.53 0.02

6-months x CpG5 (6-months) —-0.15 0.13 —-1.11 0.269 —0.42 0.12

Baseline x childhood trauma 143 0.49 291 0.004* 0.46 240

3-months x childhood trauma 1.46 0.67 217 0.032*% 0.13 2.78

6-months X childhood trauma —0.35 0.66 —0.54 0.593 —1.65 0.95

Baseline x alcohol consumption —-1.37 0.76 -1.79 0.076 —2.88 0.15

3-months x alcohol consumption —0.98 1.23 —0.80 0.429 —3.41 1.46

6-months X alcohol consumption —1.62 1.23 —1.32 0.190 —4.06 0.82

Baseline x depression 0.72 0.14 5.18 0.000001* 0.45 1.00

3-months X depression 0.05 0.22 0.21 0.834 —0.40 0.49

6-months x depression 0.52 0.23 2.26 0.027* 0.06 0.98

3C Baseline x CpG5 (baseline) —0.08 0.10 —0.81 0.417 —-0.27 0.11
3-months x CpG5 (3-months) —0.24 0.14 —1.68 0.095 —0.51 0.04

6-months X CpG5 (6-months) —0.12 0.14 —0.86 0.390 —0.39 0.15

Baseline x childhood trauma 1.19 0.52 2.28 0.024* 0.16 222

3-months x childhood trauma 1.41 0.74 1.91 0.058 —0.05 2.87

6-months X childhood trauma —0.62 0.73 —0.86 0.391 —2.06 0.81

Baseline x alcohol consumption —1.42 0.76 —1.87 0.065 —2.93 0.88

3-months X alcohol consumption —0.99 1.23 —0.81 0.423 —3.45 1.46

6-months x alcohol consumption —1.68 1.23 —-1.37 0.175 —4.12 0.76

Baseline x depression 0.75 0.14 537 0.0000005* 0.48 1.03

3-months X depression 0.06 0.23 0.26 0.800 —0.40 0.51

6-months X depression 0.55 0.23 2.36 0.020* 0.09 1.01

Baseline X lifetime trauma 2.03 1.38 1.47 0.145 —0.71 4.77

3-months x lifetime trauma 0.62 224 0.28 0.781 —3.82 5.06

6-months X lifetime trauma 2.23 2.26 0.98 0.328 —2.27 6.72

Baseline ADCYAP1 CpG1&2 methylation

4A Baseline x CpG5 (baseline) 4.67 0.92 5.10 0.000001* 2.86 6.49
3-months X CpG5 (3-months) —2.61 0.80 —3.26 0.001* —4.20 —1.02

6-months x CpG5 (6-months) —5.01 1.12 —4.48 0.00002* —7.23 —2.80

4B Baseline X CpG5 (baseline) —1.32 0.83 -1.16 0.113 —2.97 0.32
3-months x CpG5 (3-months) —1.46 0.92 -1.59 0.116 —3.29 0.37
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Table 6 continued
Model B
6-months x CpG5 (6-months) —0.44
Baseline x childhood trauma 1.77
3-months X childhood trauma 1.44
6-months X childhood trauma —0.19
Baseline x alcohol consumption —1.41
3-months X alcohol consumption -1.27
6-months x alcohol consumption —1.74
Baseline x depression 0.74
3-months X depression —0.03
6-months x depression 0.46
4C Baseline x CpG5 (baseline) -1.12
3-months x CpG5 (3-months) —1.54
6-months X CpG5 (6-months) —0.48
Baseline x childhood trauma 1.80
3-months X childhood trauma 137
6-months X childhood trauma —0.26
Baseline x alcohol consumption —1.38
3-months x alcohol consumption -1.29
6-months X alcohol consumption -1.76
Baseline x depression 0.74
3-months X depression —0.04
6-months X depression 0.45
Baseline x HIV status —4.28
3-months x HIV status 2.16
6-months x HIV status 1.86

Std error t p 95% Cl

Lower Upper
1.28 —0.34 0.734 —2.97 2.10
0.47 3.76 0.0003* 0.84 2.70
0.61 237 0.019* 0.24 2.63
0.60 —0.31 0.757 -1.37 1.00
0.77 —1.84 0.068 —2.93 0.11
1.24 —1.02 0.309 —3.73 1.19
1.22 —1.42 0.158 —4.17 0.69
0.14 5.35 0.0000006* 0.46 1.01
0.22 —0.16 0.876 —0.46 0.40
0.21 2.14 0.035* 0.03 0.88
0.83 —-1.35 0.182 —2.78 0.54
0.93 —1.66 0.100 —3.38 0.30
1.29 —0.37 0.712 —3.03 2.08
0.47 3.84 0.0002* 0.87 273
0.61 2.23 0.027* 0.16 2.58
0.61 —0.42 0.675 —1.46 0.95
0.76 —1.81 0.074 —2.90 0.17
1.25 —1.04 0.302 —3.77 1.18
1.23 —1.43 0.157 —4.21 0.69
0.14 5.40 0.0000005* 0.47 1.01
0.22 —0.20 0.844 —0.48 0.39
0.22 2.08 0.040* 0.02 0.88
3.53 —1.21 0.229 -11.30 2.74
5.78 0.37 0.709 -9.32 13.65
5.60 0.33 0.740 —9.27 12.99

Cl confidence interval, BRSK2 brain-specific serine/threonine-protein kinase 2, ADCYAP1 adenylate cyclase activating polypeptide 1.

associated with PTSD. The results from our study are in line with
recent results from the largest EWAS meta-analysis of PTSD
published to date [22], where AHRR cg05575921 and ¢g26703534
were found to exhibit reduced DNA methylation in individuals
with PTSD. Decreased AHRR methylation at these CpG sites was
also associated with decreased kynurenine and kynurenic acid in
the same study [22]. Kynurenine ligand binding to aryl hydro-
carbon receptors has been associated with the expression of anti-
inflammatory genes which may be disrupted by decreased
methylation of AHRR [22, 25]. This may result in increased levels
of proinflammatory cytokines and the low-grade inflammatory
state often observed in PTSD [97, 98]. Upregulation in kynurenine
to restore the imbalance between pro-inflammatory and anti-
inflammatory cytokines may also result in reduced levels of
serotonin since both kynurenine and serotonin are synthesized
from tryptophan [99]. A strong link between decreased AHRR
methylation and smoking has also been reported in previous
studies although some studies have reported a significant
relationship between AHRR methylation and PTSD independent
of the effect of smoking [22, 100-102].

Our findings should be interpreted in light of a number of
limitations. First, the EWAS was conducted in a small sample of
participants. However, the study was well designed to limit
variation between groups. Second, we used DNA extracted from
whole blood to measure methylation levels while differential
methylation in brain tissue is a more direct approximation of PTSD
pathophysiology. However, based on prior findings, we observed
that blood-brain methylation was highly correlated at the BRSK2
CpG sites investigated in this study, but not at the ADCYAPT CpG
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sites. Blood is easily accessible and blood biomarkers of PTSD risk
may be a more pragmatic approach for personalized treatment of
individuals at high risk of developing PTSD following trauma
exposure [103]. Third, we may have overcorrected for confound-
ing variables in the EWAS given that SVA was used along with the
inclusion of cell-type composition as a covariate in the final
models. Fourth, we did not investigate methylation quantitative
trait loci (meQTL) located in the BRSK2 and ADCYAP1 genes. SNPs
located in these genes may predict or mediate the methylation
profiles observed in relation to PTSD status and symptom scores.
Finally, DNA methylation in relation to gene expression and/or
protein levels was not objectively measured and conclusions
related to the functional effects of methylation are speculative.
The study has many strengths. First, all participants were rape-
exposed women from similar sociodemographic backgrounds
and from the same ethnicity group thus making the sample
relatively homogenous. Second, the analyses were robust with a
variety of confounding factors controlled for i.e., participants
who were pregnant/lactating were excluded, none of the
participants were on psychotropic medication and participants
were of similar age. Baseline measures of age, HIV status, BMI,
smoking, childhood trauma, lifetime trauma, alcohol use, and
depression were controlled for by matching participants on
these variables in the cross-sectional EWAS and including these
factors as covariates/confounders in the longitudinal analyses.
Third, we attempted to expand the findings of the EWAS by
including longitudinal data which allowed us to investigate
changes in methylation in relation to change in PTSD symptom
scores over time. Fourth, investigating the agreement between
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the results obtained from the two different laboratory methods
used (lllumina EPIC array and EpiTYPER) also allowed identifica-
tion of potential bias/variation introduced by the different
procedures involved in each method.

In summary, this study provides evidence that differential
methylation of genes related to neurogenesis/development,
glucose homeostasis, and HPA-axis regulation may be involved
in PTSD development following rape. Our findings are supported
by previous research implicating ADCYAP1/ADCYAP1R1 (especially
in women) and BRSK1/BRSK2 in the development of PTSD.
However, replication of these findings is required to determine
whether the differentially methylated regions identified in this
study are consistently linked to the development of PTSD.
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