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Major mental disorders are highly prevalent and make a substantial contribution to the global disease burden. It is known that
mental disorders share clinical characteristics, and genome-wide association studies (GWASs) have recently provided evidence for
shared genetic factors as well. Genetic overlaps are usually identified at the single-marker level. Here, we aimed to identify genetic
overlaps at the gene level between 7 mental disorders (schizophrenia, autism spectrum disorder, major depressive disorder,
anorexia nervosa, ADHD, bipolar disorder and anxiety), 8 brain morphometric traits, 2 cognitive traits (educational attainment and
general cognitive function) and 9 personality traits (subjective well-being, depressive symptoms, neuroticism, extraversion,
openness to experience, agreeableness and conscientiousness, children’s aggressive behaviour, loneliness) based on publicly
available GWASs. We performed systematic conditional regression analyses to identify independent signals and select loci
associated with more than one trait. We identified 48 genes containing independent markers associated with several traits
(pleiotropy at the gene level). We also report 9 genes with different markers that show independent associations with single traits
(allelic heterogeneity). This study demonstrates that mental disorders and related traits do show pleiotropy at the gene level as well
as the single-marker level. The identification of these genes might be important for prioritizing further deep genotyping, functional
studies, or drug targeting.
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INTRODUCTION
Many mental disorders share features such as clinical symptoms,
cognitive deficits or drug prescriptions. This overlap has led to
arguments for treating mental disorders along symptom spec-
trums rather than as separate diagnostic categories. The genetic
architectures of many mental illnesses, cognitive phenotypes and
brain morphology traits also display many general similarities as
they are highly heritable and are influenced by many genetic
variants of small effect [1–5]. Recently, studies have shown that
mental disorders and associated traits also share genetic risk
factors [6]. Statistical methods taking into account polygenic
effects and gene-wide effects, linkage disequilibrium regression or
empirical Bayesian models, have characterized specific genetic
overlaps between many traits by using the effects observed in one
trait to extract more information about the effects observed in
another trait [6–11]. Indeed, genetic overlaps have been reported
within the domain of mental disorders [9, 12] or between
psychiatric and cognitive traits [13–15]. However, in these studies,
the underlying assumption is that the genetic correlation between

traits arises due to the presence of markers affecting both traits,
i.e. pleiotropy at the SNP level.
There is a paucity of studies that have systematically used

GWAS data, with the focus specifically at the gene level, to
investigate the effects of independent variants on complex mental
traits. In classical Mendelian diseases, it is well known that
different pathogenic variants within one gene can be implicated
in the same or a highly similar disease: e.g., numerous mutations
within CFTR can cause cystic fibrosis [16–20], while several
mutations in the BRCA1 can increase the risk to develop breast
cancer [21–23]. This phenomenon, called allelic heterogeneity,
arises when different variants within a gene are independently
associated with the same trait, usually because they all lead to
similar pathogenic changes in protein function. Previously, we
used schizophrenia (SCZ) GWAS summary statistics to identify
several gene loci within which several independent markers were
associated with SCZ [24, 25]. Going one step further, we here
investigate pleiotropy at the gene level, which is defined as the
association of several genetic variants in one locus with different
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traits. Many studies have investigated overlaps between mental
disorders at the SNP level, but none to our knowledge have
looked at genome-wide pleiotropy at the gene level. We obtained
GWAS summary statistics for multiple mental disorders, cognitive
functions, brain imaging traits and personality traits as relevant
endophenotypes to identify pleiotropy at the gene level.
Cognitive deficits are consistently reported in many mental

disorders such as SCZ, bipolar disorder (BPD) and autism [26, 27],
and it has been suggested that measures of cognitive functions
represent underlying phenotypes across different patient groups
[28]. GWASs on educational attainment [29], general cognitive
function (gF) [2, 30] and intelligence [31] have successfully
identified genetic factors implicated in these traits. Genetic
overlap has also been demonstrated between intelligence and
SCZ and BPD [13], and between educational attainment and SCZ
[14].
Regarding brain volume imaging traits, the ENIGMA consortium

[32, 33], among others, has shown that patients with SCZ have
smaller intracranial, hippocampus, amygdala, thalamus and
accumbens volumes, but larger bilateral caudate, putamen,
pallidum and lateral ventricle volume [34]. Genetic studies have
also shown some polygenic overlap between SCZ and volumes of
hippocampus, putamen and ICV; and between major depression
and white matter integrity [35], although this was not found in all
studies [36].
Personality traits may also influence behaviours and social

functions [37]. For patients with mental disorders, such traits can
be a risk factor (for example, neuroticism [38]) and can affect the
clinical symptoms observed in the patients. Five-factor personality
scales (neuroticism, openness, agreeableness, extraversion, con-
scientiousness) help to discriminate between the range of
schizophrenia spectrum disorders [39]. Aggressive behaviour in
early childhood may indicate behavioural problems and risk of
mental disorders in adulthood [40, 41]. Furthermore, impaired
social relationships and loneliness can lead to different psychiatric
disorders, including personality disorders [42]. The genetic overlap
between mental disorders and personality traits is indicated in
various studies (e.g. neuroticism and SCZ [43]; or well-being and
anxiety disorders [6]).
At the genetic level, the atlas of genetic correlation published

by the BrainStorm consortium [6] reported genetic overlap
between several of these traits at the single-marker level (SNP).
They observed high correlation among attention deficit hyper-
activity disorder (ADHD), BPD, major depressive disorder (MDD),
and schizophrenia. The BrainStorm consortium also shows that
some personality traits and cognitive traits correlated with mental
disorders. However, the BrainStorm consortium did not examine
the genetic overlaps at the gene level.
In the present study, we investigated genetic overlaps between

mental disorders, brain morphometric traits and cognitive traits.
We performed a systematic analysis of these GWASs to identify
independent signals of association, using conditional regression
[25], followed by comparative examination of certain genes and
genomic regions which were associated with at least two different
traits.

MATERIALS AND METHODS
Summary statistics from GWAS were obtained (see details in Supplemen-
tary Material) to test the three categories of phenotypes. For (i) mental
disorders: we obtained GWAS from schizophrenia (SCZ) [1], autism
spectrum disorder (ASD) [44], major depressive disorder (MDD) [45],
anorexia nervosa [46–48], ADHD [49], BPD [50] and anxiety (Anxiety Neuro
Genetics Study- ANGST) [51]; For (ii) brain morphometric traits: we
obtained GWAS for subcortical brain volumes [33]; For (iii) cognitive traits:
we obtained GWAS for educational attainment [29], general cognitive
function (gF) [30]; and (iv) personality traits: subjective well-being,
depressive symptoms, neuroticism [52], extraversion [53], openness
to experience, agreeableness and conscientiousness [54], children’s

aggressive behaviour [40] and loneliness [55]. All the GWASs selected
were performed on a sample of European origin.
The pipeline of analyses consisted of several steps which are

described in detail below. Briefly, the pipeline, described in Supplemen-
tary Fig. 1, consisted of the following steps: (1) Perform unified quality
control for all the GWAS obtained from different databases, (2) In each
GWAS identify independent signal of association with conditional
regression using cojo_GCTA, from which we derive a list of all genomic
regions associated in all GWAS, (3). Annotation of the associations to
genes or group of genes (if some association were mapping to genomic
regions with more than one gene); (4) Identification of genes and gene
groups with more than one association; (5) Classification of the regions
with more than one signal in three possible scenarii which corresponds
to either allelic heterogeneity (one trait several association), marker-
based pleiotropy (same marker associated with different traits) or gene-
based pleiotropy (different markers in the same gene/gene group
associated with several traits). For the gene and gene groups identified
in step 3, we also perform an analysis based on gene score calculated for
each trait, taking all the SNPs located in the gene, which were then
compared across traits.

Quality control of GWAS summary statistics
The GWAS datasets, including SNPs and sample numbers, are described in
the Supplementary Material. For all the studies, we performed the same
quality control (QC) procedure based on the summary statistics obtained
for the different GWASs (see Supplementary Table 1). The QC parameters
were selected based on recommendation for using the cojo-GCTA method
[25]: poorly-imputed SNPs with imputation score < 0.9, ambiguous SNPs,
markers with minor allele frequencies < 0.1 and insertions/deletions were
filtered out during our QC. Genome mapping was based on the human
genome reference hg19. In studies using hg18 coordinates, conversion to
hg19 was conducted using the UCSC Genome Browser liftOver tool [56].
Statistics for chromosome X were available only for the SCZ GWAS. We
thus focused only on autosomal chromosomes.
All sample collections were approved by the relevant local ethic

committee and all individuals provided informed consent.

Selection of independent signals
For each trait, independent signals of association were selected by
conditional stepwise regression using the cojo-GCTA tool [25]. We and
others have shown previously that cojo-GCTA is better than LD pruning for
identifying independent and conjunctional association signals in summary
statistics [24, 25]. Input data comprised (a) summary statistics, filtered after
performing stringent QC procedures – checking effect sizes, standard error,
p-value and allele frequency for each GWAS; and (b) a sample of
Norwegian origin and a sample of German with 4678 individuals with
7,111,231 genotyyped and imputed markers, according to cojo-GCTA
protocol (for details see [24, 25]). We previously demonstrated that a cojo-
GCTA threshold of 10−5 is reliable to identify independent signals.

Gene and genomic region binning
Selected independent SNPs were annotated to 26,025 known unique
RefSeq genes (1.02.2017 freeze) [57]. In the RefSeq library all isoforms of a
gene are mapped to one unique RefSeq gene. The LDsnpR tool [58] was
used to assign signals to genes if they were located within the boundaries
of a RefSeq gene, (±10 kb). Genes that were fully overlapping or antisense
and which thus contained the same combination of annotated markers
were merged into gene_blocks. Gene_blocks were defined as genomic
regions containing several genes where the boundaries of the block
correspond to the minimum start position and the maximum end position
among the overlapping genes included in the block. The SNPs were
assigned to a total of 1410 genes.

Identifying SNP-based allelic heterogeneity and pleiotropy
within and across traits
A total of 226 gene-groups (with 242 genes) contained more than 2
association signals identified by cojo-GCTA (p < 1 × 10−5), 177,344 SNPs
were mapped to the selected 226 regions. Using the pair-wise SNP pruning
procedure from PLINK [59] with a 10 Mb window and r2 = 0.2 and the
same LD reference as described early, these 177,344 SNPs were assigned to
8772 independent markers. Since our analyses are focusing on these
regions, the experiment-wide significance threshold at 5% with Bonferroni
correction was set to 0.05/8772= 5.70 × 10−6.
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Identifying gene-based allelic heterogeneity and pleiotropy
within and across traits
All the SNPs mapped to the genes were used to calculate a gene score for
each gene and each trait using the Brown method [60, 61]. Brown scores were
calculated for all 1410 genes which contain at least one SNP identified by
cojo-GCTA, all SNPs in these genes were included to calculate the Brown
score, including 10 kb flanking regions. The LD corrections were based on the
LD reference described earlier (i.e. our German and Norwegian genotyped
sample). The scores were corrected for multiple testing using the false
discovery rate (FDR) method within a trait. The threshold for the FDR-adjusted
gene score was 0.05/27 phenotypes tested = 0.0018 for association across
phenotypes. A total of 379 genes passed this threshold for at least two traits.
We further filtered these genes by excluding those minimal p-values > 5.70 ×
10−6 (study-wide threshold of association).

Haplotype analysis
For the purpose identify potential haplotype association in independent
association, we scrutinize haplotype frequencies for one example: MAN2A1
(chr5: 109.03–109.22Mb). Frequencies of haplotypes were estimated using
the German and Norwegian reference samples in Haploview [62]. Haploblocks
were defined with the four gamete rule in Haploview [62] with r2 threshold 0.8
and window size 500 kb. We examined only haplotypes with frequencies
higher 10%. We also examine the haplotypes for SNPs with r2 > 0.8 with
rs4388249; (2) and SNPs with r2 > 0.8 with rs1368357; SNPs cluster were
derived using Plink [59] from Norwegian + German reference set.

RESULTS
Identification of independent association signals and
corresponding gene loci
The analysis pipeline is shown in Supplementary Fig. 1. We
selected 7 GWASs for mental disorders, together with 20 GWASs
for cognitive, personality and brain morphology traits that have
been suggested as potential endophenotypes for those mental
disorders [30, 33, 34, 40, 63, 64], or have some genetic overlap
with those mental disorders. Using the summary statistics from all
27 GWASs, we identified a total of 2190 unique associated SNPs
after conditional regression [25].

Gene annotations
Out of 2190 unique SNPs, 775 could not be annotated to any
gene, whereas 1415 SNPs were annotated to 1410 genes. If two or
more genes had overlapping SNPs, we merged them into
gene_blocks. This resulted in the identification of 1161 genes or
gene-groups (Supplementary Fig. 1). We identify genetic overlaps
either by selecting genes based on the single SNP minimal p-
value, which we call SNP-based analysis, or by selecting genes
with a Brown score lower than the study wise FDR level.

Genetic overlaps at the gene level and SNP level within or
between traits
Out of the 1161 gene groups, 226 displayed significant association
to at least two different traits (Table 1). Loci with p-values below

the experiment-wide threshold of 5.70 × 10−6 were selected for
further analyses. We observed three possible scenarios (see Fig. 1):

● Scenario I. Pleiotropy at the gene level: genes or gene-groups
with multiple associations to LD-independent genetic variants
for at least two traits (N= 25).

● Scenario II. Allelic heterogeneity within a trait: genes or gene-
groups with multiple associations to LD-independent genetic
variants and with only one trait (N= 9).

● Scenario III. Pleiotropy at the SNP level: regions with multiple
associations to LD-dependent genetic variants and with more
than one trait (N= 47).

A locus was considered to contain dependent markers if at least
one pair of SNPs that were associated to traits had r2 ≥ 0.2 (Table
1, based on the European-descent individuals (EUR) from the 1000
Genomes [65]).

Scenario I: Pleiotropy at the gene level. In this scenario, we
observed two situations: (i) several LD blocks were present within
a gene or a gene-group, and SNPs from different LD blocks were
associated with different traits; or (ii) positionally overlapping sets
of SNPs not in LD were associated with different traits
(Supplementary Table 2, Supplementary Fig. 2; these genes can
also be visualized at https://genlocus.shinyapps.io/2locus/).
Twenty-five genes displayed independent associations with two

traits: RERE, LOC102724552, GPM6A (SCZ and educational attain-
ment); RBKS (SCZ and BPD); DLGAP2 and ERICH1-AS1 (SCZ and
ADHD); GLIS3 (SCZ and neuroticism); JADE2 (educational attain-
ment and BPD); ASTN2 (ASD and BPD); FHIT (SCZ and MDD); TEAD1
(educational attainment and subjective well-being); TENM4 and
MACTOD2 (gF and BPD); EXT1 (gF and AUT); LRRC4C (gF and
anorexia); CACNA1E (gF and Neuroticism); CTNNA2, LRP1B, ATXN1,
SNX29, CDH2 (educational attainment and gF); ZNF385B, MIPEPP3,
PHACTR3 (gF and SCZ). In addition, RBFOX1 has two independent
association signals with both SCZ and gF, giving four independent
hits within one gene.

Scenario II: Allelic heterogeneity within a trait. We observed 9
genes in which several independent signals are associated with
one trait (Supplementary Table 3, Supplementary Fig. 3): BSN and
CTNNA3 for educational attainment, RPS6KA2 for BPD, NKAIN2 and
CDKAL1 for gF. For Alzheimer’s disease, allelic heterogeneity was
observed in the genomic locus containing NECTIN2, TOMM40,
APOE and APOC1, which has been reported before [66, 67] and
reflects the fact that different APOE haplotypes ε2, ε3 or ε4 can be
risk factors or protective factors for Alzheimer’s disease [68–71].

Scenario III: Pleiotropy at the SNP level
We identified 47 loci with 53 genes where the same SNP, or
SNPs in LD (r2 ≥ 0.2), were associated with different traits at the

Table 1. Number of gene/gene-groups containing more than one marker associated after cojo-GCTA at different significance threshold (genome-
wide significance threshold 5 x 10−8, experiment-wide threshold 5.7 x 10−6 and recommended threshold for cojo-GCTA 1 × 10−5).

2+ markers < 5 × 10−8 2+ markers < 5.7 × 10−6 2+ markers < 1 × 10−5 Scenario

Markers independent (not in LD)

One trait 2 9 27 II

Several traits 0 25 96 I

Markers dependent (in LD)

Several traits 15 47 79 III

Mixed

Several traits 5 24a 24
aIncludes 3 gene groups with the same SNP selected in different traits.
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study-wide level. For most of the genes, a pair of markers in LD
were linked to two traits. However, for DCC and STK24, 5 and 4
SNPs were associated with 6 and 4 traits respectively (see
Supplementary Table 4, Supplementary Fig. 4). Typically, Scenario
III overlaps should also be identified in studies that investigate
genetic overlap at the single-marker level [7–9]. Since not all the
genetic overlaps that we have tested here have been investigated
using marker-based pleiotropy, we could not compare system-
atically whether the single-marker pleiotropy we identified is
actually reported with other methods. We compared with one
published study for overlap of schizophrenia and education at the
marker level [14], 8 of the 10 markers identified in the scenario III
had been identified previously, the two additional being probably
due to different significance thresholds between the studies.

Mixed cases. are loci that contain both LD-dependent and
-independent markers which are associated with different traits;
e.g. genes with allelic heterogeneity for one trait and an
association of one of these SNPs with another trait (see
Supplementary Table 5, Supplementary Fig. 5). For example,
CACNA1C has two sets of SNPs which are associated with SCZ,
while rs10744560 is also associated with BPD (Supplementary Fig.
5R). Some of these overlaps at the SNP level have been identified
previously: ZEB2 [14], JMJD1C [10, 72], LINC00461; EXOC4 and
SORCS3 [13].

Gene score-based pleiotropy
To explore the combined effect of markers within a gene, we also
examined association at the gene level by obtaining gene-based
scores. For each gene, we calculated Brown scores [61] across
traits and filtered those for association at the study-wide level. We
identified 23 additional genes with pleiotropy at the gene level
across traits (see Table 2 and Supplementary Fig. 6). The
pleiotropic genes were: LRRN2, MAN2A1 and EYS (SCZ and
educational attainment); COL16A1, EFNA5, SHANK3 (educational
attainment and gF); BRE-AS1 and LINC01378 (SCZ and BPD); CLU,
MIR6843 (SCZ and Alzheimer’s disease); SFXN5, SATB2, FXP1, CKB,
TRMT61A, APOPT1, (SCZ and gF); TEX41 (ADHD and educational
attainment); ZMIZ2, TMEM245 and SLCO3A1 (educational attain-
ment and gF); KCNC2, (educational attainment and neuroticism);
CDH8 (ADHD and gF); TCF4 (SCZ and neuroticism). One of these 23
genes, SHANK3, had been reported in another study [10, 72].
We also report 104 additional genes with LD-linked markers

(Supplementary Table 4) and 48 genes with a mixed case scenario
(Supplementary Table 5).
An overview of the genes identified with gene-based pleiotropy

is presented in Supplementary Table 6 with a description of their
functions and annotation to additional relevant clinical and
experimental information such as mouse models, or involvement
in mental retardation, or other evidence for involvement in mental
disorders, such as the presence of rare variants and CNVs. Rare
variants and CNVs in 11 of the 48 genes have been implicated in
intellectual disabilities or mental retardation, while rare variants
and CNVs in 5 of these genes have been associated with ASD
or SCZ.

Haplotype association
We further explored the 23 genes that demonstrated genetic
overlap across traits in the gene score-based analysis. We
observed that in most cases there were two sets of markers that
positionally overlapped within an LD block defined by two groups
of markers in high r2 LD (r2 > 0.8). Since this could reflect an
association to different haplotypes, we performed haplotype
analyses within haploview [73] and, as an example, we display the
haplotype analysis for MAN2A1 (chr5: 109.03–109.22 Mb, see
Fig. 2a). The genotypes from the German and Norwegian samples

Table 2. Number of genes identified by gene-based analysis.

Criterion # of genes

Genes significantly associated with ≥2 traits 379

Genes identified with marker-based analysis 69

Not identified by
SNP-based analysis

Marginal SNP p-values do not
pass threshold 5.7 e-6

135

LD-independent markers
(scenario I)

23

LD-dependent markers
(scenario III)

104

Mixed 48

Fig. 1 Three possible scenarios for genes harbouring multiple association signals. Upper panels: regional association plots illustrating the
three different scenarios. Scenario I, Pleiotropy at the gene level: two LD-independent clusters within the gene GPM6A are associated with SCZ
(red cluster, trait 1) and education (blue cluster, trait 2). Scenario II, Allelic heterogeneity: within one gene (CTNNA3), two LD-independent
clusters are associated with one trait (Education). Scenario III, Pleiotropy at the SNP level: within the gene DCC, one cluster of LD-dependent
genetic variants is associated with both depression (trait 1) and putamen volume (trait 2). Red and blue colours correspond to the strength of
LD with the first and second tagged SNPs. Figures were plotted using the LocusZoom tool [90]. Lower panels: underlying LD pattern for each
region. Figures were obtained using the UCSC Genome Browser [56] with CEU population as reference and LOD values plotted.
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were segregated into haplotypes within haploview [73]. In this
region, the SNP rs4388249 which is associated with SCZ (p =
3.05 × 10−8, with the T allele being increased in cases, see
Supplementary Table 7), is independent of the SNP rs1368357 (i.e.
r2 < 0.2 with rs4388249) which is associated with educational
attainment (p = 3.37 × 10−6, with T allele being associated with
lower education, see Supplementary Table 7). At the haplotype
level we observed that the T allele of rs4838249 is located on one
haplotype, while the T allele for rs1368357 is located on another
haplotype. Thus, the alleles that are associated with one or the
other phenotypes are located on different haplotypes (see Fig. 2b).
While we did not perform such deep screening of these

associations we can expect that other association to independent
signal will also reflect association at the haplotype level.

Comparison between genetic overlaps at the gene level and at
the SNP level
As the final step, we compared the genetic overlap between traits
when considering either the entire gene or the SNPs as the
candidate loci. The upper triangle of Supplementary Fig. 7
represents genes where independent SNPs were associated with
pairs of traits, while the lower triangle represents genes in which
the same SNP (or SNPs in LD with r2 > 0.2) was associated with
pairs of traits. We observed a higher number of overlaps for the

Fig. 2 Regional plots and haploblocks for the MAN2A1 gene. a Regional plots for association with schizophrenia and educational
attainment. The markers are labelled according to their LD with the reference SNPs. Red colours correspond to LD values between the markers
and rs4388249; blue colours correspond to LD values between the markers and rs1368357. b Haplotypes for the region (from the Norwegian
+German cohort described above sample [91]). In the upper plot, all the SNPs are displayed. Three haplotypes have a frequency >10% (top)
and the SNPs rs4388249 (number 7) and rs1368357 (number 134) are highlighted in yellow (2B1). The risk allele for SCZ, rs4388249_T, is
present on the 3rd haplotype, while the allele associated with higher education, rs1368357_T, is present on the 2nd haplotype. The lower plots
represent the LD block split into the LD cluster for rs4388249 (2B2), and LD cluster for rs1368357 (2B3), which shows how the sets of clusters
are in high LD and overlap within the same block.
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pairs SCZ/gF, SCZ/educational attainment, SCZ/BPD, and SCZ/
neuroticism. This might reflect a higher genetic overlap between
these traits, but it may also partly be due to the fact that SCZ, gF
and educational attainment are the studies with the largest
sample sizes, and hence have the highest power to detect
association.
For most of the trait pairs, there is more pleiotropy at the SNP

level than at the gene level, but for a few pairs, some pleiotropy is
observed at the gene level that is not observed at the SNP level.

DISCUSSION
In this study, we have identified genes which harbour multiple
associations with a spectrum of mental disorders and other
phenotypes that have been suggested to act as endophenotypes.
We observed either pleiotropy between different traits at the gene
level, pleiotropy at the SNP level, or allelic heterogeneity within a
trait for one positional locus. Overall, we observed more pleiotropy
at the SNP level (scenario III) then at the gene level. We also
observe more overlap for group of cognitive and personality traits
and their overlap with group of psychiatric traits and brain volume
traits.
There were 48 genes with at least one pair of independent

markers associated with at least two traits, i.e. pleiotropy at the
gene level which has not been reported before. We also report
157 genes where the pleiotropy was at the SNP level most of
which have been identified by classical pleiotropy analyses.
The variety of genetic overlaps that was observed reflects the

complexity of the genomic landscape (genetic architecture and LD
maps). Several genes show clear pleiotropy at the gene level. This
provides important information on novel specific genes that have
been implicated in certain disorder but which have not been
systematically reported as genetically overlapping across traits.
This is probably because they do not overlap at the marker level
and hence are not identified in the classical pleiotropy studies
reported so far for psychiatric disorders. While the pleiotropy at
the SNP level between psychiatric traits is well established
[7, 9, 13, 15], and can be used to characterize more genetic
architecture and functional mechanisms in mental disorders, the
current findings show that it is also important to consider the
pleiotropy at the gene level for further functional studies.
In Supplementary Table 6, we present the biological functions

and relevance of all genes with pleiotropy at the gene level. An
example is the gene CLU, which is the third most significant
genetic risk factor for the development of late-onset Alzheimer’s
disease [74, 75]. It encodes the clusterin/apolipoprotein J which
has been shown to alter the aggregation and toxicity of Aβ
peptides and promote their clearance across the brain-blood
barrier [76, 77]. CLU has also been previously associated with SCZ
[1, 78], we now show that these two associations are independent
as the two signals of association are not in LD (r2 < 0.2). In some
studies it was suggested that oxidative stress, neuroinflammation,
neurovascular endotheliopathy and disruption of the brain-blood
barrier may lead to the cognitive and behavioural symptoms of
SCZ via several processes including interactions between brain-
innate and peripheral adaptive immunity [79].
There are many possible explanations for the independent

associations. We observed that the independent associations
could be due to either association in different parts of a gene or to
different genes within a gene group, but they can also be due to
different haplotypes within the same part of the gene. We have
detailed in the results how further scrutiny of such overlap can
show which of these signals are due to association with different
haplotypes on the MAN2A1 gene. In a quick overview of these
associations, we identified several other potential haplotype
association, but this would warrant haplotype analyses for each
of them which we do not present here. In the case of haplotype
association, it is possible that sets of alleles on one haplotypes are

actually in linkage with other variants that are rare or imperfectly
tagged by the set of markers typed in the GWAS. It has been
speculated that some GWAS associations are due to so-called
synthetic association to rare variants that are imperfectly tagged
in GWASs [80, 81]. Capturing these variants at the genome level is
challenging, but the genes we identified here are potential
candidates to investigate for such synthetic rare variants. Thus, it
would be efficient to prioritize these genes for deep genotyping or
sequencing. One could also select individuals for deep sequencing
based on their haplotypes in order to increase the chances of
identifying such synthetic variants.
Some of the signals that we report could be due to rare variants

that cannot be identified by GWAS, but it is also possible that the
pleiotropy at the gene level reflects either association with
different isoforms of the genes or association with different
functional variants in the gene, especially if the associations are
not overlapping. For instance, we report pleiotropy for the RBFOX1
gene which is known to be mainly expressed in the brain
(Supplementary Table 6) and to have a causal role in autism
spectrum disorder [82]. There are five described and twelve
potential isoforms for RBFOX1, and two of them (Rbfox1_N and
Rbfox1_C) regulate two different sets of genes that are involved in
the transmission of nerve impulses and synaptic transmission, but
have quite different targets and exemplify the functional
consequences of alternative splicing for this RNA binding protein
[83]. In future studies, it would be interesting to finely map which
isoforms or functional variants are associated with the different
independent associations.
While performing analyses to identify pleiotropy at the gene

level we also identified allelic heterogeneity, i.e. several indepen-
dent associations to the same trait within a genomic locus.
Recently, allelic heterogeneity has been reported more often in
GWASs, as a result of using tools in the data analysis pipeline such
as conditional analysis or pruning to check the number of
independent signals in the GWAS (e.g. coronary artery disease
[84], educational attainment [29], and schizophrenia [24, 85]). In
Mendelian genetic studies, allelic heterogeneity has been
demonstrated for the BRCA1/BRCA2 genes, and it has been shown
that the different mutations can be associated with different
penetrance, presentation and severity of the symptoms [21–23]. In
an example of a mixed case, one trait (SCZ) [1] had allelic
heterogeneity associations with the CACNA1C locus, and one of
these associations overlapped with BPD [50].
Several of the genes in which we identified pleiotropy are some

of the largest genes in the genome (e.g. RBFOX1, MACROD2, LRP1B,
etc). The median size of genes with pleiotropy at the gene level
identified in this study is 95 kb, which is higher than the average
gene (ca. 15 kb). However, this could be expected since genes
associated with mental disorders tend to be big. For comparison,
the median size of the genes that were identified at the step of
conditional regression (the 1401 genes) is 65 kb. Thus, there is a
slight increase of representation of larger genes in the ones
showing pleiotropy. This increase might represent a statistical bias
but it is also expected that the larger the genes, the higher will be
the chance that variants will arise in the genes that could
influence traits in a pleiotropic manner and therefore gene-based
pleiotropy should arise more often in larger genes. In addition,
larger genes tend to have more transcript variants which also can
have different associations to different traits and therefore show
more often pleiotropy at the gene level.
By conducting a literature review for the genes where we report

gene-based pleiotropy, we found evidence that for 19 of these 43
genes or gene-groups, rare variants, microdeletion or CNV have
been identified for intellectual disabilities, mental retardation or
other psychiatric traits (see Supplementary table 6 for more
details). However, there is no existing method or database to
evaluate how significant this is. Our study was limited to testing
overlap between GWASs, but it would certainly deliver even more
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evidence to implicate genes if we could systematically incorporate
several layers of genetic evidence across related phenotypes,
ranging from GWAS of complex traits to single-nucleotide variants
in Mendelian traits or syndromes. Therefore, it is important to
carry out more systematic annotation of different sources of
evidence to uncover specific genes that are involved across
psychiatric disorders. It is especially relevant to identify genes that
are common to several traits and which could be the best target
of new drugs.

Limitations
We performed our analysis based on publicly available summary
statistics from different GWAS consortiums. Thus, when we
observed LD-linked signals, it is possible that what we identified
as a pleiotropy scenario may instead be due to overlapping
cohorts (within the meta-analysis). This is indeed a usual concern
in analyses when samples are combined, which can induce a bias
in over-representation of some populations. However, here we do
not combine samples, but we compare them and try to reduce the
overlap where it was possible. That overlap is especially relevant
within the cohorts used for the analysis of brain volume traits and
cognitive and personality traits (Supplementary Figs. 8, 9). We
tested overlapping signals across the traits from ENIGMA, which
used the same cohort for each phenotype, and noticed low
overlap across the eight ENIGMA GWASs. Still, we observed several
overlaps at the gene level between traits that share many cohorts,
e.g. gF and educational attainment. Therefore, we should be
cautious about calling these overlaps as independent for these
studies since the “independent” signals might just be an artefact
due to imperfect tagging that would have different LD in the two
different meta-analyses and our reference data. In order to reduce
genetic overlap, we excluded overlapping cohorts from the
summary statistics, where it was possible to obtain data, such as
the summary statistics obtained from brain volumes do not have
any overlap with the PGC data for mental disorders and have only
a minor overlap with the CHARGE data.
We had to limit our annotations to genes since we do not

currently have robust systematic methods to perform annotation
based on regulatory regions. It is well documented that in some
cases the associations appear to be located within one gene, but
they are actually due to effects on the regulation of a nearby gene
[86]. As an example, the gene GLIS3, which has been implicated in
diabetes and does not seem to have a major role in the brain, is
actually located next to SLC1A1 (encoding the high-affinity
glutamate transporter) which has been associated with
obsessive-compulsive disorder and psychosis [87, 88].
In addition, we should emphasize that we were stricter with

gene-based analysis and performed two steps correction, which
may have an effect on the observed lower number of genes with
pleiotropy at the gene level than at the SNP level and thus the
higher pleiotropy observed in the later might be due to
differences in significance thresholds.
Another limitation in our study is due to the disparity in the

sample size for the different GWAS that we tested as well as the
difference in trait heritability which both most likely affect the
power to identify the different pleiotropy in the traits. This is for
instance reflected in the observation that we could identify more
pleiotropy for the biggest GWAS (e.g. schizophrenia) while we
could not identify pleiotropy in some of the smaller ones (e.g.
brain structure traits). So our results must be interpreted with that
in mind and these analyses will need to be repeated as the data
available for different GWAS will grow.
Finally, another limitation in the study design is that for the

cojo-GCTA step we used Norwegian and German merged sample
as a representation of mixed European population structure. It is a
population proxy that should reflect well the population structures
of cohorts included into consortium meta-analysis (since it

overlaps with most), still as a proxy could bring some noise into
initial signal selection and affect on detection of haplotypes.

CONCLUSIONS
Pleiotropy at the SNP level has previously been demonstrated
between psychiatric disorders. In this study, we have identified
genes with at least two independent associations to different
traits, i.e. gene-based pleiotropy. This type of analysis brings
additional information to implicate certain genes across different
disorders. This is especially crucial when considering functional
analyses of candidate genes, or when considering which genes
should be used as drug targets. For instance, we show here that
several genes implicated in SCZ are also implicated in Alzheimer’s
disease. It will be crucial to understand this relationship in order to
avoid targeting genetic pathways in SCZ that could increase the
risk of developing Alzheimer’s disease. We also identified several
genes which would require deep sequencing in order to identify
rare variants or to determine if the independent signals are due to
different functional variants.

CODE AVAILABILITY
The following analysis programs were used: GCTA [25]; PLINK [59]; LDSnpR [58]; and
Haploview [89]. For plotting, we used LocusZoom [90] and the R-package gplots. All
the tools are publicly available. Brown score was calculated with –set-screen flag in
PLINK [59].
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