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Socially engaging robots have been increasingly applied to alleviate depressive symptoms and to improve the quality of social life
among different populations. Seeing that depression negatively influences social reward processing in everyday interaction, we
investigate this influence during simulated interactions with humans or robots. In this study, 35 participants with mild depression
and 35 controls (all from nonclinical populations) finished the social incentive delay task with event-related potential recording, in
which they received performance feedback from other persons or from a robot. Compared to the controls, the mild depressive
symptom (MDS) group represented abnormalities of social reward processing in the human feedback condition: first, the MDS
group showed a lower hit rate and a smaller contingent-negative variation (correlated with each other) during reward anticipation;
second, depression level modulated both the early phase (indexed by the feedback-related negativity (FRN)) and the late phase
(indexed by the P3) of reward consumption. In contrast, the effect of depression was evident only on FRN amplitude in the robot
feedback condition. We suggest that compared to human–human interaction, the rewarding properties of human–robot
interaction are less likely to be affected by depression. These findings have implications for the utilization of robot-assisted
intervention in clinical practice.
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INTRODUCTION
Social interaction is essential to people’s livelihood, career
development, mental health, and psychological well-being. In
human beings, one of the major motivators for social interaction is
to pursue social rewards [1, 2]. Here, “social reward” refers to social
information that has rewarding properties, including social
approval, social belonging, and social support [3]. Depression is
closely associated with the abnormal processing of social rewards
at both behavioral and neural levels [4]. Severe expression of
depression symptoms and syndromes has been linked to blunted
response to social rewards (i.e., social anhedonia) [5–7]. Depres-
sion severity negatively correlates with the activation level of the
human reward system, including dopaminergic neural circuits
[8–11]. Consequently, these problems in social reward processing
inhibit depressed individuals’ motivation to engage in social
interaction [12], which could help understand the impairments of
social functioning in depression [13].
Nowadays, human-like robots have been prevailing in daily life,

many of which are specifically designed to establish social
relations with humans (i.e., artificially intelligent social machines)
[14]. These socially engaging artificial agents have been increas-
ingly employed for psychosocial intervention on depression [15].
Using social robots for clinical practice has important implications,
seeing that some populations (e.g., older adults and disabled
persons) need to maintain a certain degree of social interaction
and engagement, but medical resources for providing social

support are often limited [16]. Some recent studies have shown
that interacting with social robots has promising effects on
geriatric depression and counteracting feelings of loneliness
[17–21]. Considering these new developments, a question that
emerges is whether social reward dysfunctions in depression
could influence not only human–human interaction but also
human–robot interaction, which is the main interest of this study.
Investigating this topic would help determine: (1) the value of a
robot-assisted intervention as a means of nonpharmacological
treatment, and (2) the nature of social interaction from a
theoretical point of view [14].
Interacting with an artificial entity is like interacting with fellow

humans in many aspects. First, people are willing to follow their
usual habits when communicating with human-like agents, using
social skills, such as gestures and facial signals [22–24]. Second,
people are prone to apply the same social rules and expectations
to automations as they do to humans, indicating that social
psychological knowledge derived from human–human interaction
also guides human–machine interaction [25–28]. For example,
people can “recognize” personality cues from computer-
synthesized speech [29]. Likewise, De Kleijn et al. found that
participants in the classic Ultimatum Game allocate an equal
amount of resources to human and robot opponents [30–33].
Human faces and humanoid faces are equally likely to trigger an
automatic orientation of attention [34], and they both activate
face-responsive brain regions including the fusiform gyrus and
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superior temporal sulcus as well as the mirror neuron system [35].
These phenomena could be regarded as manifestations of
anthropomorphism, that is, the tendency to attribute human
characteristics to non-human entities—especially those having
human-like appearances [36, 37]. Therefore, it is understandable
that communications with artificial agents could be perceived to
have social rewarding properties [38, 39]. For instance, “friendly”
computer feedback is evaluated as more favorable than
“unfriendly” feedback by individuals [25]. Also, happy compared
to neutral expressions of both human and robot faces shortened
individual reaction time (RT) and enhanced the P1 component of
event-related potentials (ERPs) [40–42]. People may even develop
a long-term “parasocial” relationship with their companion robots
(e.g., at health service facilities) [43–46].
To our knowledge, no study to date has directly addressed

whether depression would impair the social rewarding nature of
human–robot interaction. However, this possibility is indicated by
the research focusing on other types of mental disorders: for
instance, Raffard et al. discovered that negative symptoms of
schizophrenia negatively affect the accuracy of facial expression
discrimination in both human and robotic conditions [38, 47]. In
this study, we used the classic social incentive delay (SID) task
designed by Spreckelmeyer et al. to investigate social reward
processing [48, 49]. In each trial of the SID task, participants
observe an incentive cue indicating the amount of potential
reward, then respond to a target stimulus as quickly as possible,
and finally receive social feedback (e.g., a smiling face or a
“thumbs-up” gesture) as rewards according to their performance.
Here, a major advantage of the SID task is that it enables to
discriminate between the anticipation stage (corresponding to
cue presentation) and the consumption stage (corresponding
to feedback presentation) of social reward processing [50, 51].
Using this paradigm, recent studies have revealed that depressive
symptoms are associated with deficits in both stages [52–55].
In order to observe not only behavioral but also neural

manifestations of reward processing abnormalities, this study
relies on the ERPs that are suitable to reflect the dynamics of brain
activity over the time course of reward processing [56–59].
Combining the SID task with the ERP technique has been proven
to be successful [60–62]. According to our research interest, we
focus on three ERP components, including the contingent-
negative variation (CNV) associated with cue presentation, and
the feedback-related negativity (FRN) and P3 associated with
feedback presentation. The CNV is a frontocentral distributed
negativity that is elicited by a preceding signal, indicating
preparation processes for an upcoming event [63, 64]. In the SID
context, the CNV elicited by cue presentation indicates the
anticipation of the reward-related target [61]. The FRN is another

frontocentral distributed negativity in response to feedback
stimulus, being larger for unfavorable than favorable feedback
[65–67]. It is possible that the FRN indicates a quick, coarse, and
bottom-up detection of feedback value [68–70]. Following the
FRN, the P3 is also an important feedback-locked component that
is positive-going and centro-parietal distributed [71, 72]. This
component is suggested to reflect a more deliberate, compre-
hensive, top-down evaluation of feedback information [73–75].
According to previous studies, the amplitudes of these ERP
components are all sensitive to individual depression level
[10, 11, 76, 77]. Most relevantly, one of our recent studies using
the SID task has found that the mild depressive participants
showed a lower hit rate and a smaller CNV compared to the
controls [53]. Taking a step further, this study examines whether
these indexes would be sensitive to the depression level when
individuals are interacting with a robot. Seeing that limited ERP
studies have directly compared human–human and human–robot
interactions, we did not formulate a priori hypotheses.

MATERIALS AND METHODS
Participants
Before the experiment, we conducted a priori power analysis using
G*Power 3.1.7 [78, 79]. According to the effect size (η2p ≥ 0.051 for
interaction effects) reported in one of our recent studies using a similar
experimental design [53], the statistical power would be higher than 95%
when there are 35 participants per group. A total of 70 adult participants
were recruited from a large sample pool (approximately 500) in Shenzhen
University. Participants completed the Beck Depression Inventory Second
Edition (BDI-II) [80] during the recruitment stage. Based on BDI-II scores,
two groups of individuals were invited, namely, a mild depressive
symptom (MDS) group and a control group. The MDS group consisted of
participants who scored larger than 13 (indicating mild depression), while
the control group scored <13. The key exclusion criterion was any lifetime
Axis I disorders according to Structured Clinical Interview for DSM-IV-TR
Axis I Disorders, Research Version, Non-Patient Edition (SCID-I/NP) [81].
Other exclusion criteria included: (1) seizure disorder; (2) a history of head
injury with possible neurological sequelae; (3) self-reported prior use of any
psychoactive drugs; and (4) current alcohol or drug dependence. Among
the students who met the above criteria, 70 individuals (35 with mild
depression and 35 controls) were invited to participate in the experiment.
According to their self-reports, all participants were medical-free at the
time of the experiment.
On the day of the experiment, each participant was required to

complete several questionnaires as soon as they come to the lab: (1) BDI-II;
(2) the Trait form of Spielberger’s State-Trait Anxiety Inventory (STAI-T) [82];
(3) the Revised Social Anhedonia Scale (RSAS) [83]; (4) the Liebowitz’s
Social Anxiety Scale (LSAS) [84]; (5) Rosenberg Self-esteem Scale (RSS) [85];
and (6) the “hedonic attitudes” subscale of Robot Acceptance Scale (RAS)
[86], which measures how much a participant likes robots. As shown in
Table 1, no significant difference was found between these two groups

Table 1. Demographic characteristics of the participants (mean and standard deviation).

Items Control group (n= 35) Mild depressive symptom (MDS) group (n= 35) Control vs. MDS

Gender (male/female) 17/18 17/18

Age (years) 19.6 (1.1) 19.9 (1.7) t=−0.8, P= 0.427

Handedness, right/left 35/0 35/0

BDI-II 5.6 (3.9) 19.1 (5.9) t=−11.0, P < 0.001***

STAI-T 39.7 (9.1) 53.2 (8.1) t=−6.5, P < 0.001***

RSAS 10.6 (4.3) 14.9 (6.9) t=−3.1, P= 0.003**

LSAS 47.2 (17.5) 60.3 (19.5) t=−2.9, P= 0.005**

RSS 27.0 (3.9) 23.3 (4.5) t= 3.6, P= 0.001**

RAS 48.3 (9.3) 45.4 (10.9) t= 1.2, P= 0.237

BDI-II the Beck Depression Inventory Second Edition, STAI-T the Trait form of Spielberger’s State-Trait Anxiety Inventory, RSAS the Revised Social Anhedonia
Scale, LSAS Liebowitz’s Social Anxiety Scale, RSS Rosenberg Self-esteem Scale, RAS the hedonic factor of Robot Acceptance Scale.
**P < 0.01, ***P < 0.001.
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with respect to gender, age, handedness, and hedonic attitudes to robots,
while the MDS group scored higher than the controls in depression, trait
anxiety, social anhedonia, and social anxiety, but lower in self-esteem.
Written informed consent was obtained prior to the experiment. The study
was approved by the Ethics Committee of Shenzhen University.

Experimental design and stimuli
A life-sized humanoid robot Karl was used in this study (version 1088,
Guangzhou, China). Karl could respond to simple oral messages with
relevant body gestures and screen-based facial expressions. For example, if
somebody tells Karl: “you are so cool,” it would reply: “your praise is
making me shy,” move hands up, and show a facial expression of
embarrassment. Screen-based robot faces have several advantages
compared to traditional mechanical faces, such as a wider variety of facial
emotions and less cost of construction [87].
This experiment used 36 human and 36 robot facial expression pictures,

with each cue condition (reward/punishment/neutral) having 12 of each
kind of picture. Human facial pictures were taken from two undergraduate
students (one male and one female) from the first author DZ’s lab. Robot
facial pictures were taken from the robot Karl. Thirty volunteers (15 males;
aged 22.3 ± 1.9 years; BDI scored 4.0 ± 3.8) assessed the emotional valence
and arousal of these pictures on 9-point scales (Table 2); none of them
participated in the formal experiment. Repeated-measures analyses of
variances (ANOVAs) were performed on the valence (from 1: very negative
to 9: very positive) and arousal (from 1: very low to 9: very high) ratings,
respectively, with feedback provider (human vs. robot) and cue valence
(reward vs. punishment vs. neutral) as two within-subject factors.
The results show that the main effect of cue valence was significant on

valence rating (F(2,22)= 561.4, P < 0.001, η2p ¼ 0:981; reward [6.5 ± 0.3] >
neutral [4.6 ± 0.2] > punishment [3.4 ± 0.4], pairwise Ps ≤ 0.001) and arousal

rating (F(2,22)= 284.5, P < 0.001, η2p = 0.963; reward [5.7 ± 0.3] > neutral
[4.1 ± 0.2]/punishment [4.2 ± 0.3], pairwise Ps ≤ 0.001). Neither the main
effect of feedback provider (F ≤ 1.6, P ≥ 0.229) nor the interaction effect
(F ≤ 2.2, P ≥ 0.135) was significant, indicating that human and robot facial
pictures provide comparable emotional experiences.

Experimental procedure
Prior to the task, participants were invited to interact with the robot Karl, as
well as the two undergraduate students whose facial pictures were used as
experimental materials, for 5 min. Then their individual threshold of visual
RT was assessed using a simple RT task (averaged across 30 trials), which
was used to determine the target presentation time in the formal task (see
below). After that, participants practiced in the human feedback condition
and the robot feedback condition for ten trials, respectively. The practice
trials and the formal task shared the same temporal structure. The only
difference was that we used video clips in practice trials to enhance the
experience of social interaction; in contrast, stationary pictures were
employed in the formal task. This was because the ERP technique has a
time resolution of milliseconds (much shorter than the presentation of
video clips); accordingly, stationary pictures rather than video clips are
more suitable for ERP research [88].
The formal SID task consisted of two human feedback and two robot

feedback blocks. Each block consisted of 36 rewards, 36 neutral, and 36
punishment-cued trials, the order of which was pseudorandomly
determined. The formal task (432 trials in total) lasted for ~40 min. The
sequence of these two kinds of blocks was counterbalanced across
participants. An overview of the trial structure is shown in Fig. 1. In both
human feedback and robot feedback blocks, participants first saw a cue
(i.e., the anticipation stage) indicating a potential reward (an upward
arrow), punishment (a downward arrow), or neither (neutral condition: a

Table 2. Valence and arousal of pictures on a 1-to-9-point scale (mean and standard deviation).

Item Human Robot

Reward Neutral Punishment Reward Neutral Punishment

Valence 6.5 (0.3) 4.5 (0.2) 3.5 (0.3) 6.5 (0.4) 4.6 (0.2) 3.3 (0.4)

Arousal 5.7 (0.3) 4.1 (0.3) 4.0 (0.2) 5.7 (0.4) 4.2 (0.2) 4.1 (0.3)

Fig. 1 Experiment programs. A An exemplar trial in the reward condition. B The relationship between each kind of cue and feedback (for hits
or misses). The two undergraduate students in the picture were from the first author DZ’s research group and have given their consent for
these materials to appear in academic journals. C Examples of all kinds of positive and negative faces.
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horizontal arrow) for 500 ms. This cue was followed by a delay for a varied
duration ranging from 2 to 4 s. The target stimulus then appeared, and
participants were required to press the space button on a keyboard as
quickly as possible to gain reward or avoid punishment. If participants’ RT
was shorter than the duration of the target presentation, the ongoing
trial would be labeled as a “hit” trial, otherwise, it would be labeled a
“miss” trial. The target presentation time was initially set according to
each participant’s behavioral performance in the simple RT task, then it
was adjusted (±10 ms) in a trial-by-trial manner to keep the hit rate
at ~50% [53, 89].
After the target presentation, each participant received outcome

feedback for 1 s (i.e., the consumption stage). In the reward condition of
human feedback blocks, successful hitting the target would lead to a
picture of a smiling human face (indicating positive social evaluation),
while missing the target would lead to a neutral human face; in the neutral
condition, the feedback was always a neutral human face regardless of hit
or miss; finally, in the punishment condition, successful hitting the target
would lead to a picture of the neutral human face, while missing the target
would lead to a human face with contempt (indicating negative social
evaluation). These settings were consistent with the classic monetary
incentive delay (MID) task, in which missing the target in the reward
condition leads to no punishment, while hitting the target in the
punishment condition leads to no reward [90, 91]. The same settings
were used in robot feedback blocks, except that pictures of human faces
were replaced by pictures of robot faces.

Electroencephalographic (EEG) recording and analysis
Brain electrical activity was recorded by a 32-channel wireless amplifier
with a sampling frequency of 250 Hz (NeuSen.W32, Neuracle, Changzhou,
China). Data were online recorded referentially against the left mastoid and
off-line re-referenced to average activities over the scalp. EEG data were
collected with electrode impedances kept below 10 kΩ. Ocular artifacts
were removed from EEGs using a regression procedure implemented in
NeuroScan software (Scan 4.3: NeuroScan, Inc., Herndon, VA).
This study focused on the anticipation stage and the consumption

stage of reward processing, corresponding to the ERPs evoked by cues and
those evoked by feedback. The recorded EEG data were filtered (half-
amplitude cutoff: 0.1–30 Hz) and segmented beginning 200ms prior to
stimulus (cue/feedback) onset. The cue-evoked ERP epochs lasted
from −200ms to 2.5 s while the feedback-evoked epochs lasted from
−200 to 800ms. All epochs were baseline-corrected with respect to the
mean voltage over the 200ms preceding stimulus onset, followed by
averaging for each experimental condition. Epochs containing artifacts
with peak-to-peak deflection exceeding ±100 μV were rejected. This
procedure deleted 4.8 ± 2.2 trials per condition. The numbers of remaining
trials for further analyses are reported in supplementary materials
(Supplementary Table S1).
The electrode sites and time window for each ERP component were

selected before data analysis based on prior knowledge. The main
reference was one of our previous ERP studies which also used the SID task
[53]. For cue-evoked ERPs, this study focused on the CNV elicited by
reward, neutral, and punishment cues in human feedback and robot
feedback blocks. The mean amplitude of the CNV was calculated using the
arithmetic average of the electrode sites in the mid-frontocentral area
(including Fz, FCz, FC1, and FC2) within a time window of 750–2500ms
post cue onset [92]. For feedback-evoked ERPs, we focused on the FRN and
P3 elicited by feedback for hits or misses in human feedback and robot
feedback blocks. The mean amplitude of the FRN was calculated using the
arithmetic average, also at electrode sites in the mid-frontocentral area (i.e.,
Fz, FCz, FC1, and FC2), within a time window of 200 to 300ms post
feedback onset [93]. Finally, the mean amplitude of the P3 was calculated
using the arithmetic average at electrode sites in the mid-parietal area
(i.e., Pz, P3, and P4) within a time window of 300–600ms post feedback
onset [94, 95].

Statistics
Repeated-measures ANOVAs were used to analyze the behavioral and ERP
measures. Regarding the anticipation stage (i.e., cue presentation), a 2 ×
3 × 2 mixed ANOVA was applied with feedback provider (human vs. robot)
and cue valence (reward vs. punishment vs. neutral) as two within-subject
factors and group (MDS vs. control) as the between-subject factor. The
same model was applied to the consumption stage (i.e., feedback
presentation), except that feedback valence (hit vs. miss) was added as
the third within-subject factor (that is, a 2 × 3 × 2 × 2 mixed ANOVA).

In addition, considering that anxiety and depressive symptoms are highly
comorbid [96–98], we also performed ANOVAs on all the above dependent
variables with trait anxiety as a covariate (see Supplementary Materials).
Descriptive data are presented as mean ± standard deviations, unless

otherwise specified. The significance level is set at P= 0.05. Significant
interactions were analyzed using a simple effects model. Partial eta-
squared (η2p) values are provided to demonstrate effect size where
appropriate. For the sake of brevity, below we report significant
interactions only when the group factor is involved. Other significant
interactions could be found in supplementary materials.

RESULTS
Behavioral results
Hit rate. The main effect of the group was significant (F(1,68)=
25.3, P < 0.001, η2p = 0.271; control vs. MDS= 50.2 ± 7.0% vs.
48.7 ± 7.7%). The main effect of cue valence was also significant
(F(2,136)= 55.1, P < 0.001, η2p = 0.448; reward (53.7 ± 4.7%) >pun-
ishment (50.6 ± 5.3%) >neutral (44.1 ± 8.0%), pairwise Ps < 0.001).
Moreover, the interaction of feedback provider × group was
significant (F(1,68)= 38.2, P < 0.001, η2p = 0.360; Fig. 2A); simple
effect analysis reveals that the control group showed a higher hit
rate (51.2 ± 6.9%) than the MDS group (47.9 ± 7.6%) in the
human condition (F(1,68)= 57.3, P < 0.001, η2p = 0.457), but not in
the robot condition (F < 1; control vs. MDS= 49.2 ± 6.8% vs.
49.5 ± 7.7%).

RT. The RT was averaged across hit trials in each condition
[53, 54]. The main effect of cue valence was significant (F(2,136)=
12.4, P < 0.001, η2p = 0.154; rewards (216.4 ± 19.1 ms) < punishment
(218.0 ± 20.5 ms)= neutral (219.3 ± 21.0 ms), pairwise Ps ≤ 0.002).

ERP data
Cue-evoked CNV. The main effect of cue valence was significant
(F(2,136)= 8.6, P= 0.001, η2p = 0.112; reward (−2.21 ± 3.54 μV)=
punishment (−2.12 ± 3.50 μV) > neutral (−1.38 ± 3.78 μV), pairwise
Ps ≤ 0.007). Moreover, the two-way interaction of feedback
provider × group was significant (F(1,68)= 37.6, P < 0.001, η2p =
0.356; Fig. 2B, C); simple effect analysis reveals that the control
group (−3.14 ± 4.77 μV) exhibited a larger (i.e., more negative-
going) CNV than the MDS group (−0.74 ± 5.87 μV) in the human
condition (F(1,68)= 8.8, P= 0.004, η2p = 0.114), but not in the
robot condition (F(1,68)= 1.4, P= 0.235, η2p = 0.021; control vs.
MDS=−1.46 ± 3.85 vs. −2.29 ± 5.96 μV).
Seeing that the hit rate and the CNV amplitude showed a

similar pattern of results (i.e., a significant feedback provider ×
group interaction), we tested the two-tailed Pearson correlation
between the above two indexes. This follow-up analysis showed
that the hit rate and CNV amplitude were negatively correlated
in both feedback conditions (r=−0.245 ~ −0.474, P=
0.041–0.0004, corrected for multiple comparisons using the
false discovery rate method; Table 3). Again, please note that the
CNV is a negative-going component; thus, these negative
correlations indicate that the CNV amplitude increased as a
function of the hit rate.

Feedback-evoked FRN. The main effects of feedback provider
(F(1,68)= 7.8, P= 0.007, η2p = 0.103; human vs. robot= 0.36 ± 3.63
vs. 0.86 ± 3.46 μV), cue valence (F(2,136)= 14.3, P < 0.001, η2p =
0.174; reward (0.94 ± 3.73 μV)= punishment (0.76 ± 3.35 μV) <
neutral (0.14 ± 3.52 μV), pairwise Ps ≤ 0.002), and feedback valence
were significant (F(1,68)= 74.7, P < 0.001, η2p = 0.524; hit vs.
miss= 1.00 ± 3.57 vs. 0.22 ± 3.49 μV).
The interaction of feedback valence × group was significant

(F(1,68)= 6.8, P= 0.011, η2p = 0.091). Further, the three-way
interaction of cue valence × feedback valence × group was also
significant (F(2,136)= 9.5, P < 0.001, η2p = 0.123; Fig. 3B). To break
down this three-way interaction, we examined the feedback
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valence × group interaction for reward, punishment, and neutral
cues, respectively (Fig. 3A). Results reveal a similar pattern of the
feedback valence × group interaction for reward (F(1,68)= 10.4,
P= 0.002, η2p = 0.133) and neutral cues (F(1,68)= 11.2, P= 0.001,
η2p = 0.142): the MDS group showed a smaller (i.e., less negative-
going) FRN than the controls in response to miss feedback
(reward: F(1,68)= 4.1, P= 0.046, η2p = 0.057, control vs. MDS=
−0.59 ± 3.33 vs. 1.08 ± 3.55 μV; neutral: F(1,68)= 4.8, P= 0.032,
η2p = 0.066, control vs. MDS=−0.54 ± 3.57 vs. 1.22 ± 3.11 μV), but
not hit feedback (F < 1; reward: 1.45 ± 3.58 vs. 1.90 ± 3.59 μV;
neutral: −0.36 ± 3.26 vs. 0.36 ± 3.25 μV). In contrast, the feedback
valence × group interaction was not significant for punishment

cues; specifically, the two groups showed comparable FRN
amplitudes in response to hit (F(1,68)= 1.8, P= 0.184, η2p =
0.026; control= 0.84 ± 3.38 μV, MDS= 1.85 ± 2.90 μV) and miss
feedback (F < 1; control= 0.05 ± 3.23 μV, MDS= 0.29 ± 3.17 μV).

Feedback-evoked P3. The main effects of all the four factors were
significant, including group (marginally, F(1,68)= 3.9, P= 0.052,
η2p = 0.055; control vs. MDS= 1.55 ± 3.66 vs. 0.19 ± 3.57 μV),
feedback provider (F(1,68)= 6.9, P= 0.011, η2p = 0.092; human vs.
robot= 1.16 ± 3.69 vs. 0.58 ± 3.64 μV), cue valence (F(2,136)=
52.7, P < 0.001, η2p = 0.437; reward (1.44 ± 3.62 μV)= punishment
(1.50 ± 3.44 μV) > neutral (−0.33 ± 3.66 μV), pairwise Ps < 0.001),

Fig. 2 The results of hit rate and the contingent-negative variation (CNV). A Hit rate in the mild depressive symptom (MDS) and control
groups. B Amplitudes of the cue-evoked CNV. Error bars indicate two standard errors. **P < 0.01, ***P < 0.001. C The CNV waveforms and
topographic maps. The CNV waveforms were averaged across electrodes of Fz, FCz, FC1, and FC2. The CNV topographies were averaged
across a time window of 750–2500ms post cue presentation.

Table 3. Correlation between hit rate and CNV amplitude (n= 70).

Feedback provider Reward Neutral Punishment

r p pcor
a r p pcor

a r p pcor
a

Human −0.452 <0.001 0.001 −0.273 0.022 0.044 −0.319 0.007 0.021

Robot −0.474 <0.001 <0.001 −0.245 0.041 0.041 −0.404 0.001 0.004
aCorrected for multiple comparisons using the false discovery rate method.
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and feedback valence (F(1,68)= 36.3, P < 0.001, η2p = 0.348; hit vs.
miss= 1.32 ± 3.60 vs. 0.43 ± 3.69 μV).
The three-way interaction of feedback provider × cue valence ×

group was significant (F(2,136)= 5.8, P= 0.006, η2p = 0.079; Fig.
4B). To break down this three-way interaction, we examined the
feedback provider × group interaction for reward, punishment,
and neutral cues, respectively (Fig. 4A). Results reveal a similar
pattern of the feedback provider × group interaction for reward (F
(1,68)= 4.0, P= 0.050, η2p = 0.055) and punishment cues (F(1,68)
= 8.8, P= 0.004, η2p = 0.114): the MDS group showed a smaller P3
than the controls in the human feedback condition (reward: F
(1,68)= 6.7, P= 0.012, η2p = 0.090, control vs. MDS= 2.75 ± 2.91 vs.
0.84 ± 3.25 μV; punishment: F(1,68)= 9.1, P= 0.004, η2p = 0.118,
control vs. MDS= 2.91 ± 3.03 vs. 0.60 ± 3.36 μV), but not in the
robot feedback condition (F ≤ 1.7, P ≥ 0.195; reward: 1.74 ± 3.34 vs.
0.72 ± 3.16 μV; punishment: 1.60 ± 3.43 vs. 0.75 ± 2.94 μV). In
contrast, the feedback provider × group interaction was not
significant in the neutral cue condition (F < 1); specifically, the
two groups showed comparable P3 amplitudes in response to
human (F(1,68)= 1.5, P= 0.230, η2p = 0.021; control= 0.32 ±

3.42 μV, MDS=−0.65 ± 3.33 μV) and robot feedback (F(1,68)=
1.3, P= 0.263, η2p = 0.018; control=−0.16 ± 3.39 μV, MDS=
−1.06 ± 3.22 μV).

DISCUSSION
Seeing that machines and automations are becoming increasingly
important in our society, understanding how people interact with
these intelligent agents is necessary [99]. This study investigates
whether social reward processing in depression would show
different patterns for human–human and human–robot interac-
tions in nonclinical populations. At the anticipation stage of social
reward processing, the MDS group had a lower hit rate and a
smaller cue-evoked CNV compared to the control group in the
human condition but not the robot condition; then at the
consumption stage, the MDS group had a smaller feedback-
evoked P3 than the control group in the human condition but not
the robot condition, after receiving reward and punishment (but
not neutral) cues. Overall, these findings indicate that depressive
symptoms are more likely to be associated with abnormalities in

Fig. 3 The results of feedback-related negativity (FRN). A Amplitudes of the FRN in different conditions. B Difference amplitudes of the FRN
(miss subtracting hit trials). Error bars indicate two standard errors. *P < 0.05, **P < 0.01. C The FRN waveforms and topographies. The FRN
waveforms were averaged across electrodes of Fz, FCz, FC1, and FC2. The FRN topographies were created according to difference amplitudes
(miss subtracting hit trials) averaged across a time window of 200–300 post feedback.
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the anticipation and consumption stages of social reward
processing during human–human interaction, compared to
human–robot interaction.

Anticipation stage
Since this experiment used a block design for two conditions
(human vs. robot), participants were able to predict whether the
upcoming feedback would come from a person or a robot in each
block. As revealed by our results, this prediction has significantly
modulated both task performance and neural signals among mild
depressive participants. Specifically, when the evaluative feedback
was expected to be delivered by a human companion, the
depressive participants were less likely to hit the target stimulus
within a given time window compared to the controls. Also, the
CNV elicited by cue presentation (reflecting the preparation
process for the forthcoming target) [64] was smaller among the
depressive participants than the controls. These results are in line
with our recently published data [53].
According to the literature, depression symptoms are closely

associated with low anticipation of social rewards, which is one of
the major characteristics of social anhedonia [7, 100]. In our

opinion, the depressive participants had difficulties in conceiving
and expecting social reward during their interactions with other
people; consequently, they mobilized less effort to finish the
follow-up task and thus provided worse performance [101–103].
Our interpretation is supported by the correlation between the hit
rate and the CNV amplitude, which has also been observed in our
previous research [53]. In contrast, when the feedback was
expected to be delivered by the robot Karl, no between-group
difference was detected in the hit rate or CNV amplitude.
Therefore, we suggest that participants’ motivation to achieve
social reward in this condition was not significantly affected by
depression.

Consumption stage
The effect of depression was significant at both the early, coarse
phase (indexed by the FRN) and the late, deliberate phase
(indexed by the P3) of social reward consumption [52, 54]. First,
the depressive participants showed a smaller FRN elicited by miss
feedback than the controls in the reward and neutral cue
conditions. In both conditions, miss feedback indicates the
omission of social reward. Thus, we suggest that the FRN finding

Fig. 4 The results of feedback-evoked P3. A Amplitudes of the P3 in different conditions. *P < 0.05, **P < 0.01. B The P3 waveforms and
topographies. The P3 waveforms were averaged across electrodes of Pz, P3, P4, CP1, and CP2. The P3 topographies were averaged across a
time window of 300–600ms post feedback.
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indicates blunted sensitivity to social reward in depression
[52, 102, 104]. In line with these results, previous studies have
consistently reported that the FRN amplitude decreases as a
function of depression severity in various reward-related para-
digms [105, 106]. However, the relationship between depression
and the FRN remained the same pattern regardless of whether
participants were interacting with other persons or with the robot
Karl. In our opinion, this was because the early phase of feedback
evaluation is susceptible to the similarities in perceptual
appearance between humans and human-like machines, that is,
an effect of anthropomorphism (see “Introduction”).
More importantly, the effect of depression on the P3

component (indicating a more top-down phase of feedback
evaluation) differentiated between human–human and
human–robot interactions. That is, the P3 elicited by human
feedback, but not robot feedback became smaller among the
depressive participants than the controls in the reward and
punishment cue conditions. While the P3 has been related to
diverse cognitive operations [107, 108], many studies suggest that
this component is closely associated with a motivational level in
decision-making tasks, such that a larger P3 indicates the stronger
motivational significance of the ongoing event [56, 71, 109–111].
For instance, a larger P3 was observed when participants were
comparing their task performance with that of a disliked
opponent’s, indicating stronger motivation to outperform that
opponent [112]. Given this background knowledge, we propose a
possible interpretation of the P3 finding: compared to the
controls, mild depressive individuals’ motivation to provide better
performance in a social scenario is less likely to be modulated by
their expectation of receiving positive social feedback (or avoiding
negative social feedback) from a human companion. In agreement
with our explanation, Frey, Frank, & McCabe recently point out
that depression negatively affects the ability in using social
feedback to appropriately update future actions [101, 113]. In
contrast, the motivational level reflected by P3 amplitude was
unresponsive to depression when participants received feedback
from the robot Karl.
As an alternative explanation, the P3 amplitude may indicate

the amount of attentional resources during feedback processing.
This explanation stems from the knowledge that the P3
component has been frequently related to attentional function
[108, 114]. From this perspective, mild depressive participants
might have allocated fewer attentional resources than the controls
on human feedback in the reward and punishment cue
conditions, possibly because they were pessimistic about receiv-
ing favorable feedback from humans. Future studies are awaited
to determine between the “attentional” hypothesis and the
“motivational” hypothesis, though both of them are based on
the relationship between depression and feedback expectation.

CONCLUSIONS AND CONCLUDING REMARKS
In the science fiction I, Robot by Isaac Asimov, its protagonists
argue that robots are actually more reliable and trustworthy than
humans—many people in real life share the same belief [115, 116].
For instance, de Visser et al. reported that anthropomorphic robot
agents were associated with greater trust resilience (i.e., a higher
resistance to breakdowns in trust) than human agents [28, 117].
Relevantly, the current study discovers that social reward
processing during human–robot interaction is less prone to be
affected by depression compared to that during human–human
interaction. That is, depressive participants held a more pessimistic
expectation about getting social rewards and were less likely to be
motivated by those rewards in the human condition, therefore
they showed poorer task performance than the controls; never-
theless, the same was not true in the robot condition.
According to the clinical literature, depressive episodes are

strongly associated with negative social experience (e.g., peer

rejection in schools) in which people fail to receive social rewards
[118–120]. Among depressive individuals, this kind of experience
generates social evaluative concerns and accordingly inhibits the
willingness to engage in social interactions [121–124]. As a result,
depressive individuals perceive themselves to be less socially
competent than ordinary people and underestimate the likelihood
of obtaining favorable feedback (e.g., social approval) from other
persons [7]. On the contrary, we suggest that interacting with
robots may not be interfered with by these concerns, because
people tend to trust the objectivity of robot feedback. From a
theoretical perspective, our findings indicate that human–robot
interaction not only has social rewarding properties, but is also
safe from some risk factors associated with human–human
interaction (e.g., social evaluative threats and peer pressure);
depression symptoms interplay with these risk factors during
human–human interaction, but not human–robot interaction.
These findings may help understand to what extent classical
theories of social psychology (which are based on human–human
interaction) could be used to explain human–robot interaction
[14, 22]. From a practical perspective, our findings address why
companion robots significantly improve quality of life, mood, and
loneliness for adults with depression, and highlights the value of
this kind of robots as a useful tool in clinical practice [19, 46].
Below we list some limitations and future directions for follow-

up research to consider. Most importantly, our task did not allow
life-like communication between participants and different agents
due to technical restrictions; instead, we provided human and
robot facial expression pictures to participants as social feedback.
Although face processing is a fundamental part of social
interaction [125], the real-time exchange of verbal and gestural
signals should have enhanced the ecological validity of this study.
Thus, we encourage follow-up studies to re-examine the reliability
of our findings in more ecological contexts, and to investigate the
potential influence of social intelligence skills of robots (not just
their appearance). Second, seeing that the robot Karl has an
anthropomorphic appearance, future studies could try using
robots with alternative designs (e.g., zoomorphic or caricatured)
for practical reasons. Moreover, it should be noted that the current
findings are derived from the SID task; using alternative paradigms
associated with social reward processing (e.g., the Ultimatum
Game or the Trust Game [126]) would help examine the generality
of these findings. Finally, it would be interesting to explore the
processing of robot feedback in other clinical conditions. For
instance, Raffard et al. point out that patients with schizophrenia
may have difficulties in recognizing and interpreting complex
social cues from humans and human-like robots [47, 127].
Accordingly, we hypothesize that schizophrenia would affect
social reward sensitivity in not only human–human but also
human–robot interactions.
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