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Identifying biomarkers of antidepressant response may advance personalized treatment of major depressive disorder (MDD). We
aimed to identify longitudinal changes in gene expression associated with response to antidepressants in a sample of MDD patients
treated with escitalopram. Patients (N= 153) from the CAN-BIND-1 cohort were treated for 8 weeks, and depressive symptoms were
assessed using the Montgomery-Åsberg Depression Rating Scale at 0, 2, 4, 6, and 8 weeks. We identified three groups of patients
according to response status: early responders (22.9%), later responders (32.0%), and nonresponders (45.1%). RNA sequencing was
performed in blood obtained at weeks 0, 2, and 8. RNA expression was modeled using growth models, and differences in the
longitudinal changes in expression according to response were investigated using multiple regression models. The expression of
RNAs related to response was investigated in the brains of depressed individuals, as well as in neuronal cells in vitro. We identified
four RNAs (CERCAM, DARS-AS1, FAM228B, HBEGF) whose change over time was independently associated with a response status. For
all except HBEGF, responders showed higher expression over time, compared to nonresponders. While the change in all RNAs
differentiated early responders from nonresponders, changes in DARS-AS1 and HBEGF also differentiated later responders from
nonresponders. Additionally, HBEGF was downregulated in the brains of depressed individuals, and increased in response to
escitalopram treatment in vitro. In conclusion, using longitudinal assessments of gene expression, we provide insights into
biological processes involved in the intermediate stages of escitalopram response, highlighting several genes with potential utility
as biomarkers of antidepressant response.
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INTRODUCTION
Major depressive disorder (MDD) is a leading cause of global
disease burden. It is estimated to affect more than 300 million
people worldwide [1], and to have a lifetime prevalence of 20%
[2]. Individuals with MDD are at risk for chronic or recurrent
depression, severe functional impairments [3, 4], and suicide
[5]. Treating MDD is therefore a public health priority.
Antidepressants are widely used to treat MDD [6], yet,
response is poor: approximately 60% of patients do not
respond to a single trial and 30–40% of patients do not fully
respond even after several trials [7]. Additionally, response to
antidepressants is highly heterogeneous, and efficacy of the
treatment (or lack thereof) may become apparent only after a
period of several weeks. This often results in considerable
delay in finding the optimal treatment, involving several trials
with antidepressants that are ultimately ineffective, and
increasing risks and costs.

Significant research efforts are directed toward the identifica-
tion of biomarkers, measurable before treatment initiation, to help
identify individuals who are more likely to respond to antide-
pressants (i.e., predictor). Evidence to date suggests that several
biomarkers reflecting the activity of inflammatory, neurotransmit-
ter, neurotrophic, neuroendocrine, and metabolic systems may be
promising predictors of antidepressant response [8]. However,
translation of these findings into clinical guidelines to select the
appropriate antidepressant has proven to be difficult [9].
Treatment-emergent (i.e., mediator) biomarkers provide alterna-
tive information that is equally valuable as they are helpful to
better understand mechanisms involved in antidepressant treat-
ment response. While predictor biomarkers may be useful in the
initial treatment selection, treatment-emergent biomarkers can be
used as indices of antidepressant efficacy during the course of
treatment [10]. In clinical practice, such biomarkers can inform
clinicians to change an ineffective treatment to another that is
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more likely to be effective within a few weeks of treatment
initiation, thus reducing the number of ineffective antidepressant
treatment trials, and shorten the time to discover the best
treatment.
Gene expression measured in the blood is easily accessible in

patients undergoing antidepressant treatment, and might
potentially be used to inform clinical decisions. Gene expression
measured peripherally may not necessarily reflect gene expres-
sion in brain cells. However, MDD is a systemic illness, and
treatment-induced molecular changes are likely to result in
changes in gene expression observable in peripheral tissues [11].
To date, the majority of studies investigating the relationship
between the gene expression and antidepressant response have
focused on either baseline gene expression levels, or have
assessed changes in expression between the baseline and the
completion point of a trial (typically 8 weeks). By not investigat-
ing intermediate stages in response, these studies are not able to
identify gene expression biomarkers, which could be used to
inform early treatment decisions nor are they able to detect gene
expression trajectories associated with antidepressant response
or lack thereof.
The objective of this study was to identify longitudinal changes

in peripheral gene expression associated with response to
antidepressant pharmacotherapy in a sample of patients treated
with escitalopram. We relied on repeated measures of clinical and
molecular data collected at baseline and after 2 and 8 weeks of
antidepressant treatment in a sample of patients enrolled in a
multicenter Canadian study. Genes related to antidepressant
response were further characterized in postmortem human brain
and in neuronal cell cultures.

MATERIALS AND METHODS
Sample and clinical assessment
We used data from the CAN-BIND-1 study, described in detail [12, 13].
Participants between 18 and 61 years of age suffering from MDD, who
scored 21 or more on the Montgomery-Åsberg Depression Rating Scale
(MADRS) [14] were recruited from physician referrals or advertisements.
Recruitment took place between August 2013 and December 2016 at six
academic centers in Canada. Exclusion criteria included bipolar disorder,
high suicidal risk, psychosis, drug dependency, pregnancy or breastfeed-
ing, and failure to respond after four or more adequate pharmacologic
interventions in the current episode or to a previous trial of escitalopram.
At baseline, the Mini-International Neuropsychiatric Interview [15]
Version 6.1 was administered to confirm or rule out MDD status and to
assess the presence of other psychiatric comorbidities. A total of 211
eligible participants were treated with escitalopram (10–20 mg) for
8 weeks. After baseline assessment (T0), recruited patients were
reassessed every 2 weeks (T2–T8) with the MADRS. Additionally, blood
samples were collected at T0, T2, and T8 for molecular analyses. We also
included sex- and age-matched healthy controls (HC, N= 104) [12, 13]. At
T0, RNA sequencing data were available for 104 HC and 201 patients. The
trajectory analysis is based on a sample of 153 patients with available
data on both the MADRS and RNA sequencing data at all three
timepoints. All participants provided written informed consent, and
ethics approval was obtained at each center. The trial was registered at
ClinicalTrials.gov (identifier: NCT01655706).

Response to antidepressant treatment
Response status at T8 was determined by calculating the ratio of MADRS at
T8 relative to T0 (ΔMADRS). Participants showing a 50% reduction of their
MADRS scores were considered responders to escitalopram treatment (N
= 84, 54.9%), those who did not were considered nonresponders (N= 69,
45.1%).

RNA sequencing
Whole blood for RNA was collected in EDTA tubes and filtered using
LeukoLOCK filters (Life Technologies). Total RNA was extracted from
leukocytes using a modified version of the LeukoLOCK Total RNA Isolation
System protocol, and included DNase treatment to remove genomic DNA.

RNA quality was assessed using the Agilent 2200 Tapestation, and only
samples with RNA Integrity Number (RIN) ≥ 6.0 were used. All libraries were
prepared using the Illumina TruSeq mRNA stranded protocol following the
manufacturer’s instructions. Samples were sequenced at the McGill
University and Genome Quebec Innovation Centre (Montreal, Canada)
using the Illumina HiSeq4000 with 100nt paired-end reads. FASTXToolkit
and Trimmomatic were respectively used for quality and adapter trimming.
Tophat2, using bowtie2 was used to align the cleaned reads to the
reference genome. Reads that lost their mates through the cleaning
process were aligned independently from the reads that still had pairs.
Quantification on each gene’s expression was estimated using HTSeq-
count and a reference transcript annotation from ENSEMBL. Counts for the
paired and orphaned reads for each sample were added to each other.
Normalization was conducted on the resulting gene matrix using DESeq2.
All RNA expression values were log2 transformed for data analysis and
adjusted for age, gender, and RIN.

Longitudinal analysis
Identifying trajectories of antidepressant response. Data on MADRS
scores between T0 and T8 were modeled using a longitudinal k-mean
algorithm to identify clusters of individuals based on the evolution over
time of their scores [16]. This procedure assigns participants who are
homogeneous in their MADRS score evolution to the same trajectory.
The best model is selected based on both the statistical criteria (e.g.,
Calinski & Harabasz criterion) [16] and interpretability of the clustering
solution.

Selecting target RNAs for longitudinal analyses. From the initial pool of
sequenced RNAs, we identified RNAs for subsequent longitudinal analyses
based on the following stepwise criteria: 1) RNA must show differential
expression between the MDD patients and HC at T0. This was assessed
using the general linear model (GLM) implementation of DESeq2, including
sex, age, and RIN as covariates and selecting the RNAs that were
differentially expressed between the groups after applying a False
Discovery Rate (FDR) correction of 20%; 2) Remaining RNAs must show a
correlation with the change in MADRS at T8. The change in MADRS
between the T0 and T8 (ΔMADRS) was calculated as a ratio, and a Pearson
correlation (P < 0.05) was used to relate RNA to ΔMADRS (P < 0.05). 3)
Remaining RNAs cannot correlate with ΔMADRS at T0 (P < 0.2). This strict
cut-off was chosen because our aim was to investigate differences in RNA
expression over time that were not identifiable at baseline.

Modeling longitudinal changes in RNA expression. We modeled the
evolution over time (i.e., trajectory) of each selected RNA by fitting growth
models using the R package lavaan. This procedure, based on structural
equations modeling (SEM), allowed us to use the repeated measure of
each RNA to describe their linear change over time using two random-
effect parameters: intercept, describing the level of an RNA at baseline (T0),
and slope, describing the rate of change between T0 and T8. The fit of
each growth model was assessed using the chi-square statistics (a
nonsignificant chi-square suggesting good fit), the Comparative Fit Index
(CFI), the Tucker Lewis index (TLI), the Goodness of Fit Index (GFI; all indices
indicated good fit if >0.90), the Root Mean Square Error of Approximation
(RMSEA), and the Standardized Root Mean Square Residual (SRMR, both
good fit if <0.8).

Identifying differences in longitudinal changes in RNA expression according to
response status. We performed this analysis in three steps. First, for each
RNA, we tested the association between the change in RNA over time and
response to escitalopram at T8 (yes/no) using a binary logistic regression
model with intercept and slope parameters as predictors of response
status. Second, the RNAs associated with response to escitalopram (P <
0.05) were jointly modeled using a multivariate logistic regression to
estimate their independent association with response to escitalopram.
Third, the same RNAs were jointly modeled using a multivariable
multinomial regression to estimate their independent association with
early or later response. Multivariable regressions were adjusted for self-
reported gender (male/female), age (continuous variable), history of any
anxiety disorders (i.e., agoraphobia, generalized anxiety disorder, post-
traumatic stress disorder, social phobia, panic disorder as assessed with the
MINI), history of suicidality (assessed with the MINI), and a FDR of 5% was
used to take into account multiple comparisons. For all analyses, a log2
transformation was used to account for the non-normal distribution of RNA
expression variables.
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Anterior cingulate cortex (ACC) gene expression
Brain samples. Gene expression in the ACC was previously described in
[17]. Briefly, ACC tissue was obtained from the Douglas-Bell Canada Brain
Bank from subjects who died suddenly without prolonged agonal state or
medical illness, and with no psychiatric history (controls, N= 24); and
subjects who died by suicide in the context of a major depressive episode
and had a history of severe child abuse (MDD, N= 26). Psychological
autopsies were performed as described previously [18], based on DSM-IV
criteria. Antidepressant use was determined using 3-month history of
antidepressant prescriptions, as well as toxicology reports at the time of
death. Written informed consent was obtained from next-of-kin. This study
was approved by the institutional review board of the Douglas Mental
Health University Institute.

RNA sequencing. All RNA sequencing and data processing steps were
performed as above, with the exception of the use of an Illumina
HiSeq2000 for library sequencing.

Statistical analysis. Sequencing data were log2 transformed for analyses.
Two-tailed t tests were performed to assess differences between cases and
controls. One-way ANOVAs, with post hoc Tukey’s test for multiple
comparisons, were used to assess the effects of antidepressant history.

In vitro gene expression
Cell culture. Hindbrain neuronal progenitor cells (NPCs) were generated
from human induced pluripotent stem cells (iPSCs), using a protocol
adapted from [19]. Human iPSCs were first cultured in DMEM/F12 (Gibco)
supplemented with N2 (Gibco), B27 (Gibco), nonessential amino acids
(Gibco), 1% GlutaMAX (Gibco), 2 µM SB431542 (STEMCELL Tech.), 2 µM
DMH1 (Tocris), and 3 µM CHIR99021 (Tocris); collectively referred to as SDC
media. Culturing in SDC media for 1 week induced human iPSC
differentiation into rostral hindbrain neural stem cells (NSCs). Rostral
hindbrain NSCs colonies were selected and re-plated in SDC media
supplemented with 1000 ng/ml of SHH C25II (GenScript). Ventral rostral
hindbrain NSC colonies were collected and re-plated in SDC+ SHH media
along with 10 ng/ml of FGF4 (Pepro Tech). Growth in SDC+ SHH+ FGF4
media-induced ventral rostral hindbrain NSC differentiation into hindbrain
NPCs after 1 week. Hindbrain NPCs were GBX2, HOXA2, and HOXA4
positive as assessed via PCR to confirm hindbrain specificity at this
developmental stage. All cells were grown in a 5% CO2 humidified
incubator at 37 °C.

Drug Treatments. NPCs were cultured in 24 well plate and differentiated,
for 2 weeks, into neuron-like cells in neurobasal media (Gibco)
supplemented with N2, B27, NEAA, 1 µg/ml laminin (Sigma), 0.2 mM
vitamin C (Sigma), 2.5 µM DAPT (Sigma), 10 ng/ml GDNF (GenScript), 10 ng/
ml BDNF (GenScript), 10 ng/ml insulin-like growth factor-I (Pepro Tech),
and 1 ng/ml transforming growth factor β3 (Pepro Tech). Following
2 weeks of differentiation, culture media was supplemented with
escitalopram (Sigma-Aldrich, E4786; 100 µM), duloxetine (Sigma-Aldrich,
Y0001453; 10 µM), imipramine (Sigma-Aldrich, I7379; 10 µM), haloperidol
(Sigma-Aldrich, H1512; 10 µM), lithium (Sigma-Aldrich, L4408; 1 mM), or left
untreated (controls). Cells for each drug treatment were incubated for 48 h
before harvest and RNA extractions. Each drug treatment was performed in
triplicate. RNA was extracted using the Zymo DirectZol RNA Extraction kit.
RNA was reverse-transcribed using M-MLV Reverse Transcriptase (200 U/
µL) (ThermoFisher) with random hexamers. RT-PCR was performed using
SYBR green (Applied Biosystems). Reactions were run in triplicate using the
QuantStudio 6 Flex System and data collected using QuantStudio Real-
Time PCR Software v1.3. Expression levels were calculated using the
relative (2-ΔΔCt) quantification method, with B-actin and GAPDH as
endogenous controls. Results are presented using B-actin as the
endogenous control; however, values were highly correlated between
B-actin and GAPDH (not shown). Primer sequences are shown in
Supplemental Table S1.

Statistical Analysis. One-way ANOVAs, with post hoc Dunnett’s test for
multiple comparisons, were used to assess the effects of drug treatments
relative to untreated cells.

RESULTS
The demographic characteristics and response status of the 153
participants in the study are presented in Table 1. Participants
were on average 36-year-old, 62.7% were female, and 79% were
Caucasian. Half of the participants reported a history of comorbid
anxiety disorders (49.7%). Differences in demographic and clinical
characteristics across response status were not statistically
significant.
Based on biweekly MADRS scores reported from T0 to T8, two

groups of responders and two groups of nonresponders were
identified: (1) early responders, already reaching the 50%
reduction of MADRS score at T2 (N= 35, 22.9%), (2) later

Table 1. Demographic and clinical characteristics of the sample.

Whole sample (N= 153) By response status

NR (N= 69, 45.1%) LR (N= 49, 32.0%) ER (N= 35, 22.9%) P

Demographic characteristics

Age, years 35.90 (12.48) 36.12 (13.05) 36.55 (11.90) 34.57 (12.39) 0.762

Female sex 96 (62.7) 41 (59.4) 29 (59.2) 26 (74.3) 0.274

Years of education 16.92 (2.17) 16.86 (2.12) 16.96 (2.43) 17.00 (1.94) 0.941

Married/cohabitating 86 (56.2) 35 (50.7) 30 (61.2) 21 (60.0) 0.461

Caucasian ethnicity 108 (79.4) 49 (79.0) 35 (77.8) 24 (82.8) 0.870

Clinical characteristics

History of anxiety disorders 76 (49.7) 30 (43.5) 28 (57.1) 18 (51.4) 0.334

Agoraphobia 17 (11.2) 8 (11.6) 4 (8.2) 5 (14.7) 0.642

GAD 35 (22.9) 19 (27.5) 8 (16.3) 8 (22.9) 0.360

OCD 7 (4.6) 4 (5.8) 1 (2.0) 2 (5.7) 0.588

PD 23 (15.0) 9 (13.0) 8 (16.3) 6 (17.1) 0.819

PTSD 11 (7.2) 5 (7.2) 3 (6.1) 3 (8.6) 0.912

SP 34 (22.2) 10 (14.5) 19 (38.8) 5 (14.3) 0.003

History of suicidality 115 (75.2) 47 (68.1) 41 (83.7) 27 (77.1) 0.149

Characteristics are described as N and %, except for age and years of education (described using mean and standard deviation). Comparison by the group is
based on Chi-square or Fisher exact test for categorical variables, and on ANOVA for continuous variables.
ER early responders, GAD generalized anxiety disorder, LR later responders, NR nonresponders, OCD obsessive-compulsive disorder, PD panic disorder, PTSD
post-traumatic stress disorder, SP social phobia
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responders, reaching the 50% reduction of MADRS after T2 (N=
49, 32.0%); (3) nonresponders1, showing little/no reduction of
MADRS score at any time point (N= 46, 30.1%); (4) nonrespon-
ders2, initially showing a decrease in MADRS score similar to that
of early responders but subsequently showing an increase in

MADRS score (N= 23, 15.0%). For the purposes of this analysis, we
merged these two groups of nonresponders (Fig. 1).
We started with an initial pool of 24, 428 RNA transcripts from

leukocyte samples and ended up selecting 32 transcripts for
further analysis. First, we retained the 2502 transcripts showing
differential expression at baseline between the depressed patients
and controls (Supplemental Table S2). Of those, 90 were excluded
due to missing data at either T0 or T8. Of the remaining 2412
transcripts, we identified 62 associated with ΔMADRS score at T8.
Finally, we excluded 30 RNAs that correlated with ΔMADRS at T0
resulting in 32 RNAs for the longitudinal analysis (Supplemental
Figure S1).
Using growth models, we estimated the trajectory for all 32

RNAs (i.e., their evolution over time); all models showed a good fit
to the data (Supplemental Table S3). Of these 32 RNAs, we
identified 8 whose change in expression over time (slope) was
different across responders and nonresponders (P < 0.05; Fig. 2A):
Bet1 golgi vesicular membrane trafficking protein (BET1), cerebral
endothelial cell adhesion molecule (CERCAM), DARS1 antisense
RNA 1 (DARS-AS1), family with sequence similarity 228 member B
(FAM228B), heparin-binding EGF-like growth factor (HBEGF),
minichromosome maintenance 8 homologous recombination
repair factor (MCM8), NME/NM23 family member 7 (NME7), and
telomeric repeat binding factor 1 (TERF1).
Then, we jointly assessed the association between changes in

expression of these eight RNAs and response status to investigate
their independent association with treatment response using a
multinomial logistic regression. After controlling for multiple
testing, we found four RNAs independently predicting response
status: CERCAM, DARS-AS1, FAM228B, and HBEGF (Table 2). For all

Fig. 1 Trajectories of changes over time in MADRS score.
Observed mean of the Montgomery-Åsberg Depression Rating
Scale (MADRS) score according to treatment status determined at
T8. Responders are those showing a 50% reduction in MADRS score
at T8, of which we distinguished early responders (50% reduction in
MADRS score criterion already met at T2), and later responders (50%
reduction in MADRS score criterion met after T2).

Fig. 2 Relationship between change over time and response to escitalopram treatment. A Association between change over time (slope)
of the 32 selected RNAs and response to escitalopram treatment at T8. The p values (log10 transformed, y-axis) for the association between
response status and RNA slope are shown for each of the 32 selected RNAs (x-axis). The dotted line represents the threshold of P < 0.05 used
to select RNAs for the next analysis steps. B–E Change over time of the 4 significant RNAs by response to escitalopram treatment. Expression
trajectories over time are shown for CERCAM B, DARS-AS1 C, FAM228B D, and HBEGF E among individuals classified as early responders, later
responders, and nonresponders. Solid lines and points represent observed means, dashed lines represent linear slopes.
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except HBEGF, responders showed higher expression over time,
compared to nonresponders (Fig. 2, B–E).
We next assessed the expression of these four genes in the

brains of subjects who met the criteria for MDD, as previously
published [17] (Fig. 3, A–D), and found a trend for decreased
expression of HBEGF in depressed individuals (P= 0.065). Further-
more, we examined the effects of antidepressant treatment on
expression, by dividing the MDD group into those who were
taking antidepressants and those with no history or positive
toxicology for antidepressants (Fig. 3, E-H). This analysis identified
elevated expression in individuals taking antidepressants relative
to controls for both the DARS-AS1 (ANOVA P= 0.04, Tukey’s P=
0.05) and FAM228B (ANOVA P= 0.009, Tukey’s P= 0.007).
Finally, we examined the effects of drug treatment on the

expression of these four genes in vitro, using a hindbrain neuronal
cell culture (Fig. 3, I–L). Cells were treated with three different
classes of psychotherapeutic agents in order to assess the
specificity of gene expression changes. We found increased
expression of HBEGF in cells, which were treated with escitalopram
(ANOVA P= 0.05, Dunnett’s P= 0.04), with no significant differ-
ences when treated with haloperidol or lithium. In complementary
analyses, we found that this effect was specific to escitalopram
and not to other antidepressants such as duloxetine or

imipramine (Supplemental Figure S2). No other genes were
significantly altered by escitalopram treatment. Interestingly,
DARS-AS1 displayed significantly elevated expression in cells
treated with haloperidol and imipramine (ANOVA P= 0.002,
Dunnett’s P= 0.004 and 0.005, respectively).

DISCUSSION
In this study, we used longitudinal gene expression data to
identify RNAs displaying differential patterns of expression, which
were related to trajectories of clinical response to escitalopram
treatment. To this end, we identified three patterns of clinical
response, based on the MADRS score, which differed in both the
timing of changes in depressive symptoms, as well as response
status at the end of the trial. These trajectories of response were
associated with changes of expression of four genes across time
and build upon previous reports on clinical trajectories of
antidepressant response [20, 21].
The best-characterized gene among these four is HBEGF. This

gene belongs to the epidermal growth factor family, and
preferentially binds both the epidermal growth factor receptor
(EGFR) and erb-b2 receptor tyrosine kinase 4 (ERBB4) [22]. Both of
these receptors have previously been implicated in psychiatric

Table 2. Association between changes in RNA expression and risk response status.

RNA log(RR) SE P FDR RR

Responders vs. nonresponders

BET1 0.776 0.471 0.100 0.159 2.17 (0.86-5.47)

CERCAM 1.064 0.323 0.001 0.023* 2.90 (1.54-5.46)

DARS-AS1 −0.817 0.387 0.035 0.076 0.44 (0.21-0.94)

FAM228B 1.079 0.430 0.012 0.041* 2.94 (1.27-6.83)

HBEGF 0.748 0.340 0.028 0.066 2.11 (1.09-4.11)

MCM8 0.563 0.303 0.063 0.116 1.76 (0.97-3.18)

NME7 0.259 0.302 0.392 0.450 1.30 (0.72-2.34)

TERF1 0.095 0.382 0.803 0.803 1.10 (0.52-2.32)

Early vs. nonresponders

BET1 0.659 0.368 0.073 0.125 1.93 (0.94-3.97)

CERCAM 0.794 0.260 0.002 0.023* 2.21 (1.33-3.68)

DARS-AS1 −0.879 0.309 0.004 0.023* 0.42 (0.23-0.76)

FAM228B 0.814 0.340 0.017 0.050* 2.26 (1.16-4.40)

HBEGF 0.799 0.282 0.005 0.023* 2.22 (1.28-3.87)

MCM8 0.333 0.244 0.173 0.244 1.40 (0.86-2.25)

NME7 0.297 0.240 0.217 0.289 1.35 (0.84-2.15)

TERF1 0.211 0.296 0.476 0.497 1.24 (0.69-2.21)

Later vs. nonresponders

BET1 0.632 0.396 0.110 0.165 1.88 (0.87-4.09)

CERCAM 0.647 0.287 0.024 0.065 1.91 (1.09-3.35)

DARS-AS1 −0.920 0.342 0.007 0.028* 0.40 (0.20-0.78)

FAM228B 0.695 0.371 0.061 0.116 2.00 (0.97-4.15)

HBEGF 0.888 0.315 0.005 0.023* 2.43 (1.31-4.51)

MCM8 0.228 0.267 0.394 0.450 1.26 (0.74-2.12)

NME7 0.296 0.266 0.265 0.335 1.34 (0.80-2.26)

TERF1 0.244 0.328 0.456 0.497 1.28 (0.67-2.43)

The table reports the estimates from a multivariable multinomial regression model predicting response status (i.e., dependent categorical variable: early, later,
and nonresponders; nonresponders used as base category) from longitudinal changes in RNAs, independently from one another. Risk ratios (RR) increase in
the likelihood of being an early responder (or later responder) vs. nonresponder for 1 standard deviation increase in RNA slope. The model is adjusted for age,
sex, anxiety disorders, and suicidality.
SE standard error, RR risk ratio, FDR false discovery rate.
*RNA with FDR < 0.05.

L.M. Fiori et al.

5

Translational Psychiatry          (2021) 11:439 



disorders, including schizophrenia, mood disorders, and antide-
pressant response [23–29]. Furthermore, dysregulation of HBEGF
has been implicated in depression [30], and mice in which HBEGF
have been knocked out display behavioral phenotypes, which are
responsive to antipsychotics as well as altered dopamine and
serotonin levels in the brain [31]. In addition to its relationship
with escitalopram response, we also found it to be differentially
expressed in the brain in individuals with depression who died by
suicide, suggesting that our findings in the blood may also
indicate central effects. Moreover, the expression of this gene was
altered by escitalopram treatment in vitro, further supporting a
direct role for HBEGF in antidepressant response.
Unlike HBEGF, the function of CERCAM has not been well-studied.

CERCAM was previously known as glycosyltransferase 25 family
member 3 but does not display beta-galactosyltransferase activity
in vitro [32]. Instead, one study identified it to be a cell adhesion
protein involved in the migration of leukocytes across the blood-
brain barrier [33]. This is particularly interesting given the relationship
between blood-brain barrier integrity and depressive phenotypes
[34], as well as consistent findings of increased inflammation in
depressive disorders [35–37]. Furthermore, CERCAM displays
enriched expression in the brain and pituitary gland (gtexportal.
org), suggesting this protein has important neurological functions.
To date, no function of FAM228B has been identified. However,

this gene is ubiquitously expressed across most tissues, including the
brain, likely indicating functional importance. Additionally, it demon-
strated altered expression in the brains of depressed individuals who
were being treated with antidepressants, suggesting a potential

relationship between our peripheral and central findings. Future
studies will be needed in order to identify the function of this gene.
Unlike the protein-coding genes above, DARS-AS1 is a long

noncoding RNA (lncRNA). The majority of studies investigating this
lncRNA have been related to its role in cancer, where it acts to
regulate the expression of several microRNAs, including miR-129,
miR-194-5p, miR-532-3p, and miR-628-5p [38–41], as well as the
protein RNA-binding motif protein 39 (RBM39) [42]. As a number
of studies have highlighted the importance of microRNAs in
antidepressant response [43, 44], it seems plausible that the role of
DARS-AS1 in escitalopram response involves modulation of
microRNA expression. Similar to FAM228B, this gene was altered
in the brains of antidepressant-treated individuals, supporting a
role for its involvement in treatment response.
Comparable to depression, the antidepressant response is highly

heterogeneous and involves complex interplays among numerous
signaling pathways. Similarly, the neurobiological changes that occur
during antidepressant treatment are unique to each individual, based
on their underlying biology and environmental factors. As such, both
the biological effects of different pathways and timing of these
effects during the course of treatment, can vary greatly between
individuals. At the clinical level, these differences are apparent at
both the level of depressive symptoms, as well as the trajectory of
symptoms over time. Reflecting this, we identified several groups of
response trajectories among participants in this study. By incorporat-
ing response trajectories into our analyses, we were able to identify
genes whose longitudinal patterns of expression were related to
response. Differences in longitudinal gene expression between

Fig. 3 Expression in the brain and in vitro. Gene expression in the anterior cingulate cortex of controls C, individuals with major depressive
disorder (MDD), depressed individuals not taking antidepressants (MDD− AD), and depressed individuals taking antidepressants (MDD+ AD)
was quantified by RNA sequencing, for CERCAM A, E, DARS-AS1 B, F, FAM228B C, G, and HBEGF D, H. The effects of drug treatment on gene
expression in neural progenitor cells was assessed after 48 h of treatment, for CERCAM I, DARS-AS1 J, FAM228B K, and HBEGF L. For cell
experiments, expression values were normalized to B-actin, and error bars represent SEM.
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responders and nonresponders were similar regardless of the early
vs. later response pattern to antidepressant treatment. This suggests
that these genes are robust biomarkers of antidepressant response
independently from the rate of improvement of the depressive
symptoms. For example, changes over time in these genes’
expression may suggest future adequate response to antidepressant
even if drastic clinical improvements are not yet observed.
Conversely, lack of changes over time of these genes’ expression
may suggest the absence of future antidepressant response, if clinical
symptoms are also not improving. Importantly, in the present study,
we chose to focus on genes whose expression was not different
between the groups at baseline, as our objective was to identify
genes that mediate, rather than predict, antidepressant response. By
doing so, we were able to identify genes that may be used to more
precisely monitor antidepressant response, or may represent
potential new antidepressant treatment targets. Most large-scale
gene expression studies investigating antidepressant response over
time focus on expression differences between two time points,
typically prior to treatment initiation, as well as after a standard
course of treatment (generally eight weeks). Although valuable, these
studies lack precision, as they fail to include intermediate time points,
which are often clinically relevant [45, 46]. Indeed, as the molecular
changes underlying depressive symptoms are also likely to display
temporal differences similar to clinical changes, vital information can
be gained by analysing gene expression at additional time points
during treatment.
Our study has numerous strengths, including (1) the use of a

large sample of patients treated with escitalopram in a well-
characterized multicenter cohort, (2) high-throughput RNA
sequencing data for all patients at three clinically relevant time
points during treatment, and (3) the use of longitudinal models
which allowed us to identify patterns of antidepressant response,
as well as to study the longitudinal course of gene expression
during antidepressant treatment. However, the study has some
limitations. First, although we analyzed a moderately large sample,
statistical power may have been limited for some comparisons,
especially taking into account corrections for multiple testing. This
may have led to conservative results (i.e., failure to identify
additional genes associated with response). Second, although we
used longitudinal data on RNA expression, reliance on three time
points only allowed us to model linear changes over time. Studies
with larger samples and additional data points are needed to
replicate our results and to enable a fine-grained examination of
longitudinal patterns of gene expression (e.g., quadratic trajec-
tories). Finally, it must be noted that while the genes we identified
were associated with response, our analyses cannot infer causality,
such that it is not clear if these genes are involved in clinical
response, or if they are downstream to pathways, which are
affected by the response. Additionally, the present study was
performed using peripheral blood samples, and the relationship
between the gene expression in the blood and brain is unclear.
However, we identified differential expression of HBEGF, DARS-
AS1, and FAM228B in the brains of depressed individuals who
died by suicide, suggesting that these gene expression patterns in
the blood reflect biological processes occurring in the brain. More
detailed analyses, including antidepressant trials with additional
time points, as well as animal studies in which gene expression
can be experimentally manipulated, will be necessary to better
elucidate the role of these genes in antidepressant response.
In conclusion, in a large cohort of escitalopram-treated patients

with MDD, we identified patterns of treatment response, which were
individually associated with changes in the expression patterns
across time of four genes. Our study provides greater insight into
biological processes, which are involved in the intermediate stages of
escitalopram the response, and highlights several genes whose roles
in antidepressant response had not been previously identified.
Future work will be needed to more thoroughly characterize the role
of these genes and their related pathways.
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