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Clinical laboratory tests and five-year incidence of major
depressive disorder: a prospective cohort study of 433,890
participants from the UK Biobank
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Prevention of major depressive disorder (MDD) is a public health priority. Identifying biomarkers of underlying biological processes
that contribute to MDD onset may help address this public health need. This prospective cohort study encompassed 383,131 white
British participants from the UK Biobank with no prior history of MDD, with replication in 50,759 participants of other ancestries.
Leveraging linked inpatient and primary care records, we computed adjusted odds ratios for 5-year MDD incidence among
individuals with values below or above the 95% confidence interval (<2.5th or >97.5th percentile) on each of 57 laboratory
measures. Sensitivity analyses were performed across multiple percentile thresholds and in comparison to established reference
ranges. We found that indicators of liver dysfunction were associated with increased 5-year MDD incidence (even after correction
for alcohol use and body mass index): elevated alanine aminotransferase (AOR= 1.35, 95% confidence interval [1.16, 1.58]),
aspartate aminotransferase (AOR= 1.39 [1.19, 1.62]), and gamma glutamyltransferase (AOR= 1.52 [1.31, 1.76]) as well as low
albumin (AOR= 1.28 [1.09, 1.50]). Similar observations were made with respect to endocrine dysregulation, specifically low insulin-
like growth factor 1 (AOR= 1.34 [1.16, 1.55]), low testosterone among males (AOR= 1.60 [1.27, 2.00]), and elevated glycated
hemoglobin (HbA1C; AOR= 1.23 [1.05, 1.43]). Markers of renal impairment (i.e. elevated cystatin C, phosphate, and urea) and
indicators of anemia and macrocytosis (i.e. red blood cell enlargement) were also associated with MDD incidence. While some
immune markers, like elevated white blood cell and neutrophil count, were associated with MDD (AOR= 1.23 [1.07, 1.42]), others,
like elevated C-reactive protein, were not (AOR= 1.04 [0.89, 1.22]). The 30 significant associations validated as a group in the multi-
ancestry replication cohort (Wilcoxon p= 0.0005), with a median AOR of 1.235. Importantly, all 30 significant associations with
extreme laboratory test results were directionally consistent with an increased MDD risk. In sum, markers of liver and kidney
dysfunction, growth hormone and testosterone deficiency, innate immunity, anemia, macrocytosis, and insulin resistance were
associated with MDD incidence in a large community-based cohort. Our results support a contributory role of diverse biological
processes to MDD onset.
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INTRODUCTION
Major depressive disorder (MDD) is associated with systemic as
well as central dysfunction. The promise that better understanding
this systemic dysfunction might lead to improved preventative
and disease-modifying interventions has spurred interest in
uncovering peripheral biomarkers of MDD [1–3] and its subtypes
[4], treatment response [5], and prediction of future episodes [6].
Among the most frequently implicated are inflammatory markers
like C-reactive protein (CRP) and cytokines [7], insulin resistance
markers [8, 9], hormones [10–13], neurotrophic factors like brain-
derived neurotrophic factor [14, 15], neurotransmitters (and their
metabolites) [16], and members of the kynurenine pathway [17].

While some of these associations are likely reflective of comorbid
somatic disease, considering biomarkers rather than formal
physician diagnoses gets closer to the underlying biology and is
less prone to diagnostic bias.
Despite efforts to find biochemical markers that predict future

MDD episodes, finding ones that are robustly replicable has
remained a challenge. Publication bias [4, 18], confounding [6],
small sample size, and methodological heterogeneity across
studies [4, 5], all complicate the interpretation of prior studies
on this topic. Meta-analyses cannot fully mitigate these concerns,
and recent meta-analyses have failed to identify replicable
biomarkers predictive of MDD incidence. A recent meta-analysis
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observed only a single association between cortisol and MDD
incidence that did not survive multiple testing correction [6].
To better understand which types of somatic dysfunction might

contribute to MDD onset, we set out to identify robust biomarkers of
incident MDD. We turned to the UK Biobank, a prospective cohort
study of 502,617 British individuals that includes several dozen
common laboratory tests. The UK Biobank’s comprehensive char-
acterization of participants enables analyses with large sample size,
consistent methodology across a wide variety of markers, and
rigorous correction for covariates using the rich sociodemographic
and clinical data available on each participant. Furthermore, its
linkage to inpatient and primary care records allows for a prospective
study design focused on new-onset MDD diagnoses among
individuals with no prior history of MDD. We reasoned that these
unique aspects might mitigate some of the limitations that have
confounded existing cross-sectional MDD biomarker studies [6].

METHODS
Participants
Participants were drawn from the UK Biobank, a community-based
prospective cohort study of 502,617 British individuals, aged 40–69 at
recruitment. In total, 68,727 participants were excluded due to lacking all
laboratory test results or any covariates, or already having evidence of an MDD
diagnosis at the time of the initial assessment (based on Data-Fields #130894,
“Date F32 first reported (depressive episode)”, and #130896, “Date F33 first
reported (recurrent depressive disorder)”). In total, 433,890 individuals
remained in the final cohort: of these, 383,131 of self-reported white British
ancestry (Data-Field #21000, “Ethnic background”) were used in the main
analysis), and the remaining 50,759 of other ancestries for replication.

Outcome definition
The outcome was an F32 ICD-10 diagnosis code from linked inpatient,
primary care, or death records within 5 years of initial assessment (“Date
F32 first reported (depressive episode)”, Data-Field #130894, along with
“Source of report of F32 (depressive episode)”, Data-Field #130895, to
exclude cases supported only by self-report). In all, 5534 participants (4851
white British, 683 of other ancestries) met this criterion and were deemed
incident MDD cases, with the remaining 428,356 participants (378,280
white British, 50,076 of other ancestries) deemed controls. Among the
white British cases, MDD diagnosis occurred a mean of 2.7 (standard
deviation 1.4) years after laboratory testing.

Laboratory tests
30 blood analytes and 31 blood counts (Data-Fields tab of https://biobank.
ctsu.ox.ac.uk/crystal/label.cgi?id=17518 and https://biobank.ctsu.ox.ac.uk/
crystal/label.cgi?id=100081) were measured at initial assessment (Fig. S1).
The UK Biobank performed detailed quality control (QC) and correction for
technical outliers (details for blood analytes and counts available at https://
biobank.ctsu.ox.ac.uk/crystal/crystal/docs/serum_biochemistry.pdf and
https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/haematology.pdf, respec-
tively). We analyzed 57 of these 61 tests, after excluding rheumatoid factor,
estradiol, and nucleated red blood cell count and percentage, where most
participants had values of 0 or values outside the reportable range
according to the UK Biobank’s QC. We stratified testosterone and sex-
hormone-binding globulin analyses by sex.
Following the UK Biobank (https://biobank.ctsu.ox.ac.uk/~bbdatan/

biomarkers.pdf), we categorized each blood biochemistry test as either
“renal” (i.e. cystatin C, creatinine, phosphate, total protein, urate, urea),
“liver” (i.e. alanine and aspartate aminotransferase, gamma glutamyltrans-
ferase, albumin, direct bilirubin, total bilirubin), “bone and joint” (i.e.
alkaline phosphatase, calcium, vitamin D), “diabetes” (i.e. glucose, HbA1C),
“cancer” (i.e. sex-hormone-binding globulin, testosterone, IGF-1), or
“cardiovascular (i.e. CRP, apolipoproteins A and B, lipoprotein A,
triglycerides, total cholesterol, HDL cholesterol, LDL cholesterol). However,
we rename the “cancer” category to “endocrine”, since all markers in this
category are endocrine markers, and combine “cardiovascular” and
“diabetes” into a single “immunometabolic” category. We note that these
categories are somewhat simplistic, as many markers reflect dysfunction in
multiple categories: for instance, low albumin and total protein may reflect
either liver or renal dysfunction, and high alkaline phosphatase may reflect
either liver or skeletal dysfunction.

Covariates
Due to the strong influence on covariates on our tests [19], several types
were included in the analysis. Demographic covariates comprised age at
initial assessment (Data-Field #21003), sex (#31), location of UK Biobank
assessment center (#54) as a 21-level categorical variable, self-reported
ethnic background (#21000) as a 6-level categorical variable (included for
replication only; white, mixed, Asian or Asian British, Black or Black British,
Chinese, other ethnic group), and the top 10 genotype principal
components (a proxy for genetic ancestry; #22009). Temporal covariates
comprised season and time of day of the blood draw (both derived from
#3166) and hours fasted before the blood draw (#74). Socioeconomic
covariates comprised educational qualifications (#6138) as a 6-level
categorical variable, pre-tax household income bracket (#738) as a 5-
level categorical variable, employment status (#6142) as a 7-level
categorical variable, Townsend deprivation index (#189), and Index of
Multiple Deprivation (#26410/26427/26426 for England/Scotland/Wales).
Finally, lifestyle covariates comprised alcohol intake frequency (#1558) as a
5-level categorical variable, smoking status (never/current/previous;
#20116), and body mass index (#21001). Selected covariate frequencies
among incident MDD cases and controls are shown in Table S1.

Statistical analysis
Each blood test was associated with incident MDD across all individuals
with valid data for that test. Tests were dichotomized in two different ways:
first, individuals with test values in the bottom 2.5% were compared to
those in the top 97.5%; second, individuals with test values in the top 2.5%
were compared to those in the bottom 97.5%. For each dichotomization,
incident MDD was logistically regressed against the dichotomized blood
test and covariates to yield adjusted odds ratios (AORs) and associated
95% confidence intervals, using the statsmodels Python package [20]. Non-
binary covariates were standardized to zero mean and unit variance; to
avoid convergence issues, binary covariates with <5% frequency in either
cases or controls were excluded. False discovery rate correction was
performed across the 118 tests conducted (57 blood tests, of which two
are sex-specific, times two dichotomizations).

Reference ranges
We obtained reference ranges from a mix of sources (Table S2). As the UK
Biobank only provides reference ranges for blood counts (https://biobank.
ctsu.ox.ac.uk/crystal/crystal/docs/haematology.pdf), we used the Oxford
University Hospitals’ (https://www.ouh.nhs.uk/biochemistry/tests/
documents/biochemistry-reference-ranges.pdf) for biochemistry tests
(except Cystatin C’s, which was not listed and obtained from the literature
instead [21]). For tests with age- or sex-specific reference ranges (e.g. IGF-
1), we used the most extreme listed threshold.

RESULTS
Association of blood biochemistry tests with 5-year MDD
incidence
We leveraged the UK Biobank’s longitudinal nature to test
whether white British participants (N= 383,131) outside the 95%
confidence interval (i.e. <2.5th or >97.5th percentile among the
full cohort; Table 1) on each of 57 blood tests at initial assessment
were diagnosed with MDD at greater rates during the following 5
years, accounting for demographic, temporal, socioeconomic, and
lifestyle covariates (see “Methods”).
The choice to use the 95% confidence interval as a measure of

normalcy was made for two reasons: predefined reference ranges
are often inconsistent across sources [22], and having similar
numbers of out-of-range individuals allows for more direct and
consistent comparisons across tests. A sensitivity analysis incor-
porating reference ranges is described later in the text.
We first considered the blood biochemistry tests assayed by the

UK Biobank, which encompass measures of liver, kidney, endo-
crine, immune, metabolic, and skeletal homeostasis. A variety of
markers of abnormal liver function were associated with increased
5-year incidence of MDD (first row of Fig. 1), even after correcting
for a variety of covariates including alcohol intake and body mass
index (“Methods”). MDD incidence was higher among individuals
with elevated (top 2.5%) levels of the liver enzymes alanine
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aminotransferase (ALT; adjusted odds ratio (AOR)= 1.35 [1.16,
1.58], FDR= 0.1%), aspartate aminotransferase (AST; AOR= 1.39
[1.19, 1.62], FDR= 0.05%), and gamma glutamyltransferase
(GGT; AOR= 1.52 [1.31, 1.76], FDR= 0.0005%). Similar observa-
tions were made for individuals with low (bottom 2.5%) albumin
levels
(AOR= 1.28 [1.09, 1.50], FDR= 1%). Notably, all these associations
were specific to the direction (high or low) indicative of potential
liver dysfunction: low ALT, AST, and GGT and high albumin did not
display any association. Two other markers of liver function,
elevated direct and total bilirubin, were not associated with MDD
incidence.
Among kidney function tests, high creatinine, a canonical

marker of renal impairment (second row of Fig. 1), was not
significantly associated with 5-year MDD incidence (AOR= 1.18
[0.98, 1.42], FDR= 20%). However, high cystatin C, considered to
be a more accurate marker of renal impairment [23, 24], was

associated with increased MDD incidence (AOR= 1.34 [1.16, 1.55],
FDR= 0.09%), as were two other markers of renal impairment,
high phosphate (AOR= 1.27 [1.08, 1.49], FDR= 2%) and high urea
(also known as blood urea nitrogen; AOR= 1.39 [1.20, 1.61],
FDR= 0.02%). The final two renal impairment markers tested, high
urate (AOR= 1.08 [0.90, 1.30], FDR= 60%) and high total protein
(AOR= 1.05 [0.87, 1.27], FDR= 70%), were not significantly
associated. The lack of a statistically significant association with
creatinine, urate, and total protein may reflect lack of power, as all
three trend towards increased MDD incidence.
Two endocrine markers (third row of Fig. 1) were associated

with MDD incidence: low insulin-like growth factor 1 (IGF-1;
AOR= 1.34 [1.16, 1.55], FDR= 0.09%) and low testosterone
among males (AOR= 1.60 [1.27, 2.00], FDR= 0.07%) but not
among females (AOR= 1.01 [0.76, 1.33], FDR= 100%). Low IGF-1 is
often used to diagnose growth hormone deficiency, since IGF-1
displays less diurnal variation than growth hormone itself [25]. The

Table 1. 2.5th and 97.5th percentile thresholds for each blood test across the full cohort.

Blood biochemistry 2.5th %ile 97.5th %ile Blood count 2.5th %ile 97.5th %ile

Alanine aminotransferase (ALT) 9.5 U/L 57.4 U/L Basophil count 0 × 109/L 0.12 × 109/L

Albumin 40.2 g/L 50.4 g/L Basophil percentage 0.1% 1.7%

Alkaline phosphatase (ALP) 46.6 U/L 138 U/L Eosinophil count 0 × 109/L 0.5 × 109/L

Apolipoprotein A (ApoA) 1.1 g/L 2.2 g/L Eosinophil percentage 0.5% 7.2%

Apolipoprotein B (ApoB) 0.6 g/L 1.6 g/L Hematocrit percentage 34.4% 48.0%

Aspartate aminotransferase (AST) 16.0 U/L 46.9 U/L Hemoglobin (Hb) concentration 11.8 g/dL 16.6 g/dL

C-reactive protein (CRP) 0.2 mg/L 13.1 mg/L High light scatter reticulocyte
(HLR) count

0.01 ×
1012/L

0.04 × 1012/L

Calcium 2.2mmol/L 2.6 mmol/L High light scatter reticulocyte
percentage

0.1% 0.9%

Cholesterol 3.6 mmol/L 8.1 mmol/L Immature reticulocyte fraction (IRF) 0.17 0.41

Creatinine 48.7 μmol/L 105 μmol/L Lymphocyte count 1.0 × 109/L 3.4 × 109/L

Cystatin C 0.67mg/L 1.26mg/L Lymphocyte percentage 15.3% 44.2%

Direct bilirubin 1.0 μmol/L 4.0 μmol/L Mean corpuscular hemoglobin (MCH) 27.7 pg 34.7 pg

Gamma glutamyltransferase (GGT) 11.5 U/L 130 U/L Mean corpuscular hemoglobin
concentration (MCHC)

32.8 g/dL 36.4 g/dL

Glucose 3.9 mmol/L 7.7 mmol/L

Hemoglobin A1c (HbA1C) 27.8 mmol/mol 52.6 mmol/mol Mean corpuscular volume (MCV) 82.0 fL 99.6 fL

High-density lipoprotein (HDL)
cholesterol

0.8 mmol/L 2.3 mmol/L Mean platelet volume (MPV) 7.6 fL 11.8 fL

Insulin-like growth factor 1 (IGF-1) 11.4 nmol/L 33.4 nmol/L Mean reticulocyte volume (MRV) 89.0 fL 121 fL

Low-density lipoprotein (LDL)
cholesterol

2.0 mmol/L 5.4 mmol/L Mean sphered cell volume (MSCV) 73.2 fL 93.8 fL

Lipoprotein A (Lp(a)) 4.2 nmol/L 174 nmol/L Monocyte count 0.2 × 109/L 0.9 × 109/L

Phosphate 0.8 mmol/L 1.5 mmol/L Monocyte percentage 3.2% 11.8%

Sex hormone-binding globulin
(SHBG), female

19.7 nmol/L 139 nmol/L Neutrophil count 2.1 × 109/L 7.5 × 109/L

SHBG, male 15.2 nmol/L 79.1 nmol/L Neutrophil percentage 43.9% 77.0%

Testosterone, female 0.4 nmol/L 2.4 nmol/L Platelet count 152 × 109/L 381 × 109/L

Testosterone, male 5.9 nmol/L 20.2 nmol/L Platelet crit 0.15% 0.34%

Total bilirubin 4.4 μmol/L 21.3 μmol/L Platelet distribution width (PDW) 15.6% 17.7%

Total protein 65.0 g/L 81.2 g/L Red blood cell (RBC) count 3.8 × 1012/
L

5.4 × 1012/L

Triglycerides 0.6 mmol/L 4.4 mmol/L Red blood cell distribution
width (RDW)

12.2% 15.7%

Urate 174 μmol/L 482 μmol/L Reticulocyte count 0.02 ×
1012/L

0.12 × 1012/L

Urea 3.2 mmol/L 8.4 mmol/L Reticulocyte percentage 0.5% 2.5%

Vitamin D 15.5 nmol/L 94.1 nmol/L White blood cell (WBC) count 4.0 × 109/L 10.9 × 109/L

%ile percentile.
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testosterone association had the largest effect size among all 57
blood tests surveyed.
In line with prior work linking depression to insulin resistance

[8], we found that high levels of hemoglobin A1C (HbA1c) were
associated with increased 5-year MDD incidence (AOR= 1.23
[1.05, 1.43], FDR= 4%). The only other significantly associated
immunometabolic abnormalities (fourth and fifth rows of Fig. 1)
were high levels of apolipoprotein A (ApoA; AOR= 1.32 [1.10,
1.59], FDR= 2%) and low levels of apolipoprotein B (ApoB; AOR=
1.34 [1.14, 1.57], FDR= 0.3%). These associations are difficult to
interpret due to the absence of associations with any other lipid
species (total, HDL or LDL cholesterol, Lp(a), or triglycerides).
Strikingly, despite prior work linking systemic inflammation [7]
with MDD, we found no link between elevations in CRP and 5-year
MDD incidence (AOR= 1.06 [0.91, 1.22], FDR= 40%).

Finally, of the three markers grouped together by the UK
Biobank under the “bone and joint” category (last row of Fig. 1),
low calcium levels were associated with increased MDD incidence
(AOR= 1.31 [1.11, 1.54], FDR= 0.9%), while alkaline phosphatase
and vitamin D levels were not. This calcium association is difficult
to interpret since hypocalcemia is both a feature of specific
conditions like hypoparathyroidism and kidney disease and an
indicator of poor health more generally: for instance, 18% of
hospital inpatients and 85% of intensive care unit patients are
calcium-deficient [26].

Association of blood counts with 5-year MDD incidence
We next considered the association of blood cell counts with 5-
year MDD incidence in the white British subcohort (Fig. 2). High
white blood cell (WBC) count was associated with increased MDD

Fig. 1 Association of blood biochemistry tests with 5-year MDD incidence. Bars indicate the adjusted odds ratio of 5-year MDD incidence
among individuals in the bottom 2.5% (left) or top 2.5% (right) of each blood test, after correcting for demographic, temporal, socioeconomic,
and lifestyle factors. Significant associations at 5% FDR are denoted in blue (bottom 2.5%) or red (top 2.5%). Error bars denote 95% confidence
intervals. Abbreviations are defined in Table 1.
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incidence (AOR= 1.21 [1.06, 1.40], FDR= 3%), as was one
particular WBC subset: high neutrophil count (AOR= 1.23 [1.07,
1.42], FDR= 2%) and percentage (AOR= 1.23 [1.05, 1.45], FDR=
5%) were associated, but not high basophil, eosinophil, lympho-
cyte, or monocyte counts or percentages.
Nine of 14 red blood cell (RBC) measures were also associated

with MDD incidence. Low RBC count, an indicator of anemia, was
strongly associated with incident MDD (AOR= 1.47 [1.26, 1.70],
FDR= 0.002%), along with low hemoglobin concentration
(AOR= 1.38 [1.19, 1.60], FDR= 0.03%) and hematocrit percentage
(AOR= 1.29 [1.11, 1.51], FDR= 0.7%). MDD incidence was also
associated with high mean corpuscular (RBC) volume (MCV; AOR
= 1.48 [1.27, 1.71], FDR= 0.002%), an indicator of macrocytosis—
an enlargement of RBCs that often co-occurs with anemia

(macrocytic anemia). Thus, indicators of anemia and macrocytosis
were associated with increased MDD incidence.

Influence of the choice of percentile threshold
Given the arbitrary nature of our 2.5th percentile threshold for
defining extreme test values, we next performed sensitivity
analyses to determine how changing this threshold affected our
results. For each of the 30 significant associations (FDR < 5%) from
the main analysis, we recalculated adjusted odds ratios for 5-year
MDD incidence at thresholds of 0.5, 1, 5, 10, 25, and 50% in
addition to 2.5%. We cross-referenced these results against
reference ranges for each test, derived from the UK Biobank,
Oxford University hospital system, and published literature
(“Methods”).

Fig. 2 Association of blood counts with 5-year MDD incidence. Adjusted odds ratios of 5-year MDD incidence among individuals in the
bottom 2.5% (left) or top 2.5% (right) of each blood test, after correcting for demographic, temporal, socioeconomic, and lifestyle factors.
Significant associations at 5% FDR are denoted in blue (bottom 2.5%) or red (top 2.5%). Error bars denote 95% confidence intervals. ct. count;
other abbreviations are defined in Table 1.
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For most tests, adjusted odds ratios for MDD incidence were
higher at more extreme thresholds (Fig. 3 and Fig. S2). For
instance, participants with above-median (top 50%) AST had a
similar incidence of MDD as those with below-median AST
(AOR= 1.02 [0.96, 1.08], FDR= 50%), but those with the highest
0.5% of AST were at a substantially greater risk of MDD than the

bottom 99.5% (AOR= 1.88 [1.42, 2.50], FDR= 0.009%). Even for
tests that did not follow this pattern, associations were relatively
robust to the choice of threshold, including thresholds both inside
and outside the tests’ reference ranges (with low IGF-1 being a
notable exception: very few individuals in the cohort met the
Oxford criteria for being out of range).

Fig. 3 Dependence of associations on the choice of percentile threshold. Adjusted odds ratios and 95% confidence intervals for 5-year MDD
incidence at seven choices of the percentile threshold (top or bottom 0.5, 1, 2.5, 5, 10, 25, and 50%) for 10 of the 30 significant associations
from the main analysis. (The remaining 20 are shown in Fig. S2.) The adjusted odds ratio at the original 2.5% threshold is highlighted in light
blue. Green shading denotes reference ranges (see “Methods“), with below-range values shaded blue and above-range values shaded red.
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Trans-ancestry replication
We tested the 30 significant associations from the white British
subcohort for replication in participants of other ancestries (i.e.
non-British white, mixed, Asian or Asian British, Black or Black
British, Chinese, or other ethnic group; N= 50,759). We noted
much lower power than in the main cohort, with only low RBC
count reaching statistical significance (AOR= 2.10 [1.48, 2.99],
FDR= 0.5%). Nonetheless, 20 of the 30 adjusted odds ratios from
the replication analysis were greater than 1 (with the other 10
being slightly less than 1 and with large confidence intervals).
These 20 include almost all of the key associations discussed in the
preceding sections, including high AST and GGT, low albumin,
high cystatin C, high phosphate, high urea, low IGF-1 and
testosterone, high HbA1C, high white blood cell count, high
neutrophil count and percentage, low red blood cell count, and
high MCV. As a group, the 30 adjusted odds ratios were
significantly greater than 1 (Wilcoxon p= 0.0005), with a median
odds ratio of 1.235 (Table S3).

DISCUSSION
In this study, we investigated whether abnormal results (<2.5th or
>97.5th percentile) on each of 57 blood tests were prospectively
associated with 5-year MDD incidence in the community-based
UK Biobank cohort. We found consistent associations across
ancestries and percentile thresholds with markers of specific types
of somatic dysfunction: liver and renal abnormalities, growth
hormone and testosterone deficiency, insulin resistance (even
with adjustment for body mass index), anemia, and macrocytosis.
While our study is far from the first to explore blood markers of
MDD incidence, our use of the UK Biobank, a large cohort with
detailed sociodemographic and lifestyle information, enables
methodological consistency across markers and extensive covari-
ate correction and sensitivity analyses.
Six aspects of our results are particularly noteworthy. First, all

30 significant associations were in the direction of increased,
rather than decreased, MDD incidence. In other words, abnorm-
alities in the blood tests we surveyed were always deleterious or
neutral from the perspective of MDD risk, never protective.
Second, many markers of liver and renal dysfunction were

associated with increased MDD incidence. While both chronic liver
[27, 28] and chronic kidney [29, 30] disease have been cross-
sectionally associated with MDD, we believe this study is the first
to show a prospective association between these markers and
MDD. Notably, bilirubin was not associated with MDD, perhaps
because it is a less specific indicator of liver dysfunction than the
transaminases ALT and AST, often reflecting excessive heme
breakdown, Gilbert’s syndrome (a benign hyperbilirubinemia
present in 5% of the population), or bile duct obstruction [31]
instead.
Third, we find links between MDD incidence and multiple types

of endocrine dysregulation. The association with low IGF-1 is
consistent with prior work suggesting that many people with
adult-onset growth hormone deficiency exhibit an MDD pheno-
type that is responsive to growth hormone therapy [32] though
the observation that MDD patients often have high IGF-1 levels
[33–36] suggests that IGF-1 dysregulation in either direction may
be harmful. IGF-1 deficiency is intimately linked to insulin
resistance [37], and the associations we observe with low IGF-1
and elevated HbA1C are consistent with a key role for metabolic
dysregulation in MDD, or at least certain subtypes thereof [8, 38].
Meanwhile, the testosterone association is consistent with the
increased prevalence of diagnosed MDD and dysthymia among
testosterone-deficient middle aged and older men [39, 40], and
with the antidepressant effects of testosterone replacement
therapy observed in randomized clinical trials [41, 42].
Fourth, numerous red blood cell properties were associated

with increased MDD incidence, including several indicative of

anemia and macrocytosis. While prior cross-sectional studies have
associated anemia with depression [43, 44], this study is, to our
knowledge, the first to show a prospective association between
markers of anemia and MDD. The association with macrocytosis is
difficult to interpret, as it often results from vitamin B12 deficiency,
folate deficiency, hypothyroidism, or liver disease [45], and some
of these processes, rather than macrocytosis itself, could be
responsible for the association.
Fifth, we find no significant association between MDD incidence

and elevated CRP, in contrast to some prior studies. The
discordance between CRP and neutrophil count, which we do
find associated with MDD, is consistent with the distinct biology of
these two markers [46] and the poor correlation [47–49] between
CRP and neutrophil-to-lymphocyte ratio, another common inflam-
matory measure. It could also reflect CRP’s correlation with body
mass index [50, 51], a covariate in our model.
Sixth, adjusted odds ratios tend to become larger as the

percentile threshold becomes more extreme. In other words, the
less healthy one is—from the perspective of clinical laboratory
tests—the higher one’s risk of developing MDD. This is consistent
with the notion that many non-psychiatric comorbidities are key
risk factors for MDD across the lifespan [52]. However, many of our
hits are associated with MDD even at thresholds well inside the
reference range, suggesting that even “sub-clinical” abnormalities
in laboratory measures, common among individuals without overt
comorbidities, are still clinically meaningful from the perspective
of MDD risk. One process which may underlie such sub-clinical
abnormalities, particularly in our mid-to-late-life cohort, is cellular
senescence, which has known etiological links to MDD [53, 54].
Despite its methodological strengths, this work has several

limitations. First, despite our extensive covariate correction,
residual confounding may still influence some of our associations.
Second, our 57 blood markers represent only a small fraction of
those ever tested for association with MDD, and likely are not the
best markers possible: for instance, peripheral biomarkers of
neuroinflammation [55] may be more strongly associated with
MDD than CRP [56]. On the other hand, the fact that most are
already widely used in the clinic does have the advantage of
making our findings more immediately translational (though of
course, just because individual laboratory measures are associated
with MDD does not automatically make them clinically useful as
screening tools). Third, there are likely unaccounted for covariates
that were not or could not be included, and those that were
included may not be fully reliable, particularly self-reported
measures of substance use.
Overall, we find that markers of liver and kidney dysfunction,

growth hormone and testosterone deficiency, innate immunity,
insulin resistance, anemia, and macrocytosis are associated with 5-
year MDD incidence in a large community-based cohort,
supporting roles for diverse somatic processes in MDD onset.
Our results suggest that interventions to improve liver and kidney
function, raise growth hormone and testosterone levels, reduce
systemic inflammation, improve glycemic control and treat
anemia may represent viable strategies for preventing certain
cases of new-onset MDD.
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