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Proponents of personalized medicine have promoted neuroimaging in three areas of clinical application for major depression:
clinical prediction, outcome evaluation, and treatment, via neurofeedback. Whereas psychometric considerations such as
test–retest reliability are basic precursors to clinical adoption for most clinical instruments, we show, in this article, that basic
psychometrics have not been regularly attended to in fMRI of depression. For instance, no fMRI neurofeedback study has included
measures of test–retest reliability, despite the implicit assumption that brain signals are stable enough to train. We consider several
factors that could be useful to aid clinical translation, including (1) attending to how the BOLD response is parameterized, (2)
identifying and promoting regions or voxels with stronger psychometric properties, (3) accounting for within-individual changes
(e.g., in symptomatology) across time, and (4) focusing on tasks and clinical populations that are relevant for the intended clinical
application. We apply these principles to published prognostic and neurofeedback data sets. The broad implication of this work is
that attention to psychometrics is important for clinical adoption of mechanistic assessment, is feasible, and may improve the
underlying science.
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INTRODUCTION
The idea that fMRI could have therapeutic utility is based on
assumptions that hemodynamic activity is reliable over time in the
absence of intervention, and that observed changes between one
scan session and the next to have significant and interpretable values
[1] and though best practice guidelines are emerging [2, 3], they are
not focused on clinical applications. Here, we consider the state of
and possible ways to improve test–retest reliability in task-based fMRI
biomarker and neurofeedback (fMRI-nf) designs for clinical psychia-
tric applications, using major depressive disorder (MDD) as a running
case example. We demonstrate our suggested principles on
published MDD neuroimaging biomarker treatment outcome and
neurofeedback datasets as proofs of concept. Reliability in clinical
applications of fMRI is particularly important as it is assumed for
understanding recovery and change processes [4].
To index test–retest reliability, we consider the standard index

in fMRI, the intraclass correlation (ICC) [5]. The ICC reflects rank
ordering of values across days [6]. Values range from 0 (no
reliability) to 1 (perfect reliability), where values of less than 0.4 are
often considered poor, 0.4–0.59 fair, 0.60–0.74 good, and above
0.75 excellent [7–9], though more stringent cutoffs have also been
recommended [10]. ICC-based reliability estimates have been
rarely reported in fMRI studies and usually reveal poor reliability
when estimated [1]. Non-clinical studies have generally found low
to moderate test–retest reliability values for regional fMRI activity,
with ICCs ranging from 0.33–0.66 [6].
Of various classes of ICC [7], the most frequently employed is

ICC (3, 1) which assumes variance is common across scanners. To
best match the literature and to investigate the impact of taking

into account clinical and design covariates (i.e., including scanner)
when computing reliability indexes, we focus then on this one.
Though some popular packages (SPM, FSL) do not inherently
support computation of this metric; add-on packages (e.g.,
“reliability toolbox” for SPM) do allow such computations (see
Supplementary Section 1).

Biomarker treatment outcome studies review
Many studies use fMRI to predict treatment outcomes in MDD [11–14].
We surveyed this literature to examine whether reliability has been
considered and is adequate for clinical application.

Method
A PubMed search with the keywords “fMRI AND biomarker OR
prediction OR predict AND depression OR MDD OR major
depressive disorder NOT Rest NOT Resting” produced 140,640
results in December 2018. We combined this list with other articles
discovered in our submitted fMRI meta-analysis of depression
treatment outcome prediction studies [15] to complete the list of
articles. After removing articles, not including functional neuroi-
maging (i.e., studies focusing on volumetric measures or using
PET) or human participants, we were left with 55 studies
(Supplementary Section 2).

Results
Though most of the reviewed studies could have reported
test–retest reliability (i.e., participants performed two scans), most
did not mention it. Seven mentioned reliability in the discussion
and only one reported test–retest reliability at the subject level
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[16]. Other studies that mention reliability describe the stability of
group effects, which does not reflect test–retest reliability at the
individual subject level.

rtfMRI-nf studies review
Interventions that use biological measures as real-time targets,
including rtfMRI-nf, which trains patients to regulate the hemody-
namic activity in regions of interest, also assume reliability. Thus, we
considered whether test–retest reliability is being reported in the
fMRI neurofeedback literature.

Method
A PubMed search with the key words “(neurofeedback AND fMRI)
OR (rt-fMRI-nf) AND (depression OR MDD OR major depressive
disorder)” provided 44 results in December 2018. After removing
articles, not including rtfMRI-nf or patients suffering from MDD, we
were left with 11 studies (Supplementary Section 3).

Results
None of the examined fMRI-nf studies reported on the reliability of
the signal being trained (Supplementary Section 3 and 4 for
specific discussion of functional localizers).

Conclusions thus far
MDD studies using fMRI for clinical prediction or treatment rarely
mention reliability.

OPTIMIZING TEST–RETEST RELIABILITY IN FMRI/RTFMRI-NF
One possible reason test-reliability is rarely considered is that it is
too low to state without shame (with reported ICC’s for fMRI
studies generally in the ~0.50 region, which is below usual “good”
reliability thresholds). Thus, the remainder of this article is
dedicated to introducing ways to report, improve, and increase
the clinical applicability of test–retest reliability for fMRI. We apply
and evaluate these suggestions in published fMRI depression data
sets [17, 18]. Optimizing preprocessing is already well known to
increase the measurement of true signal, and thus reliability [19–
22]. We, therefore, begin by considering whether using alternate
ways of indexing task-related reactivity in single-subject data lead
to further improvements.

R1) Optimize indices of task-related reactivity
Mis-specification of the shape of BOLD reactivity can introduce
inefficiency and noise into model-based task-reactivity estimates,
which decreases reliability [23–25], e.g., by not accounting for
systematically sustained neural responses to task stimuli in a
clinical population such as depression (e.g., [26]). Thus, we
propose evaluating indices such as the average amplitude and
timing/shape of the curve of the BOLD response in addition to its
canonical amplitude. Gamma variate models, in particular, yield
parameters for onset, rise and fall slopes, and magnitude of
hemodynamic responses. Similarly, including temporal and
dispersion derivatives can account for individual differences in
peak response timing and small differences in HRF length,
providing larger test–retest reliability values [27].

R2) Examine voxel-wise reliability within regions of interest
(ROIs)
Caceres et al. (2009) [5] suggest reporting the median of voxelwise
ICC’s within a ROI to index its test–retest reliability [27, 28]. This
approach assumes heterogeneity within the ROI, which may not
always be the case [29]. Just as questionnaires are traditionally
constructed by eliminating unreliable items from an initial
theoretically plausible set [30], an index that inherits solely from
the reliable voxels may increase the psychometric properties of
preserved portions of regions.

R3) Optimize models to account for individual and clinical
features
Minimizing sources of non-interest that could vary between
administrations increases the reliability of acquired data [31].
Some time-varying noise sources such as differences in instru-
mentation, time of day, motion, instructions, practice, and training
effects, can be controlled via design [4, 32]. Other sources of
variance may be controlled statistically, e.g., clinical features such
as state anxiety and rumination which can account for neural
activation [26, 33, 34] and habituation [35].

R4) Examine reliability within relevant clinical populations
The majority of fMRI studies that report reliability have recruited
healthy, often young, university students [6, 28], which does not
account for the idea that paradigms that address clinical
phenomenology may be reliable in individuals with clinical
features but not controls. As groups might differ in the degree to
which regional signals are reliable between measurements [27],
and because ICCs are proportional to between-subject variability,
heterogeneous samples can produce different ICCs even with the
same degree of within-subject reliability of test–retest values.
Thus, testing reliability in the population (e.g., treatment-seeking
patients), task, and regions of interest may provide more
accurate estimates.

EVALUATION OF SUGGESTED OPTIMIZATIONS IN A
PROGNOSTIC NEUROIMAGING TREATMENT OUTCOME
DATASET
In this section we demonstrate feasibility of R1-R4 and examine
whether they are useful when applied to a published clinical fMRI
depression dataset [18]. Our code is available from https://github.
com/PICANlab/Reliability_toolbox in the “activation_task_reliabil-
ity” folder.

Method
The Siegle et al. (2012) [18] is a MDD neuroimaging treatment
outcome which sample was augmented by N= 8 who completed
the protocol after that paper’s submission, yielding 57 patients
with MDD, and 35 healthy control participants (see Supplemen-
tary Section 5 for details and sample relationship to Siegle et al
2012). Briefly, participants completed a slow event-related task
during 3T fMRI in which they labeled the valence of emotional
words (here, as in the published dataset, we analyzed only
nominally negative words) before and after 12–16 weeks of
Cognitive Therapy for patients with MDD while the control group
received no intervention.
We computed reliability estimates within four ROIs which the

literature suggests may function as biomarkers for treatment
response including the amygdala [36–38], dorsolateral prefrontal
cortex (DLPFC [39]), rostral anterior cingulate cortex (rACC [40])
and subgenual cingulate cortex (sgACC [16, 41, 42], region-wise
definitions in Supplementary Section 6).

Optimize the BOLD Signal
The BOLD response to negative words was modeled within
participants using four methods including (1) amplitude of a
canonically shaped BOLD signal using AFNI’s 3dDeconvolve with a
narrow tent function (‘BLOCK5(1,1)‘ [43]), (2) Area under the curve
(via multiple regression of a delta function across eight TRs using
3dDeconvolve, i.e., computed with Finite Impulse Response/FIR
basis, with sum of betas as the parameter retained), (3) Peak
amplitude from the same regressions as #2, and (4) a gamma
variate model with parameters for onset-delay, rise–decay rate,
and height. Voxelwise outliers outside the Tukey hinges were
Windsorized across participants and ICCs (3,1) were computed [7]
within individuals for each modeling method using custom Matlab
code. While ICC (2,1) allows generalizing results obtained from
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different scanners, we chose to use ICC (3,1) to be able to compare
with most of the literature, given that it is the most widely used
ICC. This approach also allowed us to examine the importance of
including scanner as a covariate in 3.1.3.

Compute voxelwise reliability
To measure the benefit of identifying reliable voxels, we
calculated the mean, median, and standard deviation of the ICCs
throughout each of the ROIs for each modeling method and
each group.

Include clinical and design-related measures
We examined whether indices of reliability increased when clinical
and design-related measures were included. As the ICC does not
easily allow the inclusion of covariates, we used semi partial
correlations within the context of multiple regressions with and
without covariates to assess changes in reliability, where
covariates were pre and post clinical measures, as:
Post= β0+ β(1→n)covariates+ β(n+ 1Pre)
This model accounts for the potential that participants who

show little change in symptoms may have better test–retest
reliability. Modeling these clinical effects at the group level should
make it possible to identify variance unique to test–retest
reliability.
We included indices of pre- and post-treatment depressive

symptomatology (Beck Depression Inventory; BDI [44]), state and
trait anxiety [45], rumination [46], and sleepiness [47] administered
on the scan day, the scanner on which data were acquired, and
participant’s group when patients and controls were considered in
one sample, coded as dummy variables, as covariates. Missing
data were imputed via regression from the other administered
measures also used as covariates.
A primary question was whether any of R1-4, would

differentially affect reliability estimates. As such, after computing
reliability estimates at each voxel, we rank ordered them across
all permutations of BOLD estimate parameters (six parameters)
and the use or non-use of covariates (two conditions) at each
voxel per ROI, yielding 12 x #-voxels rankings per ROI. Following
a Kolgomorov–Smirnov test justifying the need to use non-
parametric tests, we report a Kruskal-Wallis test to determine
whether the rankings differed across models in each ROI. If they
did, as a simple effects test, we generated confidence intervals
around the mean of rankings for each of the 12 conditions via a
one-way ANOVA (via Matlab’s multcompare function). Non-
overlapping confidence intervals are interpretable as significant
differences between one condition and any other. To display
them we generated figures showing the mean of rankings for
each condition, which will be numbers on the order of one to
12 x #-voxels, with higher means representing being at the top of
the rankings across many voxels within the ROI.

Use clinically representative samples
All analyses were conducted on the whole sample (controls and
patients) to establish likely reliability of tests that could be used to
discriminate groups, and on patients only, to establish likely
reliability of clinical prognostic and change indicators. We
considered multiple reliability effect size thresholds which might
be used in other studies (0.4 and 0.6 for fair and good reliability
and 0.7, and 0.75 for traditional labels of the data as “reliable” and
clinically meaningful).

Type 1 error control
As (1) each of the hypotheses and regions examined for this
manuscript was considered a different family of tests and (2) we
want our results to generalize to reliability as it is reported in the
confirmatory biomarker and neurofeedback literature where only
one region is generally examined, consistent with the literature on
test–retest reliability in neuroimaging, type I error was not

controlled across regions and hypotheses for ROI-wise statistics.
For simple-effects tests of differences in rankings across condi-
tions, we controlled for the number of conditions with a
Bonferroni test. For voxelwise statistics, we subjected all voxelwise
residual maps to empirical cluster thresholding (AFNI’s 3dFWHMx
and 3dClustSim, acf model with small-volume corrections for
examined regions) using a p threshold (-pthr) based on each
considered effect size threshold (see Supplementary Section 7 for
more details).

Results and discussion
Optimizing the BOLD signal. ICC’s were uniformly low (<0.3) for all
BOLD parameterizations when entire ROIs were considered (Table
1). Kruskal–Wallis tests did suggest differential reliability across our
parameterizations (Supplementary Section 8). This held when the
two outlying uniformly low-reliability parameterizations (rise
decay with and without covariates) were removed from con-
sideration (Supplementary Section 9). Yet, there were non-
overlapping confidence intervals among counts of rank orderings
of parameterizations for voxelwise tests, suggesting that at least
for some subsets of regions, some parameterizations were
superior (Supplementary Section 10 and 11). For example, in the
full sample, for the amygdala, amplitude without covariates was
superior to other parameters. Overall ROIs, the most reliable
parameters were amplitude, canonical amplitude, and height
(Fig. 1A shows voxelwise variation within a priori ROIs for the
height parameter) for the whole sample and amplitude, the area
under the curve, and height for only patients (Supplementary
Section 10 and 11). However, looking at ROIs and samples
independently, the parameter offering the highest levels of
reliability varied.

Voxelwise reliability. In the whole sample, moderate reliability
(ICC > 0.4) in clusters large enough to infer significance was
observed in the DLPFC using the canonical amplitude model and
in the amygdala using amplitude (Table 2). “Good” (ICC > 0.6)
reliability was reached in clusters large enough to infer
significance when only the patients were considered, using
amplitude and height in the DLPFC. These levels of voxelwise
test–retest reliability were higher than using the median or mean
value of ICCs within whole ROIs (Table 1). Levels of generally
accepted reliability for clinical measures (ICC > 0.7) were not
observed in clusters large enough to report.

Clinical and design-related measures. The addition of covariates
never resulted in significantly higher average ranks for semi
partial correlations in any ROI, in the whole sample or just the
patients (Supplementary Section 10). In other words, adding
covariates did not improve the reliability, and in some instances
made it worse.

EVALUATION OF SUGGESTED OPTIMIZATIONS IN AN
EMPIRICAL NEUROFEEDBACK DATASET
To further support the feasibility of applying these recommenda-
tions and to evaluate the consistency of their performance in a
second dataset, we consider a published fMRI neurofeedback
dataset [17].

Method
This dataset constituted 18 patients in the experimental group
who received amygdala neurofeedback and 16 patients in the
control group who received parietal neurofeedback. Briefly,
participants completed two training scans on different days
within two weeks, each including a “baseline” and “transfer” runs
during which no feedback was presented. The analyzed task was
a 40-s per block design during which participants alternately
rested, worked to upregulate a target region during recall of
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positive memories, and did a distraction (counting) task (see
Supplementary Section 5 for details of this dataset). Here, we
focus on (a) the baseline data on the two training days in control-
feedback participants during recall of positive autobiographical
memories prior to neurofeedback training. As their amygdala
signal did not change over the course of the study at the group
level [17], this allows us to examine test–retest reliability of the
left amygdala signal without the influence of neurofeedback. (b)
the left amygdala signal during the two transfer runs in the
experimental group, as this represents the effect of neurofeed-
back training. Activity during the two post-training transfer runs
did not differ at the group level, allowing us to examine the
test–retest reliability of the amygdala signal after neurofeedback
training. Because this dataset only included patients with MDD,
only R1-3 are evaluated in this dataset.

Feedback signal. To analyze the feedback signal averaged over
the left amygdala we used the output of the script used in [17]
that allowed computation of the feedback signal in real-time
before considering the voxel-wise signal.

Voxel-wise. As rtfMRI-nf involves real-time preprocessing of
the data, we sought to examine whether this kind of
preprocessing could affect the test–retest reliability of the
signal. We, therefore, performed data preprocessing emulating
the real-time data processing performed by the commercially
available neurofeedback software Turbo BrainVoyager (Brain-
Voyager, The Netherlands; henceforth “TBV style”) and a
more classic contemporary post-hoc preprocessing stream
(here referred to as “standard preprocessing”). Both streams
were implemented using AFNI.

TBV style preprocessing
Turbo BrainVoyager performs the following functions in real-time:
3D motion correction, spatial smoothing, and drift removal via the
design matrix. We used AFNI to approximate these steps. After
spatially transforming the anatomical then functionals to the
International Consortium for Brain Mapping 152 template, we
then rescaled them to conform to the Talairach atlas dimensions
and then performed motion correction to the first image, spatial
smoothing 4mm FWHM smoothing kernel and fourth-order
detrend for drift removal.

Standard preprocessing
MRI pre-processing included despiking, volume registration, and
slice timing correction for all EPI volumes in a given exam. After
applying an intensity uniformity correction on the anatomical, the
anatomical was spatially transformed to the International Con-
sortium for Brain Mapping (ICBM) 152 template and rescaled to
conform to the Talairach atlas dimensions. Then, the fMRI data for
each run were warped nonlinearly and the same spatial
transformations were applied. The fMRI run was spatially
smoothed within the gray matter mask using a Gaussian kernel
with full width at half maximum (FWHM) of 4 mm. GLM analysis
was then applied separately for each of the fMRI runs to derive
contrasts. The following regressors were included in the GLM
model: six motion parameters and their derivatives as nuisance
covariates to account for artifacts caused by head motion, white
matter, and cerebrospinal fluid signals, and five polynomial terms
for modeling drift.

Optimize the BOLD signal
Amygdala signal. From each participant’s real-time left amygdala
signal we calculated an “amygdala signal” for each positive recall
block minus the mean of the preceding rest block from the output
of previously used scripts for real-time preprocessing [17], and
recreated the feedback signal by taking the amount of activation
at every TR during the experimental condition minus the mean
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activation in the previous rest condition, on the baseline run of
control participants at visits 1 and 2 (signal without training) and
on the transfer run of experimental participants at visits 1 and 2
(signal with training), independently. We then averaged the time
course of the feedback signal over all upregulate blocks during
which neurofeedback was provided. We summarized the activa-
tion for each participant for each visit by either a mean of the
amygdala signal or by fitting the time course with a gamma
variate model with parameters for onset-delay, rise-decay-rate,

and height (see Supplementary Section 12 for more information of
this methodological choice). ICC (3, 1) estimates were computed
[7] independently on the estimates of the feedback signal with
and without training.

Voxelwise signal
The same reactivity models as in the treatment outcome dataset
were applied (see section 3.2.1) to data preprocessed with both
types of preprocessing but adapted to this design (AFNI tent

A B

1

0

0.4

0.6

0.7

Fig. 1 Test-retest reliability in ROIs estimated with voxel wise ICCs using height parameter. A threshold of ICC > 0.4 and cluster correction
areapplied for this threshold. In panel A., the results are represented for the Siegle et al. (2012) dataset of patients and in panel B., the results
are represented for Young et al. (2017) data set of the transfer run in the experimental group (signal with training) preprocessed with the TBV
style pipeline.

Table 2. Table of number of voxels reaching different reliability thresholds for each sample, first level parameter, and ROI with cluster correction
applied.

ROI Amydgala,
(242 voxels)

DLPFC, (2675
voxels)

rACC (865
voxels)

sgACC liberally
thresholded,
(33 voxels)

sgACC conservatively
thresholded, (18 voxels)

ICC thresholds ICC
thresholds

ICC
thresholds

ICC thresholds ICC thresholds

Population Reactivity model 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6

Controls & patients Canonical amplitude 0 0 465 0 0 0 0 0 0 0

Amplitude 66 0 5 0 0 0 0 0 0 0

Area under the curve 10 0 0 0 0 0 0 0 0 0

Onset delay 0 0 0 0 0 0 0 0 0 0

Rise decay 0 0 0 0 0 0 0 0 0 0

Height 0 0 290 2 0 0 0 0 0 0

Patients Canonical amplitude 0 0 299 6 6 0 0 0 0 0

Amplitude 24 0 0 0 0 0 0 0 0 0

Area under the curve 0 0 0 0 0 0 0 0 0 0

Onset delay 0 0 0 0 0 0 0 0 0 0

Rise decay 0 0 0 0 0 0 0 0 0 0

Height 0 0 374 5 5 0 2 0 1 0
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parameters to accommodate 40 s blocks as BLOCK(40, 1), and area
under the curve across entire blocks).

Compute voxelwise reliability
As in the treatment outcome data set, to measure the benefit of
identifying reliable voxels, we calculated the mean, median, and
standard deviation of the ICCs in the left amygdala for each
model, group, and additionally for both preprocessing pipelines.

Include clinical and design-related measures
As in the treatment outcome data set, semi partial correlations
were computed with and without covariates. We included
indices of depressive symptomatology (Beck Depression Inven-
tory; BDI [44]), state and trait anxiety [45], sleepiness and
drowsiness administered on the scan day, and the scanner on
which data were acquired coded as dummy variables, as
covariates. There was no missing data. We then compared the
semi-partial correlations across all models of individual
responses with and without covariates for each group and
preprocessing pipeline as in section 3.1.3, to understand which
models offered adequate test–retest reliability and whether
there were differences between them.

Type 1 error control
As discussed in section 3.1.5, cluster correction was applied on
voxelwise statistics (details in Supplementary Section 13).

RESULTS AND DISCUSSION
Optimizing the BOLD signal
Amygdala signal. The mean amygdala signals with and without
training showed poor reliability (ICCs < 0.1). When the signal
within the left amygdala was fit using a gamma variate function,
the onset-delay and height parameters showed fair reliability for
the signal without training (ICC= 0.54 and ICC= 0.47, respec-
tively), with all other models, including those with training,
showing minimal reliability (ICC < 0.1). Therefore, it appears that
the shape of the signal without training is consistent across
sessions and that the signal in the left amygdala is more reliable
when unchanged by training, which is consistent with the
assumption that training is changing the signal over time.

Voxel-wise signal. Kruskal Wallis tests suggested there were
differences between the parameters in reliability (Supplementary
Sections 14 and 15). In particular, reliability for the height
parameter (as well as amplitude for the signal without training)
was higher than for other parameters (Supplementary Section
10). The height parameter also yielded a large enough cluster to
infer significance for “excellent” (ICC > 0.7) reliability in both
samples (Table 3, Fig. 1 for illustration).
The use of the standard preprocessing stream had non-

significantly different reliabilities from the stream emulating the
real-time preprocessing run by Turbo BrainVoyager over all
parameters with or without covariates, with the exception of
the height parameter without covariates, which showed higher
reliability with TBV style preprocessing than with standard
preprocessing in the signal without training (Supplementary
Section 10).

Voxelwise reliability. Some voxelwise ICC values obtained were
higher than those computed on the real-time signal covering the
entire left amygdala or mean or median ICC values computed
over the entire left amygdala (Table 3 vs statistics reported in
4.2.1.1 and Table 4), with some clusters achieving an excellent
level of reliability (ICC > 0.7, see Table 3) for standard and TBV-
like preprocessing both for the trained and untrained signals,
which did not occur for the region as a whole.

Clinical and design-related measures
Amygdala signal. Adding covariates when computing semi-
partial correlations over the mean amygdala signal improved
reliability estimates for the signal without training (mean: from sr
= 0.06 to sr= 0.12, with AIC=−90.35 to AIC=−115.21, onset-
delay: from sr= 0.14 to sr= 0.21, with AIC= 149.78 to AIC=
139.34, rise-decay: from sr= 0.03 to sr= 0.14, with AIC= 121.91 to
AIC= 42.67, height: from sr= 0.16 to sr= 0.29, with AIC=−46.91
to AIC=−63.49) although in no case did we achieve a fair level of
reliability (sr < 0.4).

Voxelwise signal. The addition of covariates in never resulted in
higher average ranks of semipartial correlation distributions on
the untrained or trained signal preprocessed with the TBV-like or
standard pipeline (Supplementary Section 10).

Table 3. Table of number of voxels reaching different reliability thresholds for each sample, preprocessing, and first-level parameter with cluster
correction applied.

ROI Amygdala (214 voxels)

Preprocessing BV style Standard

ICC thresholds ICC thresholds

Population First level model 0.4 0.6 0.7 0.75 0.4 0.6 0.7 0.75

Without training–control–baseline Canonical amplitude 0 0 0 0 0 0 0 0

Amplitude 52 16 6 2 35 0 0 0

Area under the curve 0 0 0 0 40 0 0 0

Onset-delay 0 0 0 0 0 0 0 0

Rise-decay 0 0 0 0 0 0 0 0

Height 78 26 13 13 53 24 9 5

With training–experimental–transfer Canonical amplitude 0 0 0 0 0 0 0 0

Amplitude 66 4 2 2 42 11 3 2

Area under the curve 0 0 0 0 0 0 0 0

Onset-delay 0 4 4 4 0 5 5 5

Rise-decay 0 0 0 0 0 0 0 0

Height 159 81 25 16 73 47 24 21
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DISCUSSION
As stated in a recent meta-analysis [1], task fMRI reliability is not
systematically evaluated and when it is, task-related fMRI
measures show poor reliability. However, as stated by a comment
in response to this meta-analysis [48], we believe that fMRI can
have significant test–retest reliability when the right measures are
used. Our literature review shows that both prognostic and
interventional fMRI studies in MDD, which might otherwise be
poised for clinical translation, also do not attend to reliability.
Although these results should be replicated in an independent
sample, we demonstrate that attending to some fairly simple
principles appears to improve reliability in the examined datasets
(Fig. 1). These principles include careful modeling of the BOLD
signal, identification of reliable voxels within regions of interest,
and calculation of reliability in the population for which
translational applications are being considered. Across both
datasets, the height parameter from a gamma variate function
was the most reliable way to model the BOLD signal, especially
among patients with MDD, in some regions of interest, and was, in
some combinations of region and population or training
condition, more reliable than the canonical amplitude, though in
other cases the reverse was true (Tables 2 and 3 and
Supplementary Section 10). Consequently, we recommend that
researchers explore multiple ways of modeling the BOLD signal,
particularly including gamma variate modeling in MDD, before
concluding their experiment has low reliability. It may also be
helpful for software for real-time analysis of fMRI data to
implement alternative, potentially more reliable ways of char-
acterizing BOLD responses in real-time.
Increasingly, the functional differentiation of sub-regions of

subcortical structures such as the amygdala has been acknowl-
edged as important for fMRI [49–52]. The comparison of
test–retest reliability estimates obtained on the feedback signal
averaged over the whole amygdala versus these same
estimates computed voxelwise in the neurofeedback dataset
suggest non-uniformity across the amygdala in signal reliability
as well; the extent to which these differences explain previous
results localizing function to subregions is unclear. Thus, we
suggest it may be useful to use a voxel-wise or subregion
approach to estimating test–retest reliability. Indeed, this
method reveals significantly large clusters of voxels with
excellent test–retest reliability in the left amygdala which could
be used as masks for neurofeedback targets; our method is
easily feasible for new studies. Excellent reliability, which is a
prerequisite for clinical translation, was not attained in our

dataset, using the more common computation of median ICCs
for each ROI (e.g., as recommended by Caceres et al. (2009) [5])
(see Tables 1 and 4).
Reliability is generally considered a prerequisite for validity [56].

However, the choice of different modeling of the BOLD signal and
selecting voxels of interest on a reliability threshold might have an
impact on the effect size of the construct measured. We, therefore,
recommend that researcher compare their effect size between
their new more reliable method and their original method (see
Supplementary Section 18 for an example).
Contrary to our hypotheses, we did not find that adding

covariates to the model, including the scanner on which
participants were run and severity, which did change as a
function of intervention, improved test–retest reliability in these
datasets (Supplementary Section 10) in ROI-based or whole-brain
analyses (Supplementary Section 16). That said, covariates may
still be useful to include in other datasets––we recommend
exploring this option further before dismissing their utility.
Reliability did vary by whether the entire sample or only

patient’s data were included and by whether or not participants
were trained on the task, supporting the potential utility of
quantifying reliability on tasks and populations that are relevant
for the clinical application intended (Tables 2 and 3 and
Supplementary Sections 11 and 17).
There are several limitations of this review and analyses. As we

have focused only on MDD, it is unclear whether our conclusions
apply transdiagnostically. Improving reliability may require differ-
ent strategies in other diseases, such as Parkinson’s, due to age-
related atrophy, increased movement, and differences in neuro-
vascular coupling [53, 54]. There are many fMRI-based metrics we
could have examined, including functional connectivity, volu-
metric measures, and resting-state designs, which all provoke
unique considerations for optimizing test–retest reliability, some
of which have been explored elsewhere [55]. We believe that
functional connectivity results would still be dependent on task,
regions of interest, and population [56]. Here, we focused on a
regional BOLD activity as it is a common feature of prediction and
neurofeedback studies. Our published data sets had relatively
small number of subjects. This is typical for most clinical fMRI
studies but does raise the concern that the sample is too small
and underpowered. We recognize that until these results are
replicated in an independent sample, they are specific to these
two data sets. Our hope is that other teams can extend these
results to other situations. Therefore, we strongly encourage the
replication of these results.

Table 4. Table of mean, standard deviation, and median values of ICCs for each sample, preprocessing, and first-level parameter with cluster
correction applied.

Preprocessing TBV style Standard

Without training–control–baseline Canonical amplitude −0.07 (±0.21); −0.09 0.01 (±0.24); 0

Amplitude 0.29 (±0.2); 0.3 0.26 (±0.22); 0.27

Area under the curve 0.02 (±0.21); 0.01 0.21 (±0.23); 0.18

Onset-delay −0.03 (±0.23); −0.05 −0.11 (±0.20); −0.14

Rise-decay NA (±NA); NA NA (±NA); NA

Height 0.36 (±0.23); 0.33 0.17 (±0.38); 0.24

With training–experimental–transfer Canonical amplitude −0.11 (±0.21); −0.12 0.08 (±0.21); 0.09

Amplitude 0.3 (±0.18); 0.31 0.26 (±0.21); 0.25

Area under the curve 0.06 (±0.20); 0.07 0.13 (±0.18); 0.13

Onset-delay 0.02 (±0.24); −0.02 −0.05 (±0.24); −0.13

Rise-decay NA (±NA); NA NA (±NA); NA

Height 0.52 (±0.19); 0.56 0.35 (±0.28); 0.34

Mean (±standard deviation); median
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CONCLUSIONS
To summarize, demonstrating that mechanistic indices are reliable
is important before their clinical adoption in prediction or
treatment–development. The literature in these areas has
implicitly accepted this assumption without testing it. Other
non-clinical fMRI studies have shown many of the regions
targeted in clinical fMRI studies have fairly low test–retest
reliability, which was largely replicated using the most common
analytic techniques in our datasets. Yet, we have suggested a few
principles that appear to improve the test–retest reliability of the
obtained mechanistic signals, have shown their feasibility in two
previously published fMRI data sets, and have made code publicly
available so that researchers with minimal mathematical and
programming knowledge can implement them. Wider adoption of
these methods could help to realize the potential of clinical fMRI
and could extend to improving psychometrics for other time-
varying mechanistic indices.
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