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Neuroinflammation, particularly in the dorsolateral prefrontal cortex, is well-established in a subset of people with schizophrenia,
with significant increases in inflammatory markers including several cytokines. Yet the cause(s) of cortical inflammation in
schizophrenia remains unknown. Clues as to potential microenvironmental triggers and/or intracellular deficits in
immunoregulation may be gleaned from looking further upstream of effector immune molecules to transcription factors that
control inflammatory gene expression. Here, we focus on the ‘master immune regulator’ nuclear factor kappa B (NF-κB) and review
evidence in support of NF-κB dysregulation causing or contributing to neuroinflammation in patients. We discuss the utility of
‘immune biotyping’ as a tool to analyse immune-related transcripts and proteins in patient tissue, and the insights into cortical
NF-κB in schizophrenia revealed by immune biotyping compared to studies treating patients as a single, homogenous group.
Though the ubiquitous nature of NF-κB presents several hurdles for drug development, targeting this key immunoregulator with
novel or repurposed therapeutics in schizophrenia is a relatively underexplored area that could aid in reducing symptoms of
patients with active neuroinflammation.
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INTRODUCTION
Schizophrenia is a severe psychiatric illness that disrupts the
normal functioning of the mind and affects roughly 1% of the
population worldwide [1]. People with schizophrenia typically
suffer from positive symptoms including delusions, hallucinations
and disorganised speech, and negative symptoms such as
diminished emotional expression and/or lack of motivation
[2, 3]. In addition, there is a high prevalence of often profound
neurocognitive deficits among patients, most commonly in
working memory, attention, problem solving and processing
speed [4]. This combination of psychiatric and cognitive symp-
toms contributes to reduced scholastic and vocational achieve-
ments and worse quality of life [5, 6]. As such, the social and
economic costs of schizophrenia are substantial and are
disproportionate to the disease prevalence, due to the chronic,
severe and often treatment-resistant nature of schizophrenia
[2, 7, 8]. Better understanding of the aetiology of schizophrenia is
needed in order to develop novel treatments that improve clinical
and functional outcomes in patients.
One of the most significant insights into the pathophysiology of

schizophrenia over the last 10 years has been the identification of
inflammation in patients; however, this has not yet led to effective
new treatments. The limited success of clinical trials with anti-
inflammatories [9] may reflect previous failures to target the
correct inflammatory mechanism(s) with available medications.
One approach to identifying the correct target(s) at which to aim
novel therapies is to start with the known increase in cytokine

mRNA and to then examine factors upstream to determine how
these are changed. For example, to ask which, how and to what
extent molecular switches known to be responsible for turning on
these cytokines are changed. This approach may be more
informative given that cytokine synthesis is highly regulated at
the transcriptional level, and many specific transcription factors
controlling cytokine expression have been identified. Further,
control over the activity of these transcription factors can be
traced back to receptors capable of responding to the external
(extracellular) environment. Altered gene expression of one such
‘master’ immune transcription factor, nuclear factor kappa B (NF-
κB), co-occurs with increased cytokine mRNA levels in the brains
of people with schizophrenia in at least three studies [10–12].
Another reason that anti-inflammatory treatment may not show

a high degree of effectiveness or reproducibility is that not
everyone with schizophrenia is expected to be inflamed at
commencement of anti-inflammatory treatment. Indeed, it is
increasingly apparent that some patients are more likely to be in a
state of heightened inflammation and to respond to anti-
inflammatory treatment than others. Those with more severe
symptoms at baseline are more responsive to adjunctive aspirin
[9], and one study found that aspirin response in people with
schizophrenia differs based on pro- and anti-inflammatory
cytokine ratios at baseline [13]. Results from an earlier clinical
trial showed that patients who responded to the cyclo-oxygenase
2 inhibitor celecoxib had lower baseline levels of the anti-
inflammatory protein sTNFR1 in blood than non-responders [14].
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Since few studies into anti-inflammatory adjuvants in schizo-
phrenia have stratified individuals based on their immune status,
it may be the case that only a subset of ‘inflamed’ patients
respond favourably to anti-inflammatory drugs, and that this
accounts for the small overall effect sizes when people with
schizophrenia are considered as a single, homogenous patient
group [9, 15].
Before considering these two points, we will review the

evidence of inflammation as a potential causal or contributing
factor in schizophrenia from three approaches: (1) associations
between schizophrenia and immune genes, (2) increased inflam-
matory markers in postmortem brain tissue from people with
schizophrenia and (3) abnormal levels of immune molecules in the
blood of living patients. Immune activation assessed in living
patients has been linked to more severe positive, negative and
cognitive symptoms in patients [16–19], indicating a significant
role of inflammation in schizophrenia symptomatology. Heigh-
tened or chronic neuroinflammation is not a normal or healthy
occurrence, and while the pathogenesis of schizophrenia likely
involves several interacting contributors [such as psychosocial
stress and/or exposure to recreational drugs [20–23], alleviation of
inflammation in people with schizophrenia could bring about
therapeutic benefit regardless of its cause.

INFLAMMATION IS ASSOCIATED WITH SCHIZOPHRENIA
Genetic evidence of inflammation in schizophrenia
One of the most consistent signals from genome-wide association
studies of schizophrenia is significant association between the
disease and genetic variation in the major histocompatibility
region of chromosome 6 [24–28] which encodes molecules
involved in immunity and inflammation [29]. Most notably, a
strong association between schizophrenia and the complement
system gene C4 was found in a genome-wide association study of
more than 28,000 schizophrenia cases and 35,000 control cases
[30]. Genes in the major histocompatibility region often contain
NF-κB-binding sequences in their promoter regions, including
several that encode potent pro-inflammatory cytokines such as
interleukin (IL)-1, IL-6, IL-8 and tumour necrosis factor (TNF)
[31–37]. Genetic associations to schizophrenia mark broad
chromosomal regions which may contain many DNA changes
(SNPs) that combine to increase risk, and DNA changes linked to
schizophrenia are known occur in promoter regions that regulate
gene expression. Thus, this represents a transcriptional enhance-
ment mechanism by which NF-κB, activated by environmental
cues, could potentially interact with genomic regions that then
increase risk for developing schizophrenia. In support of this, some
studies have found significant links between variation in these
regions, most notably in the gene encoding interleukin (IL)-1, and
schizophrenia susceptibility [38–44]. However, other studies have
failed to find an association between IL-1 polymorphisms and
schizophrenia risk [45–49]. Lack of replication of SNPs associated
with schizophrenia are common, and there are likely multiple
genes that need to interact with particular environmental cues to
then trigger inflammation, such that no single gene will
sufficiently explain risk in all cohorts. This perspective highlights
the importance of studying brain gene expression of immunor-
egulatory pathways as a way of detecting which microenviron-
mental drivers of inflammation may precipitate schizophrenia
genetic risk.

Postmortem evidence of inflammation in schizophrenia
The study of human postmortem brain tissue allows for the direct
measurement of ‘immune’ molecules and markers in neural tissue,
and has revealed evidence of immune activation in the dorsolateral
prefrontal cortex (PFC), orbital frontal cortex and midbrain of a
substantial subset (~40–50%) of people with schizophrenia com-
pared to a significantly smaller proportion (~0–10%) of age-matched

non-schizophrenic controls [10, 11, 50–53]. These ‘high neuroin-
flammation’1 patients have been identified across independent
cohorts using two-step recursive clustering of mRNA levels of
several pro-inflammatory transcripts such as IL-1β, IL-6, IL-8 and
SERPINA3 [50–53]. Given that structural and functional abnorm-
alities in the dorsolateral PFC are hallmarks of schizophrenia
[54–60], it is possible that inflammation in this region drives
neuropathology—and potentially symptoms—in some patients.
Indeed, the high neuroinflammation patient subgroup has worse
psychotic symptoms [18], PFC-dependent cognition and neuro-
pathology than patients with ‘normal’ levels of these transcripts,
including reduced verbal fluency [19], increased astrogliosis [61],
larger reductions in inhibitory interneuron-related transcripts
[50, 62] and significant loss of prefrontal grey matter volume
[51]. Recent evidence also suggests that this high neuroinflamma-
tion schizophrenia subgroup may have altered blood–brain
barrier function that facilitates the trafficking of macrophages
from blood to brain, evidenced by increased endothelial expres-
sion of adhesion molecules that capture white blood cells [63, 64].
Further, Cai et al. [63] and Purves-Tyson et al. [64] found elevated
transcript levels of the macrophage marker CD163 mRNA in the
PFC and midbrain of high neuroinflammation patients, supporting
the contention that macrophages are recruited to the brain in
response to cortical and subcortical immune activation. Taken
together, these findings suggest that aberrant neuroinflammatory
processes play a critical role in causing neuropathology in
some patients.
The existence of inflammatory biotypes (subtypes) within

schizophrenia may explain why studies measuring immune-
related transcripts and/or proteins in the dorsolateral PFC of
patients sometimes produce discrepant results. Many studies
comparing dorsolateral PFC (and neighbouring PFC) tissue from
people with schizophrenia as a single homogenous cohort to
tissue from non-schizophrenic controls do find up-regulation of
pro-inflammatory cytokines and acute phase proteins (IL-6, IL-8,
TNFα, SERPINA3) and cytokine receptors (IL-1 receptor type 1
[IL1R1], TNF receptor 1 [TNFR1]), at the transcriptional level in
schizophrenia [10, 50, 65–67]. IL-6 and TNFα have also been shown
to be elevated at the protein level in this brain region in patients,
along with another TNF family cytokine, lymphotoxin α [65].
Examination of cytokines that serve to dampen the inflammatory
response has also revealed that the anti-inflammatory IL-10
transcript and protein are reduced in the dorsolateral PFC in
schizophrenia [65], suggestive of a diminished ability to attenuate
neuroinflammation in at least some patients. However, data from
several postmortem studies dispute the role of neuroinflammation
at both the molecular and cellular levels in schizophrenia [68–75].
Surprisingly, though, one such study reported significant enrich-
ment of myeloid leucocyte activation in the DLPFC of people with
schizophrenia relative to unaffected controls before concluding
that immune activation is not a characteristic of the schizophrenia
brain [68]. Notably, studies that fail to find positive associations
between inflammatory markers in human postmortem brain tissue
and schizophrenia did not investigate the possibility of hetero-
geneity in regards to immune subtypes. As such, immune
‘biotyping’ is an important research design tool that can be used
to uncover previously unrealised neuropathology.

Clinical evidence of inflammation in schizophrenia
Since immune-to-brain communication is bidirectional [76],
assessing inflammation in the blood is useful in determining the

1The terms ‘high neuroinflammation’ and ‘high inflammation’ used
hereafter are relative to low/normal expression of immune markers
and reflects subclinical inflammation in the absence of infection.
These terms do not necessarily imply levels of inflammation
comparable to acute infection or injury.
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extent of peripheral immune activation that may contribute to or
result from neuroinflammation in schizophrenia. In fact, evidence
for altered peripheral immune function predates evidence of
increased brain cytokines [77–81]. More recently, elevations in
inflammatory markers including pro-inflammatory cytokines, the
acute phase protein CRP, the immune regulator S100B and soluble
intracellular cell adhesion molecule have been found in the blood
of people with schizophrenia [18, 19, 63, 82–97]. However, some
studies have found unchanged [98–102] and even decreased
[102, 103] levels of these same inflammatory biomarkers in the
blood of patients compared to controls, which again may be due
to elevations only occurring in a subset of patients. Similar to brain
studies, studies of immune biomarkers in patient blood have
produced conflicting results, though many strongly support
peripheral inflammation in a subset of patients.

Acute vs. chronic inflammation in schizophrenia
As consensus grows that inflammation plays a role in the
pathophysiology of schizophrenia, important questions about
the nature of this inflammation have arisen: Is inflammation
consistent throughout a person with schizophrenia’s life or does it
wax and wane? Further, is inflammation only apparent after the
development of schizophrenia or can it be detected prior to the
onset of symptoms? In terms of neuroinflammation specifically, it
is difficult to assess fluctuations over the course of the illness. This
is largely due to the inaccessibility of brain tissue and secretions to
measure immune markers. As a result, neuroinflammatory status
in living patients can only really be inferred from brain imaging
studies or cerebrospinal fluid. Brain imaging studies often rely on
radioligand-binding to the translocator protein (TSPO) to detect
microgliosis and therefore neuroinflammation, and several studies
have found increased TSPO binding in high-risk individuals, first
episode psychosis and schizophrenia [104–106]. However, others
have failed to find this effect in schizophrenia patients [107, 108].
TSPO is not specific for microglia [109–111], and there is inter-
individual variability in TSPO binding in brain tissue for certain
radioligands [112], complicating the interpretation and use of
TSPO imaging. There have also been many reports of increased
cytokines, immunoglobulin and antibody abnormalities and
altered immune cell populations within the CSF of chronically ill
people with schizophrenia as well as individuals with first episode
psychosis [113–119]. These findings strongly suggest that
neuroinflammation may be detected throughout the course of
the illness. However, if schizophrenia was similar to other immune
disorders, then we would expect inflammation to fluctuate over
time. To the best of our knowledge, no study has directly
compared CSF levels of immune markers between acutely and
chronically ill patients over time.
Much insight into the course of (peripheral) inflammation in

schizophrenia and its relationship to symptoms has been gained
via assessment of immune factors in the blood of living patients.
Inflammatory markers appear to fluctuate in tandem with
symptom severity, peaking during times of acute psychosis and
relapse. Acutely-ill patients have higher levels of both pro-
inflammatory cytokines and CRP in their blood than those who
are relatively stable [18, 120]. Evidence that inflammation actually
precedes, rather than simply co-occurs with, the onset of psychosis
comes from studies of high-risk individuals, where those who do
go on to experience psychosis show elevations in blood
inflammatory markers relative to low-risk individuals prior to
transitioning [121, 122]. These findings also highlight the likelihood
that immune disturbances in schizophrenia are not solely
attributable to antipsychotic medications. In fact, several studies
have found that some types of antipsychotic drugs can alleviate—
but perhaps not fully normalise—inflammation in people with
schizophrenia (reviewed in [123]). Despite this, even medicated
patients who are chronically ill but clinically stable show evidence
of inflammation in their blood [18, 19, 86, 90, 91, 97], albeit to a

lesser degree than those experiencing acute psychosis. Overall, the
evidence is convincing that inflammation is persistent yet also
linked to symptom severity and clinical course in schizophrenia.
Whether neuroinflammation in patients is chronic or transient (i.e.
during acute psychosis), though, is less clear.

Biotypes: identifying patients with inflammation-associated
schizophrenia
Several researchers have attempted to stratify people with
schizophrenia based on their immune status in the blood using
either pro-inflammatory cytokine transcripts or CRP levels. When
white blood cell cytokine mRNAs are used, ~40% of patients are
deemed to have high peripheral inflammation [19, 90]. When CRP
alone is used, the proportion of patients exhibiting peripheral
inflammation varies from ~20–45% [16–18, 97, 124], and much of
this variability may be attributable to the use of different cut-off
values to define ‘high CRP’ as well as varying clinical status
between patient cohorts (stable vs. acutely psychotic).2 Both
methods of immune stratification have proven clinically informa-
tive: those defined as having high inflammation show more severe
positive and negative symptoms, greater cognitive deficits, and
more significant reductions in brain volume and cortical thickness
[16–19, 97]. People with schizophrenia defined as being in the
‘high cytokine’ group have worse verbal learning and lower
cortical grey matter volume in Broca’s area as compared to ‘low
cytokine’ patients [19]. People who have both schizophrenia and
high circulating CRP have more severe symptoms (psychiatric and
cognitive) and reduced PFC thickness compared to low CRP
patients [16–18, 97]. Therefore, peripheral inflammation in some
people with schizophrenia appears linked to brain pathology
(both structural and functional), and this relationship may be
overlooked if the existence of inflammatory biotypes within
schizophrenia is not considered.
In sum, examination of patient brain tissue and blood has

revealed that inflammation is prevalent both within and outside of
the brain in some people with schizophrenia, and that symptoms
and morphological changes to the PFC may be more severe in this
high inflammation subset of patients. Together, such findings
support the contention that heightened inflammation exists in a
significant number of people with schizophrenia and that the
initiating pro-inflammatory signal could be body-derived or brain-
derived. However, it has not yet been conclusively determined
which markers of inflammation produce the most information
about clinical course or severity, or which patient subgroups
would be more likely to respond to which anti-inflammatory
treatment. Thus, despite these recent advances in our molecular
and cellular understanding of inflammation in the pathophysiol-
ogy of schizophrenia, the expression of cytokines and acute phase
proteins tells us little about the cause of inflammation in patients.
Here, we consider that it may be more aetiologically informative
to analyse inflammatory regulators upstream of cytokine and
acute phase protein synthesis in patient subgroups, thereby
identifying specific aspects of immunoregulation instead of
inflammatory endpoints. In the next section, we will discuss
evidence suggesting that NF-κB, one of the most significant
immune regulators in the human body, is itself dysregulated in
schizophrenia.

NUCLEAR FACTOR KAPPA B: A HUB FOR IMMUNE
REGULATION
Since many different physiological events can cause increased
cytokines in brain (brain infection, neurodegenerative disease/

2Evidence from first episode psychosis and chronically ill patients
supports that peripheral inflammation fluctuates throughout the
course of the illness and is highest during acute psychosis [18, 121].
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tissue damage, ageing, neuronal stress), it is useful to determine
if there are convergent or divergent changes in the molecular
machinery controlling pro-inflammatory gene expression in the
brain in schizophrenia. Further, there has long been consensus
that schizophrenia has a strong genetic component and is a
highly heterogenous disease, with only ~40% of patients
showing evidence of neuroinflammation. Thus, we should
consider potential pivotal points at which immune dysregula-
tion and genetics may converge to ‘prime’ certain people for
the development of inflammation-associated schizophrenia.
Transcription factors are key molecules serving as genetic
switches that change the phenotype and function of
the cells in which they are expressed, including the control of
cytokine gene expression. NF-κB is a family of five transcription
factors that controls the expression of genes involved
in the initiation, maintenance and termination of immune
responses [125, 126] and is therefore considered a master
regulator of inflammation. The overall level of NF-κB activity is
regulated at the mRNA level [127–130], thus NF-κB is a
transcription factor that is itself controlled by transcriptional
cues within the cell.
Recently, dysregulation of the NF-κB pathway has been linked

to schizophrenia [11, 12, 131], making NF-κB an attractive
candidate for investigations into the cause of neuroimmune
dysregulation in schizophrenia. The first study to examine NF-κB
in the postmortem brains of people with schizophrenia without
apparent neuroinflammation found that the entire NF-κB system
was downregulated in patients in several brain regions, most
notably in the temporal cortex [132]. However, more recently,
overactivity of NF-κB in the dorsolateral PFC specifically has been
linked to schizophrenia [11, 131] and we found that prefrontal
cortical NF-κB dysregulation in a subset of patients appears to
drive neuroinflammation in this region in these individuals [12].
These later findings align with overexpression of immune
biomarkers that are under the control of NF-κB—such as IL-6,
IL-1β, IL-8 TNFα and SERPINA3—in the brain and blood of
patients [31–37, 50, 52, 53, 66, 133, 134]. Determining which
specific aspects of NF-κB induction and/or inhibition are
disrupted in people with inflammation-associated schizophrenia
at the mRNA level may help us to better understand the cause of
inflammation in these people. To appreciate the many ways in
which NF-κB signalling may be disrupted by altered transcription
of NF-κB-related mRNAs, it is necessary to first understand the
structure and regulation of NF-κB.

The structure of NF-κB dimers and their changed expression
in the schizophrenia cortex
NF-κB exists as homo- or hetero-dimers3 which are mostly
sequestered in the cytoplasm until activated by pro-
inflammatory stimuli. NF-κB dimers may be made up of any
combination of five transcription factors (subunits) including RelA,
RelB, cRel, NF-κB1 and NF-κB2, which readily dimerise in the
cytoplasm. For an NF-κB dimer to be transcriptionally active, it
must contain at least one of the Rel subunits, since these contain
transactivation domains that allow the dimer to initiate transcrip-
tion on upstream DNA regions of target genes [135]. In addition,
NF-κB1 and NF-κB2 are synthesised as precursors and must be
processed into mature subunits (p50 and p52, respectively) before
translocating to the nucleus (Fig. 1). However, even p50 and p52
are transcriptionally inactive (and may even repress transcription
of target genes) if bound to each other or themselves. Dimers
containing RelA and cRel, most commonly bound to processed
NF-κB1 (p50), are induced by the canonical pathway of NF-κB
activation, while the dimer formed by RelB and processed NF-κB2
(p52) is induced by the non-canonical pathway of NF-κB
activation. Though the DNA-binding affinities of dimers are largely
overlapping [136], canonical NF-κB activation is rapid and typically
transient, whereas activation of the non-canonical NF-κB pathway
is characteristically slower and more persistent [137]. While the
non-canonical NF-κB pathway is mainly involved in B-cell
development and lymphoid organogenesis as opposed to acute
immune responses orchestrated by the canonical pathway in
immune cells [138], distinct functions of the two pathways are not
well understood in the brain. However, the most abundant NF-κB
dimers in mature glia contain RelA, suggesting the prime
importance of NF-κB activation through the canonical pathway
in microglia and astrocytes [139]. Though it has long been
believed that neurons exhibit high basal levels of NF-κB reflective

Fig. 1 NF-κB dimers. NF-κB dimers may be made up of any two NF-κB subunits, however, unprocessed NF-κB1 and NF-κB2 retain Rel subunits
in the cytoplasm.

3Though NF-κB encompasses five separate transcription factors, the
term ‘NF-κB’ is also commonly used to refer to the dimer complex
comprised of two transcription factors. Thus, these transcription
factors are also often referred to as NF-κB subunits. In this review, the
term NF-κB will be used to describe the collective family of
transcription factors, and separate transcription factors will be referred
to as NF-κB subunits. The term ‘NF-κB activation’ will be used to
describe the induction of pathways resulting in NF-κB dimer-DNA
binding in the nucleus.
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of a role for NF-κB in memory formation [140–145], more recent
evidence points to very low NF-κB activity in cortical neurons both
basally and after stimulation, but very high inducibility of NF-κB in
cortical glia in inflammatory contexts [146, 147]. Thus, it appears
that while neurons also possess the NF-κB ‘machinery’ to
participate in neuroinflammation, they do so to a much lesser
degree than glia.
NF-κB dimers binding to κB-binding sites on DNA promoters is

the final step of NF-κB activation, and higher levels of subunit
mRNA could logically lead to a higher rate of NF-κB dimer
formation in the cytoplasm and hence a higher rate of pro-
inflammatory gene expression. When considered as one homo-
genous group, people with schizophrenia have ~20–30% higher
levels of RelA, cRel and NF-κB1 transcript and >80% higher levels
of NF-κB2 transcript in the dorsolateral PFC compared to non-
schizophrenic controls, while levels of RelB mRNA do not differ
between the two groups [11]. However, we found that cRel was
unchanged in people with schizophrenia, inflamed or not,
despite being upregulated in high inflammation controls relative
to low inflammation controls [12] (for comparison between the
findings of Volk et al. and Murphy et al. refer to Fig. 2). Further,
increases in RelA and NF-κB1 mRNAs may not occur in all
patients but uniquely in the high inflammation patient subgroup
[12]. In fact, it appears that RelA and NF-κB1 mRNAs are also
upregulated in non-schizophrenic controls with increased
inflammation and surprisingly, to an even greater degree than
in high inflammation patients. By contrast, NF-κB2 mRNA is
increased in people with inflammation to the same degree
regardless of diagnosis (control or schizophrenia). This perhaps
explains the greater magnitude of increase in NF-κB2 mRNA
found when all people with schizophrenia are grouped together
[11] as compared to RelA and NF-κB1 mRNA increases that
would be less, on average, considering that non-inflamed
people with schizophrenia make about 60% of the cases [50–
52]. Taken together, these findings suggest that NF-κB activation
(at least through the canonical pathway that activates the RelA/
NF-κB1 heterodimer) may actually be blunted in people with
schizophrenia compared to people without schizophrenia who
have brain inflammation. Thus, this presents the intriguing
possibility that there could actually be an inadequate neuroim-
mune response to physiological stress or tissue damage in
people with schizophrenia. This is particularly interesting given
the findings of Roussos et al. [132] that people with schizo-
phrenia who do not appear to be in a state of neuroinflamma-
tion (the authors reported no change in several cytokine

transcripts) show decreased expression of NF-κB pathway genes
in the brain, particularly those molecules involved in the
translocation of RelA. Lower basal NF-κB activity and/or a deficit
in NF-κB activation may limit the capacity for inflammation to be
resolved and explain the increases in pro-inflammatory cyto-
kines observed by us and others. Therefore, it is possible that
chronic low-grade inflammation in the dorsolateral PFC of
people with schizophrenia continues unchecked due to inade-
quate NF-κB activation to meet a ‘threshold’ that triggers anti-
inflammatory responses [148].
Contrary to the findings of Volk et al. we found that that RelB

was downregulated in patients compared to controls overall [12].
RelB has been described as an ‘outlier’ in the NF-κB subunit family
due to its several apparent anti-inflammatory roles (in addition to
its dimer-forming, pro-inflammatory role) both in the nucleus and
the cytoplasm [125], meaning less cortical RelB expression in
people with schizophrenia could represent an additional failure to
negatively regulate NF-κB. Overall, it appears that cortical
inflammation in people with schizophrenia could be associated
with a weaker-than-normal expression of the NF-κB subunits, such
that levels may be sufficient to propagate, but not to ultimately
shut off, the inflammatory response in brain.
Translocation of NF-κB dimers into the nucleus depends entirely

on the status of upstream signals, since they cannot move from
the cytoplasm without degradation of their bound inhibitors.
Breakdown of NF-κB inhibitors is triggered by upstream signalling
cascades. As such, without changes in NF-κB pathway regulators
to facilitate dimer translocation, a higher number of NF-κB dimers
in the cytoplasm may not necessarily mean higher NF-κB-
mediated gene transcription. By working backwards from
NF-κB in the pathway, we can examine which (if any) of the
major NF-κB-activating cell-surface receptors and/or intracellular
regulators may be changed in schizophrenia to add further
support cytoplasmic release of NF-κB. This may provide clues as to
which aspect(s) of the pathways are ultimately responsible for the
drives NF-κB-related transcriptional increases in pro-inflammatory
cytokines reported in schizophrenia.

The central mechanism of NF-κB inhibition may be inadequate
in the PFC in schizophrenia
In the absence of pro-inflammatory stimuli, canonical NF-κB
dimers are bound to inhibitor of κB (IκB), masking their nuclear
localisation sequence and retaining them in the cytoplasm
[149, 150]. IκB protein can enter the nucleus and actively remove
NF-κB dimers from DNA [151, 152]. Thus, IκB alpha (IκBα), IκB beta

Fig. 2 Expression of NF-κB transcripts in the DLPFC of controls vs. schizophrenia. Two studies have measured NF-κB pathway transcripts in
the DLPFC of people with schizophrenia compared to unaffected, age-matched controls. A Volk et al. [11] report up-regulations at multiple
levels of the pathway in schizophrenia while Murphy et al. [12] replicated only one of these findings (TNFR1) and found several down-
regulations of the same NF-κB pathway transcripts in schizophrenia. B When high inflammation controls (individuals with elevated levels of
pro-inflammatory mRNAs) were omitted from analyses in Murphy et al. [12], many (13 of 18) of the diagnostic comparisons in NF-κB pathway
transcripts were consistent with those reported by Volk et al. [11]. Red boxes indicate shared findings between both studies.
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(IκBβ) and IκB epsilon (IκBε) are the major negative regulators of
the canonical pathway. Further, genes encoding IκBs are targets of
NF-κB itself and are upregulated by NF-κB activation and
resynthesised post-stimulation to provide negative feedback
[153, 154]. The transcription rate of IκBα in particular is considered
a critical parameter that modulates NF-κB dynamics post-
stimulation [155]. As such, elevated expression of IκBα is
considered to be a proxy for increased NF-κB activity, and it has
been reported that IκBαmRNA is increased in the dorsolateral PFC
of people with schizophrenia relative to controls [11]. Unsurpris-
ingly, though, IκBα is actually only upregulated in the subset of
patients who also have elevated brain cytokines, similar to the
situation for RelA and NF-κB1 mRNAs [12]. Further, stratifying
cohorts based on neuroinflammatory status also revealed that
IκBα mRNA levels are lower in high inflammation patients than in
high inflammation controls [12], again pointing to lower-than-
expected expression and/or induction of NF-κB regulatory
transcripts. This putative deficit in NF-κB signalling could mean
failure to attenuate inflammation in people with schizophrenia,
thus compounding existing neuropathology.

Further evidence of ‘blunted’ NF-κB activation in
schizophrenia: altered expression of the regulatory transcript
IKKβ
Once canonical NF-κB-inducing receptors become activated at the
cell surface, IκBs are targeted for degradation by the intracellular

kinase inhibitor-of-NF-κB kinase subunit β (IKKβ). IKKβ phosphor-
ylates IκBs leading to their degradation, and this process liberates
NF-κB for nuclear translocation (Fig. 3). Increased IKKβmRNA in the
dorsolateral PFC has been reported in schizophrenia relative to
controls [11], but may be more related to inflammation than to
diagnosis and not unique to ‘inflamed’ patients but also occur in
‘inflamed’ controls [12]. However, similar to RelA and NF-κB1
mRNAs, levels of IKKβ transcript are significantly lower in high
inflammation patients than in high inflammation controls [12].
Given that IKKβ is a chief positive regulator of canonical NF-κB,
these findings provide further support for the theory that NF-κB
activation may be blunted in people with schizophrenia compared
to what a ‘normal’ response to increased brain cytokines would be.

Expected levels of the non-canonical NF-κB regulatory
transcript NIK in the PFC in schizophrenia
Similar to canonical dimers sequestered by IκB, the NF-κB2-RelB
dimer of the non-canonical NF-κB pathway is also retained in the
cytoplasm in the absence of pro-inflammatory stimuli (Fig. 4).
Following activation of cell-surface non-canonical NF-κB-inducing
receptors, NF-κB2 is partially processed by the proteasome into its
mature subunit. This process is mediated by the actions of NF-κB-
inducing kinase (NIK) and IKKα, which generate the active non-
canonical p52-RelB dimer that then translocates to the nucleus and
initiates target gene transcription. As such, NIK is the central
regulatory kinase of the non-canonical pathway. NIK activity is
mainly controlled post-translationally [156] but also appears to be
regulated at the transcriptional level [157] and is upregulated in
response to non-canonical NF-κB activation [158, 159]. Interest-
ingly, unlike the regulatory kinase of the canonical pathway (IKKβ),
NIK mRNA is elevated in high inflammation schizophrenia to the
same degree as in those with inflammation who do not have
schizophrenia [12]. That is to say, NIK up-regulation in the
dorsolateral PFC appears to reflect a heightened neuroinflamma-
tory state in general and is not specific to schizophrenia, contrary
to previous interpretations of disease-specific increases when
controls are viewed as one group (~90% of whom are likely non-
inflamed [11, 50, 52].

Focus on cell-surface receptors in schizophrenia: are changes
in NF-κB-activating receptor mRNAs disease-specific?
Prior to kinases IKKβ and NIK liberating NF-κB dimers from their
inhibitors, the first step of NF-κB induction is activation of cell-
surface immunoreceptors. Several NF-κB -inducing receptor mRNAs
are upregulated in the dorsolateral PFC in schizophrenia when
examined by diagnosis [11], but stratification by inflammatory
biotype indicates the majority of these changes are inflammation-
specific and not disease-specific [12]. Therefore, changes in these
cell-surface receptors tell us little about the specific pathways
upstream of cytokine induction in schizophrenia, but instead
suggest that it may be part of a more generalised brain reaction.
The exception is the microglial-associated transcript TLR4, which is
unchanged in high inflammation schizophrenia despite robust
(approximately twofold) increases in high inflammation controls
[12]. TLR4 mRNA is enriched in and highly functionally-relevant to
microglia [160–163], as opposed to other canonical NF-κ-activating
receptors such as IL1R1, the expression of which is unique to
endothelial cells, astrocytes and some neurons but is not expressed
by microglia at all under physiological conditions in mice [164].
Non-microglial cells have a limited TLR repertoire and TLR4 in
particular appears largely unimportant for cells such as astrocytes,
at least relative to its critical importance for the activation and
effector functions of microglia [165]. The NF-κB subunits NF-κB1
and cRel also appear to be enriched in microglia [166] and as
mentioned above, both of these transcripts were, like TLR4, lower in
the cortex of high inflammation patients than high inflammation
controls [12], further supporting a ‘blunting’ of canonical NF-κB
activation in microglia in ‘inflamed’ patients. In light of conflicting

Fig. 3 Regulation of canonical NF-κB activation. Cell-surface
immunoreceptors activate IKKβ, which tags IκB for proteasomal
degradation thereby freeing the p50-RelA/cRel dimer. Activation of
canonical NF-κB receptors also enhances the partial processing of
NF-κB1 into p50. As a result of NF-κB1 processing or IκBα
degradation, the p50-RelA/cRel dimer moves into the nucleus
where it initiates pro-inflammatory gene transcription. As such, IKKβ
and IκB are considered the central regulators of the canonical
pathway. Red dotted arrows indicate negative feedback via IκB
transcription, green dotted arrows indicate positive feedback via
receptor and IKKβ transcription.
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reports regarding increased [11] and comparatively decreased [12]
cortical TLR4 transcript levels in some patients, we posit that: (1)
changes in TLR4 expression and microglial activation states in
schizophrenia may be dynamic, and (2) neglecting to consider the
neuroinflammatory status of individuals at their time of death when
analysing immune-related transcripts in the brain may obscure the
differences occurring in only a subset of patients.
Given that TLR4 is a potent activator of NF-κB and pro-

inflammatory microglia [167], its putative suppression in the
cortex in schizophrenia suggests that the increase in cytokines
may not be microglia-derived and bolsters the theory of possible
microglial suppression in a subset of patients. A putative lack of
TLR4 expression by microglia also aligns with the above-
mentioned blunting of transcriptional NF-κB1 in high inflamma-
tion patients since the abundance of NF-κB1 may coordinate the
pro- to anti-inflammatory shift in microglia [168]. Together, these
findings point to a lack of what may be physiologically
appropriate pro-inflammatory microglia in patients with high
levels of pro-inflammatory cytokines in the cortex.4

In contrast to TLR4, mRNA levels for one cytokine receptor that
strongly induces the pro-inflammatory phenotype in astrocytes,
IL1R1, are robustly increased in both high inflammation schizo-
phrenia and high inflammation controls (see Fig. 5 for a summary
of NF-κB pathway changes in high inflammation patients relative
to high inflammation controls). Reactive astrocytes have been
implicated in the inflamed patient subgroup previously [61],
and are the major source of the inflammatory marker SERPINA3
that reliably identifies neuroinflammation across cohorts
[50, 52, 66, 134, 170]. Together, these findings may indicate that
normal microglial immune function via NF-κB is impaired in
schizophrenia, and chronic NF-κB activation in non-microglial cells
including astrocytes contribute to sustained, unimpeded cortical
inflammation in some people with schizophrenia. It has even
recently been proposed that reactive astrocytes release factors
that keep microglia in a non-inflammatory state [171]; meaning
inflammatory astrocytes and non-inflammatory microglia may
mutually contribute to neuroinflammation in schizophrenia via
their effects on each other. This is supported by studies finding
evidence of reactive astrogliosis [53, 61, 131, 170, 172–175]
and what appears to be paradoxical microglial suppression
[63, 131, 176–179] in the PFC in at least some patients. However,
it is important to note that some studies have failed to find
evidence of astrogliosis [72–74, 180] while others have reported
increased microgliosis in the PFC of people with schizophrenia
[180, 181]. These conflicting results again highlight the neuro-
pathological heterogeneity within the disease and the need for
immune stratification to examine biologically distinct patient
subgroups, but may also result from the use of different markers
to identify glial pathology between studies. Future studies must
consider the relative contributions of microglia, astrocytes and
potentially even peripherally-derived immune cells to cortical
inflammation in schizophrenia and to consider that these states
are likely dynamic and not static.

CONCLUSIONS, FUTURE DIRECTIONS AND IMPLICATIONS FOR
TREATMENT
The findings discussed above suggest that impairment in NF-κB
regulation in the brain may be pathogenic in some people with
schizophrenia. While most research has focused on endpoint
markers of inflammation such as cytokines and acute phase
proteins, identifying upstream mechanisms that regulate cytokine
synthesis may provide greater insight and efficacy for novel
therapeutics. The papers discussed in this review support the
contention that a fault in microglial responses to immune stress in
the dorsolateral PFC may contribute to prolonged pro-
inflammatory responses from other cells such as astrocytes in
patients [182]. General up-regulation of several NF-κB pathway
transcripts in the PFC in patients with neuroinflammation may
therefore reflect NF-κB activation in astrocytes and other non-
microglial cells as opposed to microglia.
One important consideration here is that that weak NF-κB

induction is not likely to represent a failure of the immune
response in all contexts. In fact, the degree of NF-κB activation
would logically be proportional to the magnitude of the
inflammatory insult, thus less activation could just mean less
stimulation. However, the putative NF-κB ‘blunting’ in high
inflammation schizophrenia relative to high inflammation controls
is curious and somewhat contradictory since high inflammation
controls and high inflammation patients have the same degree of
elevated inflammatory signalling in the cortex [50, 52], yet do not
have the same levels of NF-κB transcripts that induce, and are
induced by, these pro-inflammatory signals. This is why it is
plausible that NF-κB is ‘normally’ activated in some cells such as
astrocytes yet inappropriately underactive in other cells such as
microglia in people with schizophrenia, while NF-κB is ‘normally’
activated in both cell types in high inflammation controls.

Fig. 4 Regulators of non-canonical NF-κB activation. Cell-surface
immunoreceptors activate NIK, which recruits IKKα to phosphorylate
NF-κB2. NF-κB2 is then partially degraded by the proteasome into
p52. As a result of NF-κB2 processing into p52, the p52-ReB dimer
moves into the nucleus where it initiates pro-inflammatory gene
transcription. As such, NIK is considered the central regulator of the
non-canonical pathway. Red dotted arrow indicates negative feed-
back via NIK transcription, green dotted arrows indicate positive
feedback via receptor and NIK transcription.

4It is also important to note that some evidence supports an
additional, non-immune role for microglial NF-κB in neuronal
homoeostasis and hippocampal-dependent learning [169].
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If overactivity of astrocytic NF-κB and underactivity of
microglial NF-κB contribute to schizophrenia pathology, this
presents a challenging hurdle for the development or repurpos-
ing of therapeutics to target NF-kB dysregulation in the brain.
Blocking NF-κB in all cell types may worsen the problem by
further suppressing microglia, but could also shut-off inflamma-
tory signalling from astrocytes, thereby alleviating neuroinflam-
mation and associated symptoms. This might be achieved by
boosting levels of the chief NF-κB inhibitor, IκB, by blocking the
action of IKKβ in the PFC. Indeed, several such compounds have
been identified and show pre-clinical efficacy in the treatment of
other inflammatory conditions including arthritis, chronic
obstructive pulmonary disease and acute organ injury [183].
However, further dampening NF-κB activity in microglia may also
have deleterious non-immune effects given its purported roles in
brain homoeostasis and neuronal support [139, 184], which has
also been reported in oligodendrocytes [185]. Thus, selective
inhibition of NF-κB in astrocytes might be the most viable option
for treating neuroinflammation in the brain in people with
schizophrenia, and has proven neuroprotective in many mouse
models of neuroinflammation. Inhibition of NF-κB in murine
astrocytes post-CNS injury lessens pro-inflammatory cytokine
production and neurodegeneration [186, 187], improves func-
tional recovery [186], and substantially limits the extent of
leucocyte infiltration to the damaged region [188]. Similarly in
experimental autoimmune encephalitis, NF-κB signalling speci-
fically in astrocytes contributes to a large degree of tissue
damage and the influx of inflammatory immune cells into the
CNS [189], a pertinent consideration given recent reports of
increased numbers of leucocytes in the brains of some patients
[63, 64, 190]. NF-κB activation in astrocytes has even been linked
to memory impairment in a mouse model of dementia [191],
underscoring the potential for astrocytic NF-κB to interfere with
normal cognition. Peripherally, constitutive activity of NF-κB in
myeloid cells has also been shown to drive pathogenicity of
monocytes and macrophages during autoimmune-type neuroin-
flammation in mice [192]. Activation of NF-κB in macrophages
specifically is thought to cause disruption of the blood–brain
barrier, subsequent immune cell infiltration to the brain and
resultant cognitive impairment and sickness behaviour which
can be attenuated with peripheral NF-κB inhibition [193–195].

Given the several reports of increased pro-inflammatory,
macrophage-derived cytokines in patient blood [19, 82–84, 90],
increased TLR4 mRNA in patient white blood cells [196, 197] and
exaggerated inflammatory responses to LPS (which activates NF-
κB in macrophages via TLR4) in patient white blood cells [198],
NF-κB in circulating monocytes may be an additional therapeutic
target in schizophrenia. Several over-the-counter and prescrip-
tion anti-inflammatory medications such as aspirin, minocycline
and celecoxib are known to inhibit NF-κB in white blood cells
(including macrophages) in vitro [199–201] and some early
studies investigating the utility of these drugs in schizophrenia
have produced promising results across various symptom
domains [13, 202–204]. However, assessing the therapeutic
benefit of anti-inflammatory drugs in schizophrenia based on
patients’ immune status at commencement of treatment is yet to
become a mainstream practice, which may lead to under-
estimation of treatment efficacy in ‘inflamed’ individuals, as
mentioned above. Overall, future treatments targeting NF-κB in
the PFC of people with schizophrenia must consider its cell-
specific roles, and the possibility that targeting astrocytic NF-κB
in the brain may be least likely to cause off-target, undesired
effects on cells where NF-κB serves homoeostatic or even cell
protective functions.
At present, the relative contributions of microglia, astrocytes,

and even peripherally-derived immune cells to neuroinflammation
in people with schizophrenia remains speculative since pro-
inflammatory cytokine transcripts in the dorsolateral PFC have
not been localised to specific cells (though general assessment of
microgliosis and astrogliosis in postmortem patient brain tissue has
been reviewed comprehensively elsewhere [205–208]). Further, the
more detailed phenotypes of microglia in schizophrenia have not
been determined and are likely dynamic, as exemplified by
conflicting findings regarding TLR4 expression in the PFC in
patients. Answering these remaining questions is crucial to the
development of anti-inflammatory drugs to treat neuroinflamma-
tion in a subset of patients with schizophrenia, since it is clear that
the normal healthy brain relies on NF-κB activation in the right
cells, at the right time and to the right extent. Further thought and
research will be required to develop an optimal therapeutic
strategy to bring NF-κB activation signalling back into cellular and
temporal homoeostasis in human brain.

Fig. 5 Expression of NF-κB transcripts in the postmortem DLPFC of schizophrenia patients with neuroinflammation relative to non-
schizophrenic controls with neuroinflammation. A Not all patients show evidence of neuroinflammation (red= proportion of ‘inflamed’
patients, grey= non-inflamed patients), and some individuals without schizophrenia do show evidence of neuroinflammation
(blue= ‘inflamed’ controls, grey= non-inflamed controls). Comparing cortical mRNA levels of NF-κB pathway members between high
inflammation patients and high inflammation controls allows for identification of schizophrenia-specific abnormalities in this critical
immunomodulatory pathway. B Such comparisons have shown that high neuroinflammation patients may actually have ‘blunted’ NF-κB
activation, which may represent cell-specific deficits and/or a failure to adequately induce NF-κB to the level required to initiate NF-κB-
dependent anti-inflammatory processes in the brain.
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