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Abstract
Attention-deficit hyperactivity disorder (ADHD) is a neurological and neurodevelopmental childhood-onset disorder
characterized by a persistent pattern of inattentiveness, impulsiveness, restlessness, and hyperactivity. These symptoms
may continue in 55–66% of cases from childhood into adulthood. Even though the precise etiology of ADHD is not
fully understood, it is considered as a multifactorial and heterogeneous disorder with several contributing factors such
as heritability, auxiliary to neurodevelopmental issues, severe brain injuries, neuroinflammation, consanguineous
marriages, premature birth, and exposure to environmental toxins. Neuroimaging and neurodevelopmental
assessments may help to explore the possible role of genetic variations on ADHD neuropsychobiology. Multiple
genetic studies have observed a strong genetic association with various aspects of neuropsychobiological functions,
including neural abnormalities and delayed neurodevelopment in ADHD. The advancement in neuroimaging and
molecular genomics offers the opportunity to analyze the impact of genetic variations alongside its dysregulated
pathways on structural and functional derived brain imaging phenotypes in various neurological and psychiatric
disorders, including ADHD. Recently, neuroimaging genomic studies observed a significant association of brain
imaging phenotypes with genetic susceptibility in ADHD. Integrating the neuroimaging-derived phenotypes with
genomics deciphers various neurobiological pathways that can be leveraged for the development of novel clinical
biomarkers, new treatment modalities as well as therapeutic interventions for ADHD patients. In this review, we discuss
the neurobiology of ADHD with particular emphasis on structural and functional changes in the ADHD brain and their
interactions with complex genomic variations utilizing imaging genetics methodologies. We also highlight the genetic
variants supposedly allied with the development of ADHD and how these, in turn, may affect the brain circuit function
and related behaviors. In addition to reviewing imaging genetic studies, we also examine the need for complementary
approaches at various levels of biological complexity and emphasize the importance of combining and integrating
results to explore biological pathways involved in ADHD disorder. These approaches include animal models,
computational biology, bioinformatics analyses, and multimodal imaging genetics studies.

Background
Attention-deficit hyperactivity disorder (ADHD) is a

clinically heterogeneous neurobiological disorder of inat-
tention, impulsivity, and hyperactivity, affecting 5–7% of
children worldwide1–4. Severity status and symptoms of
ADHD vary throughout a person’s lifespan; however,
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adult individuals with ADHD show less noticeable signs of
hyperactivity and impulsivity than pediatric patients with
ADHD5,6. ADHD may occur either as an isolated condi-
tion or as comorbidity with other neurological, psychia-
tric, and neurodevelopmental disorders7,8. The adverse
impact of ADHD on society is profound and multifaceted
as it affects not only all aspects of a child’s life but also
those of siblings and parents, causing significant dis-
turbances to routine family functioning9,10. Furthermore,
there are financial burdens related to treatment costs and
reduced employment prospects11. Based on the severity of
the ADHD disorder, it may affect the child’s performance
at school, and if not treated or left undiagnosed, it may
persist into adulthood, affecting both personal and pro-
fessional life11.
Multiple factors contribute to ADHD symptoms,

including genetic predisposition, neurodevelopmental
issues, abnormal neuronal maturation, brain injury,
environmental exposures, and consanguineous marriages.
A recent study by Posner et al. reported that environ-
mental risk factors during prenatal, perinatal, and post-
natal stages contribute to the symptom of ADHD. The
prenatal and perinatal risk factors, including premature
birth, low birth weight, history of maternal exposure to
tobacco, stress, trauma, and obesity, are substantially
associated with ADHD. Postnatal risk factors such as
trauma, parenting style, artificial coloring, and flavoring
food agents, exposure to pollutants and pesticides can
exacerbate the symptoms of ADHD12 (Fig. 1).
Despite advancements in the diagnosis of various neu-

rological and psychiatric disorders, the accurate and early
diagnosis of ADHD still poses a considerable challenge.

According to the American Psychiatric Association Diag-
nostic and Statistical Manual, Fifth Revision (DSM-V), the
current diagnostic criteria for ADHD include subjective
measurements of inattentiveness (six or more symptoms
of inattention) and hyperactivity and impulsivity (six or
more symptoms of hyperactivity–impulsivity)4. This sub-
jective assessment in the decision-making process may
promptly overestimate or underestimate the symptoms of
ADHD, especially in the pediatric population resulting in
both overdiagnosis and misdiagnosis.
Clinical symptoms of ADHD are associated with aber-

rant structural and functional changes in the brain13.
Several neuroimaging studies have been performed to
evaluate the anatomical, microstructural, functional, bio-
chemical, and molecular changes in the brains of
ADHD14–16. Numerous neural networks implicating
attention, executive and reward functions, and molecular
pathways such as dopaminergic, adrenergic, serotonergic,
and cholinergic have been identified that play a critical
role in the pathophysiology of ADHD, and these pathways
can be studied in great details because of the advances in
the field of neuroimaging17,18. Molecular genomic studies,
on the other hand, have observed a strong genetic influ-
ence on ADHD with a heritability estimate rate between
70 and 90%19–21. Several candidate genes, variants, and
chromosomes associated with ADHD symptoms have
been found in multiple studies focussing on correlation,
linkage, and meta-analysis investigating the genetic sus-
ceptibility of ADHD. Genome-wide association studies
(GWAS) have found genomic DNA copy number variants
and rare or large deletion/duplications in ADHD22,23.
Studies using fine-mapping linkage analysis found

Fig. 1 Factors affecting ADHD pathophysiology. Different factors such as genetic, in particular, gene polymorphisms, environmental factors,
psychological factors, individual factors such as age, abnormality in various neurological pathways such as dopaminergic and serotonergic, and
comorbidity with multiple disorders are associated with symptoms of attention-deficit hyperactivity disorder.
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variation in the gene encoding for neuronal signaling as a
potential risk factor for ADHD24–26. Multiple gene poly-
morphisms showed an association with changes in the
neuropsychobiological functions in ADHD27,28. Most of
the individual candidate gene association studies in
ADHD have been conducted on a small sample size and
the reported variants were not strongly associated with
the ADHD pathology. Also, a recent genome-wide asso-
ciation (GWAS) based meta-analysis study, performed in
a significantly large sample size, did not observe any
association between previously reported candidate genes
and ADHD29.
Structural and functional imaging-derived phenotypes

can be used to understand neuropsychobiology of the
disorder caused by genetic changes, and this can lead to a
better understanding of the clinical presentation of
ADHD phenotypes. Intermediate phenotypes are those
characteristics of a disorder that are correlated explicitly
with its neurobiology than clinical features and contribute
to the disorder’s genetic susceptibility itself. Phenotypes
derived from neuroimaging, such as structural, functional,
and molecular characteristics considered to be of high
inheritance, are shown to be significantly altered in
ADHD and found to be vital intermediate phenotypes for
ADHD. This review aims to provide an overview of the
structural and functional changes in the ADHD brain and
their interactions with complex genomic variations. We
also discuss the requirement for combinatorial meth-
odologies that can be achieved by combining
neuroimaging-derived phenotypes with genomic compo-
nents to better understand ADHD neuropsychobiology.

Brain changes in ADHD
The behavioral/cognitive profiles in ADHD are likely to

be controlled in early childhood by the structural, func-
tional, and molecular brain changes. Many characteristic
attributes, such as gene mutations/polymorphisms, neural
development, neuronal maturation, neuronal functions,
cortical and subcortical structures, metabolite levels, brain
blood flow, and connectivity patterns, are abnormal in the
brain of ADHD patients30–37. Changes in the ADHD
brain can be classified into various categories, as described
in more detail in the following sections.

Structural brain changes in ADHD
Gray matter and subcortical changes
Magnetic resonance imaging (MRI) is a widely used

noninvasive modality for mapping in vivo brain changes
in various neurological disorders. Whole-brain volumes,
mainly gray and white matter volumes, have been used to
differentiate patients with ADHD from healthy controls.
T1-weighted high-resolution brain imaging provides
superior contrast between the brain tissues and is fre-
quently used to measure brain tissue changes, including

gray matter and subcortical regions in different neurolo-
gical disorders, including ADHD. MRI studies in patients
with ADHD have shown lower overall brain gray matter
volume (3–5%) than controls31,38–40. Several meta-
analyses studies using automated voxel-based morpho-
metric analysis have been performed to explore the global
and regional gray matter volume changes in ADHD41–44.
A meta-analysis, based on 14 studies, observed that
patients with ADHD demonstrated a reduced overall
volume of gray matter, particularly in the right caudate
and lentiform nuclei43.
Furthermore, a meta-analysis involving 931 patients

with ADHD and 822 control subjects found a reduction in
the volume of gray matter in bilateral basal ganglia and
insular regions in ADHD patients compared to controls44.
A cross-sectional MRI study showed a reduction in global
brain volume by 2.5% and total gray matter volume by 3%
in ADHD patients than control. These patients have
shown significantly lower caudate nuclei and putamen
volumes on regional brain analysis31. Another study
relatively conducted on a large number of subjects
including 307 subjects with ADHD, 169 siblings without
ADHD, and 196 healthy controls reported lower gray
matter volume in 5 brain sites, including the medial and
orbitofrontal cortex, precentral gyrus, and para cingulate
cortices in the ADHD group. In comparison, siblings
without ADHD exhibited a pattern of lower volumes of
gray matter in all brain sites except the precentral gyrus
compared to healthy controls45.
Multiple studies were conducted to identify neurode-

velopmental changes by analyzing cortical thickness,
surface area, subcortical volume, and gyrification index in
ADHD31,37,40,42,43,45–47. A higher degree of gyrification is
necessary to maximize the cortical surface area while
preserving the compact brain size. The gyral and sulcal
folding in the brain relates to the efficient corticocortical
connections and neuronal fibers compaction. The
abnormal cortical folding signifies deficits in structural
and functional connectivity. Several studies have reported
changes in cortical thickness, showing both increased and
decreased cortical thickness in ADHD32,48–55. A long-
itudinal study found a lower global cortical volume in
ADHD patients, driven mainly by a reduction in the
volume of the front lobe associated with a smaller surface
area and gyrification, and almost all changes remained
significant throughout the development56. Another study
showed a synchronized delay in cortical thickness
growth32 and surface area in children with ADHD, sug-
gesting that there could be an overall slow cortical
maturation in ADHD that could lead to abnormal neural
functions33. Normal brain development in early childhood
tends to increase grey matter volume, and throughout
neuronal development, populations are pruned to provide
optimal functional efficiency. Alterations in gray matter or
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cortical thickness reflect abnormal neuronal maturation.
Shaw et al. observed a delay of 2–3 years in cortical
thickness development in both motor and sensory cor-
tices in children with ADHD compared to age-matched
controls33,38. The surface area, another important para-
meter to assess brain maturation, has been found to be
associated with developmental delay in ADHD, pre-
dominantly in the right prefrontal cortex33. A cross-
sectional meta-analysis study on children and adults with
ADHD (age range: 4–63 years) using enhancing neuroi-
maging genetics through meta-analysis observed sig-
nificant smaller subcortical volumes from multiple brain
regions such as caudate, putamen, accumbens, amygdala,
hippocampus, and reduced total intracranial volume in
ADHD relative to healthy controls37. Collectively, these
studies suggest that the brain is altered in a more wide-
spread manner in ADHD than has been previously
hypothesized.

White matter changes in ADHD
White matter tissue makes deep brain regions and

consists of bundles of myelinated axons. It is organized
into tracts and primarily involved in coordinating com-
munication between different brain areas. Intact white
matter is responsible for improved learning and brain
functions. Various neurological and psychiatric disorders,
including ADHD, are associated with white matter
abnormalities, as revealed by several diffusion tensor
imaging (DTI) studies34,35,57–59. DTI is an MRI-based
technique used to characterize the microstructural tissue
integrity (nature and extent of neuronal disruption) and
microfiber pathways by using diffusion properties of water
molecules. Fractional anisotropy (FA) measures the
directionality of water diffusion of the underlying tissue
structures, while mean diffusivity (MD) estimates the
magnitude of water diffusion in tissue. Both FA and MD
are the most frequently used DTI metrics for quantitative
estimation of the white matter integrity in various neu-
rological and neurodegenerative disorders. Greater FA
values are associated with higher directionality of diffu-
sion, especially in white matter regions, and may suggest
intact axonal integrity, while higher MD values are related
to loss of myelin and tissue’s integrity. Other DTI-derived
metrics such as axial diffusivity and radial diffusivity
provide valuable information about the degree of axonal
integrity and myelination60–62. A meta-analysis based on
DTI findings observed significant microstructural tissue
abnormality mainly in the white matter areas of the
frontostriatal-cerebellar neurocircuitry in ADHD com-
pared to healthy participants34. It has been reported that
decreased FA in the corpus callosum of adult patients
with ADHD was attributed to deviations in radial diffu-
sion instead of axial diffusion, indicating abnormal mye-
lination process may be a dominant factor for poor

neurobiological performance in adult patients with
ADHD35. A study on an adolescent patient with ADHD
showed lower FA and higher radial diffusivity in multiple
brain sites, including corpus callosum and major fiber
tracts in the left hemisphere, and the lower FA values
were correlated with the inhibition performance in
ADHD57. Another tract-based analysis performed in
relatively bigger sample size on adult patients with ADHD
showed reduced FA and increased MD and radial diffu-
sivity in various brain regions35. A meta-analysis of DTI-
derived tract-based spatial statistics observed reductions
in FA from corpus callosum regions that extended to the
right cingulum region, the left tapetum, and the right
sagittal stratum. This study also reported that the reduced
FA in splenium was negatively correlated with the age of
ADHD patients58. Using whole-brain voxel-based mor-
phometry analysis, a recent meta-analysis documented
both decreased and increased FA from multiple brain
regions in patients with ADHD compared to typically
developing (TD) children59. Integrating the structural
imaging-based morphometric and diffusion tensor
imaging-based tractography, it has shown that the altered
fronto-accumbal circuit was associated with a higher
frequency of aggression in ADHD children. These find-
ings implicate an important role of the fronto-accumbal
circuit in the pathophysiology of ADHD, which can be
further explored to treat aggressive behaviors in ADHD
children63.

Functional brain changes in ADHD
Functional MRI (fMRI) is a neuroimaging technique

widely used to measure brain activity in vivo64–68. The
fMRI quantifies the cerebral activity based on oxygen
consumption by active neuronal cells, resulting in a shift
in the blood oxygenation level. The fMRI can be used to
measure changes in the neuronal activity against a specific
task and at the resting-state fMRI (rs-fMRI). fMRI studies
have reported altered neuronal signals in multiple brain
sites, especially in the prefrontal and cerebellum region in
patients with ADHD69–76. Task-based fMRI is performed
mainly to explore brain activity against a specific task. In
response to working memory, inhibitory control, and
attentional tasks, ADHD patients showed lower activation
in frontostriatal, parietal, and attentional networks than
healthy controls69. A meta-analysis fMRI study against
attention and inhibition tasks showed functional
abnormalities in two different domains connected to
fronto-basal-ganglion networks in ADHD patients70. The
fMRI study based on reward task demonstrated decreased
activation in the striatum brain region in ADHD patients
compared to control71. Another reward task-based fMRI
study observed increased activation in the anterior cin-
gulate, anterior frontal cortex, cerebellum, orbitofrontal,
occipital cortex, and ventral striatum in children with
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ADHD compared to control72. The meta-analysis study
related to time-based task showed decreased activation in
the brain area responsible for the timing, including the
insular, cerebellum, and the left parietal lobe, in patients
with ADHD compared to healthy controls70. Recently, a
stop-signal task-based fMRI study showed a significant
hypoactivation in the left superior frontal, inferior frontal,
medial frontal, and bilateral temporal and parietal areas in
children with ADHD compared to siblings without
ADHD and healthy participants, suggesting hereditary
patterns in the activation.
The rs-fMRI is considered a powerful technique and has

recently had considerable interest in ADHD neuroima-
ging studies. It has been shown that at resting-state
spontaneous fluctuations in blood oxygenation level were
observed in the human brain without any functional
task77. Multiple metrics are quantified for rs-fMRI,
including regional homogeneity (ReHo) and amplitude of
low-frequency fluctuation (ALFF). The ReHo quantifies
the regional similarity of the brain activity, while ALFF
measures the brain signal variability of a given voxel. The
rs-fMRI showed brain abnormalities in various domains,
including sensorimotor, default mode network, cere-
bellum, cortex, anterior cingulated cortex, and other
related brain sites in ADHD patients78. Abnormal
global and local brain neural activity has emerged as
discerning parameters to distinguish ADHD from healthy
subjects79,80. It has been reported that atypical resting-
state functional connectivity belongs to the
cortical–striatal–thalamic circuitry73,74, and this con-
nectivity is mostly associated with the neuropsychological
status of ADHD75,76. Another study demonstrated that
changes in the default mode network correlated with the
behavioral changes in ADHD81. Emotion regulation is a
common issue in children with ADHD and is shown to be
associated with altered amygdala–cortical resting-state
functional connectivity82.
In a recent study, Tan et al. combined pseudocontin-

uous arterial spin labeling and rs-fMRI techniques
simultaneously to study alterations in cerebral perfusion
and functional connectivity in a cohort of medication
naïve male adults with ADHD. The study observed several
interesting findings that may help to comprehensively
understand the neuropathogenesis of ADHD. First, a
significant reduction in cerebral blood flow (CBF) from
subcortical regions and other regions involved in func-
tional networks such as somatomotor network, ventral
attention network, the limbic network was observed
compared to those of age-matched healthy controls83. It
was further suggested that the possible cause of hypo-
perfusion and abnormal vascular response in patients with
ADHD could be attributed to impaired dopamine and
nitric oxide systems84. Second, a lateralization trend was
observed, as hypoperfusion areas were located primarily

in the left cerebral hemisphere. Some earlier studies85,86

have also reported atypical lateralization (abnormal right
> left asymmetries) in ADHD patients with altered CBF
and brain connectivity observed from the left hemisphere.
Taken together, these findings indicate that one potential
component of ADHD is the over-aroused right cerebral
hemisphère.
Another notable finding was that significant negative

associations with severity of the disorder were found
between the CBF in the left amygdala, hippocampus and
the left putamen, global pallidum. In addition, the left
amygdala showed significantly decreased functional con-
nectivity with the prefrontal cortex (PFC). As the amyg-
dala is involved in “bottom‐up” (support or influence
emotion regulation) emotional processing and PFC is vital
for the emotional processing in “top‐down” (attention to
emotionally arousing stimuli) regulation87, the disrupted
connectivity between these two regions support a notion
of emotional dysregulation that is generally observed in
patients with ADHD. Collectively, these findings provide
valuable insights into the pathophysiological mechanisms
of neurovascular coupling in ADHD.

Magnetic resonance spectroscopy (MRS) detectable brain
metabolites alterations in ADHD
Magnetic resonance spectroscopy (MRS), a noninvasive

imaging technique, provides a quantitative assessment of
in vivo brain metabolites. Proton MRS (1H MRS) is the
most commonly used MRS technique to quantify the
different metabolites such as N-acetyl aspartate (NAA),
choline (Cho), glutamate/glutamine (Glx), creatine (Cr),
and myoinositol (mI) by targeting their aliphatic protons
(−CH2 or −CH3). Collectively, these metabolites play an
essential role in maintaining the brain’s structures and
regulating various physiological processes; for example,
NAA is considered as a marker of neuronal integrity and
viability, and reduced NAA levels indicate neuronal loss.
Cho is a cell membrane marker, and its elevation indicates
increased turnover of cell membranes and the lower
choline levels are associated with demyelinating pro-
cesses. Glutamate/glutamine (Glx) are neurotransmitters
of the glutamatergic system and play a key role in neu-
ronal signaling, neuronal maturation, proliferation, and
migration. Changes in the levels of Glx are associated with
abnormal neurophysiology of the brain. Cr is mainly
involved in phosphate metabolism and responsible for
energy consumption and storage. Several 1H MRS studies
have reported significant alterations in brain metabolism
in ADHD patients. For instance, children with ADHD had
higher levels of Glx from the frontalstriatal and right
dorsolateral frontal region than healthy controls88. Also,
adults with the combined type (both inattention and
hyperactivity/impulsivity) of ADHD were found to have
significantly reduced NAA levels in the dorsolateral
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prefrontal cortex relative to the inattentive type of ADHD
patients and control subjects89. In addition, higher levels
of Glx in the anterior cingulate cortex were observed in
children with ADHD compared to children with bipolar
disorder and healthy controls90. However, 1H MRS study
from a large population of adult patients with ADHD
found significantly lower Glx levels from the right anterior
cingulate than healthy controls91. The difference in the
Glx level between pediatric and adult patients with
ADHD indicates that age is a key factor that regulates
excitatory/inhibitory neurobiological activities in ADHD.
A meta-analysis study reported increased levels of Cho
from the prefrontal cortex, striatum, and anterior cingu-
late cortex in ADHD patients compared to healthy
controls92.
A recently developed technique known as GluCEST93

can be utilized to generate high-resolution parametric
maps of glutamate to study its role in various neurological
disorders, including ADHD94–97. GluCEST detected
decreased glutamate levels in the brain of the Alzheimer’s
mouse model97, while higher GluCEST contrast in the
brain of the Parkinson’s mouse model was observed96.
Similarly, GluCEST mapped the changes in the glutamate
level in the brain of patients with schizophrenia and
temporal lobe epilepsy98,99. So far, there is no study of
GluCEST imaging in patients with ADHD, we suggest
that the GluCEST technique can be beneficial to evaluate
the effect of the gene on the brain’s glutamate level in
ADHD patients.

Genetic changes in ADHD
Studies on the family, sibling, and adoption indicate that

ADHD has significant genetic components. First and
second-degree ADHD families are at higher risk for the

disorder100. Different molecular genetic studies have been
conducted to identify ADHD risk genes (Fig. 2).
Numerous meta-analysis studies have found significant

relationships in the multiple genes for common genetic
polymorphisms/variants101–103. Though several multiple
twin studies found that heritability estimates in ADHD
could reach up to 90%19,20,104, it is still challenging to
identify ADHD risk genes,101,105 due to the complex and
polygenic nature of ADHD pathophysiology. Besides
genetic factors, many external risk factors, such as
environment and possible interactions between gene and
environment, are also associated with the increased risk of
ADHD104. Genes encoding for dopamine and serotonin
transporters are associated with ADHD (Fig. 3)101–103.
An International Multi-site ADHD Genetics (IMAGE)

project performed an in-depth analysis of more than 50
candidate genes from European multicenter samples of
around 674 families showed significant associations of
several candidate genes with ADHD106. Another meta-
analysis based on seven linkage studies showed that the
small arm of chromosome 16 might be associated with
ADHD symptoms107. A study using cadherin 13 (CDH13)
knock-out mouse model observed that CDH13 modulates
the synaptic activity of hippocampal interneurons and
cognitive domains and it was suggested to be a risk gene
for ADHD108. A linkage analysis-based study on multi-
generational families identified the adhesion G protein-
coupled receptor L3 (ADGRL3) gene (previously known
as LPHN3) variants susceptibility in developing ADHD109.
Another GWAS found enrichment of rare copy number
variants110, such as CHRNA7, NPY genes, and genes
encoding for glutamate receptors, suggesting that rare
variant involvement in ADHD neuropsychobiology is
very mixed and is similar to a common variant

Fig. 2 Risk genes and associated altered brain regions in attention-deficit hyperactivity disorder. Multiples genes are associated with altered
structural and functional brain changes, mainly in the frontal lobe, basal ganglion, limbic system, and cerebellum.
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contribution22,111. ADHD-related genes are spread across
the entire genome but, as found on clustering analysis,
they tend to be clustered into specific functional groups.
A study using group comparison enrichment analyses
observed that enriched functions for the ADHD-GWAS
association were linked to neuronal projections, synaptic
structures, nervous system structures, neuronal morpho-
genesis, cell–cell interaction, glutamatergic signal-
ing112,113. Another GWAS on five common psychiatric
disorders, including ADHD, from Psychiatric Genomics
Consortium, found the association of calcium channel
signaling genes with multiple psychiatric and neurological
disorders, suggesting that gene variants in calcium chan-
nel activity may have pleiotropic effects in the evolution of
ADHD neuropsychobiology.
Due to their strong effect on ADHD genetics, the risk

genes identified in ADHD are associated with multiple
processes, and some of them are known as hot genes. Hot
genes are defined as candidate genes reported by at least
five studies. Currently, 24 hot genes represent the top 7%
of ADHD candidate genes114. Such genes are involved in
many neurobiological processes, including neuro-
transmitter biosynthesis, modulation of synaptic mem-
brane dynamics, glutaminergic signaling, and various
transcriptional mechanisms.
We analyzed these genes in known interacting biologi-

cal networks and for enrichment in biological pathways.
We also examined the expression patterns of candidate
genes across brain regions and synaptic, presynaptic
membranes. First, we performed a gene network inter-
action analysis of 24 hot genes using STRING1 (search

tool for recurring instances of neighboring genes) web-
server. By an iterative approach, this server retrieves the
genes that are indirectly (via other genes) associated with
the query gene. The web interface (https://string-db.org)
visualizes the results in their genomic context (Fig. 4).
Our analysis identified a total of three gene clusters (red,
green, and blue) based on k-means clustering with an edge
confidence value of 0.015 indicates no connection and a
value of 0.90 indicates highly connected genes (Fig. 4).
Thirteen genes dopamine receptor D3 (DRD3), adreno-
ceptor alpha 2A (ADRA2A), dopa decarboxylase (DDC),
dopamine receptor D2 (DRD2), 5-hydroxytryptamine
receptor 1B (HTR1B), adrenoceptor alpha 2C
(ADRA2C), dopamine receptor D4 (DRD4), monoamine
oxidase A (MAOA), monoamine oxidase B (MAOB),
catechol-O-methyltransferase (COMT), dopamine beta-
hydroxylase (DBH), tryptophan hydroxylase 1 (TPH1),
and tryptophan hydroxylase 2 (TPH2) out of 24 hot genes
showing five or more than five connections, considered as
hub genes. These clusters of genes are more connected to
one another than they are to other groups of genes and
thus can help identify functional modules. These genes
are involved in various biological processes, molecular
functions, cellular components displaying polymorph-
isms, and maybe the potential risk factors for ADHD
(Fig. 4).
Next, we used all 24 hot genes to perform an enrich-

ment analysis workflow using molecular signatures
database (MSigdb) datasets grouped according to gene
ontology (GO) categories related to biological processes,
cellular components, and molecular functions. The

Fig. 3 Major pathways related to the pathogenesis of attention-deficit hyperactivity disorder (dopaminergic and serotonergic).
Dopaminergic and serotonergic neurons are primarily located respectively in the midbrain and hindbrain and control various functions. Anomalies in
dopamine and/or serotonin levels contribute to the symptoms of inattention, hyperactivity, and impulsiveness in attention-deficit hyperactivity
disorder (Figure inspired from the manuscript by Fontana BD et al., 2019187).
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MSigDB is one of the most widely used and compre-
hensive databases of gene sets for performing gene set
enrichment analysis. For the study, a P value of 0.05 was
used as a cutoff with a minimum of the two overlapping
genes selected with gene sets. To functionally annotate
genes that are enriched in different biological processes,
cellular components, molecular functions, and enrich-
ment of differentially expressed genes, GENE2FUNC, a
core process of FUMA (Functional Mapping and
Annotation of Genome-Wide Association Studies)
(http://fuma.ctglab.nl/), was employed. In the case of
ADHD, a set of 24 genes was used as input. Gene
enrichment analysis revealed that in the biological pro-
cesses, the significant enrichment with maximum
threshold was observed in neurotransmitter signaling (P
= 10−28) with 19 overlapping genes (19/24); in cellular
components, the significant enrichment with maximum
threshold was observed in neuron projections (P=
10−16) and neuron part (P= 10−16) with 18 overlapping
genes (18/24) in both the components. In contrast, in
molecular functions, the significant enrichment with
maximum threshold was observed in ammonium ion
binding (P= 10−22) with 12 overlapping genes (12/24)
(Fig. 5).

The presence of highly significant enrichment genes
belongs to neurotransmitters, neuron projections, part of
neurons, and ammonium ion binding, which all play a
vital role in synaptic transmission, suggesting that the risk
factor for ADHD is polymorphism in enriched genes.
ADHD gene expression heatmap was created with

GTEX v8 (54 tissue types). Heatmap shows standardized
expression value (zero mean normalization of trans-
formed expression log2) with dark-red displaying max-
imum relative expression of that gene in each band,
compared to a dark blue color (Fig. 6). A two-sided Stu-
dent’s t test was performed against the remaining bands
(types of tissue) per gene per tissue, and a P value < 0.05
was considered significant after Bonferroni correction.
ADHD gene expression heatmap revealed higher relative
expression levels across several brain tissues for the fol-
lowing genes; ADRA2C, COMT, dopamine receptor D1
(DRD1), DRD2, MAOA, MAOB, synaptosome associated
protein 25 (SNAP25), and tyrosine hydroxylase (TH),
suggesting that these genes may be considered as a risk
factor for ADHD. We also performed the differently
expressed gene (DEG) analysis for ADHD hot genes using
GTEX v8 (54 tissue types). The DEG analyses showed
significant upregulation of ADHD hot genes in the brain

Fig. 4 Interaction map of hot genes associated with various parts of brain changes as observed on structural and functional MRI in
attention-deficit hyperactivity disorder, generated using STRING1 webserver. All sources are used to create the interaction model with a
default medium confidence interaction score of 0.4. and k-means clustering method. The line color indicates the type of interaction evidence: blue
line denotes co-occurrence, black line indicates co-expression, and the purple line indicates experimental evidence ref: https://string-db.org/.
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sites, including hypothalamus and substantia nigra sug-
gesting the tissue-specific gene expression pattern could
be associated with ADHD (Fig. 7).
A recent GWAS study by Demontis et al. in a large

sample size observed 12 independent loci surpassing the
genome-wide significance threshold. The study identified
three candidate genes (FOXP2, SORCS3, and DUSP6) in
the association regions29. The FOXP2 gene is located on
chromosome 7, which encodes a forkhead/winged-helix

transcription factor, characterized by a 100-amino acid
monomeric DNA-binding domain and plays a critical role
in the synapsis formation and neuronal mechanisms
related to speech and learning115,116. The SORCS3 gene,
located on chromosome 10, encodes for transmembrane
receptors and is high expresses in the brain. This gene is
important for neuronal development and plasticity117. On
the other hand, the DUSP6 gene is located on chromo-
some 12 and encodes for the dual-specificity phosphatase

Fig. 5 Enrichment analysis of hot genes which predispose to ADHD. Summary of the top 20 gene ontology (GO) in terms of biological processes
(A), cellular components (B), and molecular functions (C). The proportion represents the number of genes enriched in each GO category. Significant
enrichment genes belong to neurotransmitters (A), neuron projections, part of neurons (B), and ammonium ion (C), which play a vital role in synaptic
interactions suggesting the risk factor for ADHD is polymorphism in the enriched genes.
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6 enzyme and regulates neurotransmitter homeostasis by
affecting the dopamine level in the synapses. Though
DUSP6 expresses at a low level in the brain but plays a
critical role in brain development118–120.

Association of brain changes with genetics in
ADHD
Advancement in imaging and molecular genomic tech-

nologies offers the opportunity to examine the impact of
the genetic variations on the structural, functional, and
neuronal connectivity of the brain along with the study of
dysregulated biological pathways in various neurological
and psychiatric disorders. Using neuroimaging genomics
studies, a large body of work has demonstrated a sig-
nificant association of structural and functional brain
changes with genetic variations in ADHD (Tables 1 and 2).
Recent developments in imaging and genomics allow a
more in-depth investigation of the neurobiological path-
ways involved in ADHD. Such research is appropriate to
understand the relationship between neurodevelopmental
and neurofunctional changes associated with behavioral
performance together with genetic changes (Fig. 2). Recent
findings from multiple studies in twins suggested that
global and regional brain development and functions are
actively controlled by genetics with a high heritability
rate121–125. A review article published by Gallo et al., with

an intensive focus on neural circuits and genetic variants
implicated in developing ADHD symptoms, discusses how
circuitry abnormalities relate to symptom presentation
and treatment. Authors suggested that for unraveling,
ADHD’s causality can be pinpointed by exploring the
endophenotype fine-tuning in both basic and clinical
environments by advanced studies in animal models,
performing neuromodulation, and discoveries based on
pharmaco-imaging126.

Genes associated with the anatomical brain changes
Structural MRI offers the opportunity to understand the

effect of gene polymorphisms on anatomical changes in
various neurological and psychiatric disorders, including
ADHD. Smaller global and regional brain volumes and
subcortical structures together with multiple gene poly-
morphisms are reported as the risk factors for ADHD
(Table 1), and one such example of gene polymorphism is
Dopamine transporter solute carrier family 6 member 3
(SLC6A3); previously known as DAT1 gene which
encodes the transmembrane proteins involved in reuptake
of dopamine from the synapse (Fig. 8).
A study performed on children with ADHD observed

that SLC6A3 haplotype is associated with decreased gray
matter volume in multiple brain regions, including the left
superior occipital region, cuneus, precuneus, and the right

Fig. 6 Gene enrichment analysis of hot genes associated with ADHD. Gene expression heatmaps constructed with GTEX v8 (54 tissue types). The
heatmap indicates the significance of expressed gene modules related to brain regions. Blue to red reflects a significant association of the gene with
brian regions as determined by a standardized z score. The gene expression heatmap showing higher relative expression levels of MAOB, SNAP25,
COMT, MAOA, ADRA2C, DRD1, DRD2, HTR2C, CHRNA4, and TH in different brain sites suggest that these genes may be linked with brain areas and are
considered as a risk factor for ADHD.
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angular areas. It was suggested that the abnormalities in
these brain regions might be responsible for the impair-
ment of visual memory in ADHD children127. Long-term
treatment with psychostimulant drugs such as methyl-
phenidate (MPH), which acts by inhibiting reuptake of
dopamine and norepinephrine or Atomoxetine helps to
increase gray matter in the prefrontal and occipital areas
of ADHD children having 10/10-repeat allele with a
variable number tandem repeat of 40 bp of the SLC6A3
genotype associated with ADHD compared to TD
children128.
A study based on cortical thickness measurements in

patients with ADHD observed that ADHD patients car-
rying the SLC6A3 gene with two copies of the 10R allele
showed lower cortical thickness in the right lateral pre-
frontal cortex compared to one or the absence of the 10R
allele129. While investigating the effect of three SLC6A3
alleles (10/10 genotype, and the haplotypes 10–6 and 9–6)
on striatum volume in ADHD patients, another
volumetric-based study reported that carriers of the
SLC6A3 haplotype 9–6 had around 6% bigger striatum
volume than non-carriers130. In another seminal study,
Fernandez-Jaen A et al. found that ADHD children
homozygous for SLC6A3 with a 10-repeat allele had sig-
nificantly higher cortical thicknesses in the right ventral

and cingulate gyrus relative to 9-repeat carriers. The
authors also suggested that the presence of the 10-repeat
allele in ADHD influences the cortical thickness of the
cingulate gyrus131.
An age-dependent study observed an association of

DRD4 7-repeat allele with lower cortical thickness in
the right orbitofrontal/inferior prefrontal and posterior
parietal brain sites in children with ADHD132. Another
study observed that patients with ADHD having a 7-
repeat allele of the DRD4 gene showed a lower volume
of the superior frontal cortex and cerebellum cortex
than ADHD patients without the DRD4 7-repeat allele.
It was further suggested that volume changes in the
brain of ADHD might indicate an intermediate mor-
phological phenotype between the DRD4 genotype and
the expression of the clinical characteristics of
ADHD133. A structural MRI study has been performed
to examine the effect of MPH treatment on brain
structures in ADHD patients carrying the DRD4 7R
allele. After treatment, increased volume of the frontal
cortex and left hippocampal was observed in younger
patients with ADHD, suggesting that younger
patients with ADHD carrying DRD4 genotype are more
sensitive to cortical remodeling after stimulant
treatment134.

Fig. 7 Differently expressed gene (DEG) plots of 24 ADHD hot genes constructed with GTEX v8 across 54 tissue samples. Significantly
enriched differently expressed gene sets, highlighted in red, belong to the hypothalamus and substantia nigra.
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A voxel-based morphometry study was performed to
explore the impact of COMT Val158Met polymorphism
on grey matter in children with ADHD, and it was found
that the presence of Met158-allele is associated with lower
gray matter volume in the inferior frontal gyrus. However,
children with ADHD homozygotes for the Val158-allele
showed higher gray matter in the caudate nucleus when
compared with TD children135. The COMT gene is
involved in the deactivation of neurotransmitters such as
dopamine, epinephrine, and norepinephrine and regulates
the function of the enzymes involved in their synthesis. A
study performed in ADHD to look for the differential
effect of COMT on the brain of different ethnic groups
observed that COMT polymorphism resulted in lower
gray matter volume in the left striatum in ADHD children
compared to healthy children. The COMT Met carrier
ADHD children showed lower striatal gray matter volume
than COMT Val/Val-genotype ADHD children. Among
Caucasian children with ADHD, striatal gray matter
volume alterations are correlated with the COMT Val-
homozygotes. In contrast, in Japanese children with
ADHD, striatal gray matter volume alterations are asso-
ciated with the COMT met allele. Such findings suggest
ethnic differences in the genetic effects of COMT on brain
changes in ADHD patients136.
The solute carrier family 6 member 4 (SLC6A4) gene

encodes the integral membrane protein that regulates the
serotonin transport from synaptic spaces into presynaptic
neurons and polymorphism in this gene is associated with
a higher risk of ADHD. It has been shown that SLC6A4
methylation is associated with lower cortical thickness in
the right occipitotemporal region in children with
ADHD137.
Polymorphism of gene coding for a synaptosomal

associated protein (SNAP25) was associated with altered
gray matter volume in ADHD patients138. The DBH gene
involved in the synthesis of an enzyme dopamine beta-
hydroxylase, responsible for the conversion of dopamine
to norepinephrine, is presumed to play an essential role in
the autonomic nervous system. A surface measurement-
based study showed that DBH gene polymorphism is
associated with larger left insula surface area in ADHD
children with G carriers than AA homozygotes139.

Genes associated with white matter changes
The white matter in the human brain is highly heritable

and plays an important determinant of interindividual
differences in brain functions such as cognition and can
contribute to neuropsychiatric disorders. The structural
composition and architecture of the brain, such as white
matter connectivity and gene polymorphism are related to
ADHD. There are limited studies available to assess the
association of changes in white matter structures with
gene polymorphisms in ADHD (Table 1). Hong SB et al.Ta
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used DTI to evaluate the white matter connectivity in
ADHD patients with COMT Val-homozygous and COMT
Met carriers. They found decreased white matter con-
nections in ADHD patients with COMTMet carriers than
those of COMT Val-homozygous140. Another DTI study
found that children with ADHD bearing COMT Val
homozygote exhibited significantly reduced fractional
anisotropy and increased radial diffusivity in the right
cingulate gyrus relative to those of COMT Met carriers
and healthy controls with homozygote COMT Val geno-
type profile. Also, ADHD children with COMT Met car-
riers had increased fractional anisotropy and axial
diffusivity in the left uncinate fasciculus and decreased
radial diffusivity in left posterior corona radiata and pos-
terior thalamic radiation compared to ADHD children
with homozygote COMT Val. These findings suggest that
COMT polymorphism influenced the development of
white matter in ADHD infants carrying Val homo-
zygote141. While evaluating the association of the DRD4-
5-repeat allele with mean diffusivity, investigators of
another study observed a significantly increased mean
diffusivity in the gray and white matter areas with the
expression of the DRD4 5-repeat allele, which could be an
increased risk factor for developing ADHD in children142.

Genes associated with functional brain changes
Genetic variations, especially gene polymorphisms of

the various genes such as DRD4, SLC6A3, DRD1, neu-
roepithelial cell transforming 1 (NET1) etc. have been
shown to influence the functional brain activity in patients
with ADHD (Table 2)143–148. An rs-fMRI study observed
that the absence of a 2-repeat allele of the DRD4 gene in

ADHD children is associated with hyperconnectivity in
the default mode network and sensorimotor network and
hypoconnectivity in the executive control network com-
pared to ADHD children who showed the presence of 2-
repeat allele. This suggests that polymorphism of the
DRD4 2-repeat allele influences the network connectivity
associated with inattention activity149. Another study
from the same group on the effect of DRD4 (4R/4 R vs.
2R) gene polymorphism on ReHo and functional con-
nectivity in ADHD patients found that the presence of the
DRD4 2R allele had both increased and decreased ReHo
bilaterally in the cerebellum and the left angular gyrus,
respectively. Patients with the DRD4 2R allele also showed
lower functional connectivity to the left angular gyrus in
the left striatum, right inferior frontal gyrus, bilateral
lobes of the cerebellum, and increased functional con-
nectivity in the left superior frontal gyrus, medial frontal
gyrus, and rectus gyrus. Based on these findings, the
authors suggested that DRD4 polymorphisms are asso-
ciated with localized brain activity and specific functional
connections150. Another study based on rs-fMRI observed
decreased ReHo in the left superior occipital gyrus,
cuneus, and precuneus in ADHD patients having SLC6A3
polymorphism SLC6A3 rs27048 (C)/rs429699 (T) haplo-
type and without the CT haplotype). Significant interac-
tions of the ADHD disorder status (diagnosis) and CT
haplotype with decreased ReHo were observed in the right
postcentral gyrus127.
The N-methyl-D-aspartate (NMDA) and dopamine

receptor genes are found to have significant effects on
functional connectivity in ADHD. A recent study inves-
tigated the effects of NMDA receptor gene glutamate

Fig. 8 The figure shows structural and functional brain changes associated with gene polymorphisms in patients with ADHD. A SLC6A3
polymorphisms are associated with lower caudate nucleus volume and prefrontal cortex in patients with ADHD. B SLC6A3 and SLC6A4
polymorphisms associated with lower functional activity in the prefrontal cortex and cerebellum in the brain of ADHD (Figure inspired from the
manuscript by Tripp G, et al., 2009188).
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ionotropic receptor NMDA type subunit 2B (GRIN2B)
and dopamine receptor gene (DRD4) variants on ReHo in
the ADHD group and healthy controls by using rs-fMRI.
They found that the ADHD group with GRIN2B TC/TT
genotype showed lower static and dynamic ReHo in the
left superior parietal surface than the healthy controls. In
contrast, the ADHD group with DRD4 variable number
tandem repeat (VNTR)2 polymorphism showed lower
dynamic ReHo in the right superior parietal surface.
Considering the role of the superior parietal region in the
selective attention process, decreased static and dynamic
ReHo in the ADHD group in the superior parietal region
may lead to worse performance outcomes during active
states and may reduce the ability to respond to attention-
based tasks in ADHD. Based on these findings, this study
concluded that alterations in dopaminergic and gluta-
matergic systems contribute to impaired local functional
connectivity leading to attention deficits in ADHD
patients151.
A stop-signal task-based fMRI study was performed to

measure response inhibition task in individuals carrying
ADHD risk alleles of the DRD4 and SLC6A3 genes. The
authors found that carriers of DRD4 7-repeat allele
showed reduced activation in the superior frontal and
middle gyrus during successful response inhibition and
reduced activation in the supramarginal gyrus and parietal
lobule during failed response inhibition. In contrast,
SLC6A3 risk variants showed lower cerebellar activity
during failed trials of successful response inhibition152.
Another study explored to find interactions between
variants in candidate plasticity genes (SLC6A3, SLC6A4,
and DRD4) and social environments (maternal expressed
emotion and peer affiliation). The study showed that
exposure to high positive peer affiliation was associated
with the least reward speeding in serotonin-transporter-
linked polymorphic region (HTTLPR) short allele carriers,
while exposure to low positive peer affiliation or low
maternal warmth was associated with the most reward
speeding in HTTLPR short allele carriers. On the other
hand, SLC6A3 10-repeat homozygotes carriers displayed
the most extended reaction times when exposed to low
maternal warmth. In contrast, DRD4 7-repeat carriers
showed high neural activation when exposed to little
maternal warmth and vice versa. Taken together, these
findings emphasize the relevance of supportive social
environments in sensitivity rewards and task performance
with specific genotypes has differential environmental
impacts153.
ADHD heterogeneity is one of the major issues to be

found in a study evaluating the neurobiological pinning of
a new ADHD phenotype known as ADHD restrictive
inattentive (ADHD-RI) and comparing ADHD-RI, ADHD
inattentive, combined ADHD and TD individuals using
genetic data involving dopamine transporters and

receptor gene polymorphisms (SLC6A3 and DRD4) and
by performing fMRI (go/no task). The study found that
children with ADHD-RI showed reduced psychomotor
speeds and higher activation of temporo-occipital regions
during the Go/No-Go task as compared to TD indivi-
duals. In addition, ADHD-RI children had a higher pre-
sence of DRD4-7-repeat allele154. Another study
employed DTI and N-back fMRI paradigms to investigate
the effect of the DRD4-5-repeat allele on microstructural
properties and functional connectivity in the brain in a
healthy Asian population, mostly comprising of adoles-
cent individuals. The study found that the presence of a 5-
repeat allele was associated with poor processing speed
performance, increased impulsivity, and reduced tendency
to maintain attentional focus, suggesting that the presence
of the 5-repeat allele of the DRD4 gene might contribute
to the risk of developing ADHD142. A study conducted by
Gilsbach S et al. investigated the effect of DRD4-7-repeat
allele in a healthy population of children and adolescents
using combined stimulus-response incompatibility task
(IC) and time-discrimination task (TT). The study showed
that the DRD4-7-repeat carriers demonstrated reduced
neural activation of the middle and frontal gyrus in IC and
reduced cerebellum activation in TT. Also, the DRD4-7
carriers showed reduced coupling between frontal brain
regions compared to 7-repeat non-carriers155. An fMRI
study investigated the effect of SLC6A3 VNTR poly-
morphism on the brain’s activity in a working memory
task in ADHD and TD children. Authors observed that
working memory-related activation was more significant
in 9R carriers in ADHD subjects and only 10R homo-
zygotes showed higher working memory-related activa-
tion than 9R carriers in multiple brain sites, including the
parietal, temporal lobes, ventral visual cortex, orbito-
frontal gyrus, and the head of the caudate nucleus in
ADHD children. The findings suggest that the presence of
SLC6A3 polymorphism can significantly influence the
working memory in ADHD children156. A study per-
formed a verbal n-back task in two fMRI runs to see the
effect of one (9/10) copy of the 10-repeat allele of the
SLC6A3 genotype in TD children. The study observed
that 9/10 carriers showed more activation in
frontal–striatal–parietal regions than 10/10 carriers in
high load run. On the contrary, subthalamic nuclei tended
to be more activated in 10/10 carriers under low load,
which showed that SLC6A3 10R homozygosity is asso-
ciated with reduced performance in higher demanding
working memory tasks157. Another task-based study
performed Go and No-Go paradigm to assess the impact
of SLC6A3 3’ UTR genotype polymorphisms on brain
activation in unmedicated ADHD youth and children.
Youth with the SLC6A3 3’ UTR 10R/10R genotype
showed higher activation in the left striatum, right dorsal
premotor cortex, and bilaterally in the temporoparietal
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cortical junction as compared to the ADHD individuals
who were heterozygous for the SLC6A3 3′ UTR 9R allele.
These findings provide preliminary evidence that neural
activity related to inhibitory control may differ as a
function of SLC6A3 3′ UTR genotype in youth with
ADHD144.
In patients with ADHD, dopamine and serotonin-

related genes play an essential role in the neurobiologi-
cal response of inhibition and large-scale neural activation
changes. A study observed large-scale changes in the
response inhibition networks’ neural activation in pre-
frontal, parietal, and subcortical regions in relation to
SLC6A3 and COMT polymorphisms in ADHD patients. A
similar study showed large-scale differences in neural
activation in the frontal and parietal regions of the
response inhibition network between different variants of
HTR1B and solute carrier family 6 member 4 (SLC6A4),
previously known as 5HTT genes in ADHD
patients158,159.
A study examined whether COMT polymorphism is

associated with the alteration of cortico-cerebellar
executive function in ADHD children using rs-fMRI.
The study showed that ADHD COMT Met carriers
exhibited decreased functional connectivity of right Crus
I/II with the left dorsolateral prefrontal cortex compared
to the ADHD children with Val/Val genotype160. Another
study by Brown AB et al. showed that ADHD subjects
homozygous for the SLC6A3 10R allele showed significant
hypoactivation in the left dorsal anterior cingulate cortex,
lateral prefrontal cortex, and cerebellar vermis as com-
pared to SLC6A3 9R carriers. The SLC6A3 9R carriers
showed greater activation in the left dorsal anterior cin-
gulate cortex and cerebellar vermis and right lateral pre-
frontal cortex compared to the SLC6A3 10R carriers161. A
study investigating the association between synaptosomal
associated protein (SNAP25) rs3746544 polymorphism
and functional connectivity density (FCD) in male chil-
dren with ADHD found that rs3746544 TT homozygous
carriers showed decreased local functional connectivity
hubs in the anterior cingulate cortex and dorsal lateral
prefrontal cortex as compared to rs3746544 G-allele
carriers, suggesting that the SNAP25 polymorphism is
linked with ADHD162. An additional study investigating
the effect of MAOA genotype using stop signal fMRI task
in adolescent boys and girls found that MAOA was cor-
related with ADHD symptoms and subsequently, single-
nucleotide polymorphism (SNP) rs12843268 “A” hemi-
zygotes lowered MAOA levels and reduced ventral striatal
BOLD response during monetary incentive delay task.
Whereas in “G” hemizygotes of SNP rs12843268 asso-
ciated with higher MAOA levels and frontal gyrus and
ventral striatal hyperactivation during monetary incentive
delay task, and frontal gyrus hypoactivation during the
stop signal task163. Another fMRI study conducted

working memory tasks in adults with ADHD to investi-
gate the effect of MAOA polymorphisms on working
memory, distraction, and dual-tasking. The authors found
increased activation for working memory in the lower
bilateral frontal lobe and pars opercularis, and increased
activation in the lingual gyrus in response to dual-
tasking147.

Pharmacogenomics and brain metabolism
The brain metabolites or neurotransmitters’ levels are

strictly controlled and regulated by both genetic and
epigenetic factors. Gene abnormalities or polymorph-
isms can lead to changes in brain metabolite levels in
ADHD via alterations of the
cortico–striato–thalamic–cortical networks. Using 1H
MRS, a study investigated the relationship between
SLC6A3 gene polymorphisms and brain metabolite
responses in patients with ADHD following adminis-
tration of MPH drug. Interestingly, no significant dif-
ferences in NAA, Cr, and Cho levels were observed
before and after drug administration. In ADHD indivi-
duals with SLC6A3 10R genotype, only high levels of Cr
were identified in the cerebellum after MPH adminis-
tration164. The increase in Cr levels (hypermetabolic
state) after MPH administration might have been due to
the normalization of CBF and glucose metabolism fol-
lowing psychostimulant therapy in ADHD. Similarly, in
ADHD adults with SNAP25 gene polymorphism, another
MRS study evaluated brain metabolite responses to MPH
treatment. The study found high levels of NAA in adults
with SNAP25 DdeI (rs1051312) and SNAP-25 MnlI
(rs3746544) polymorphisms in the anterior cingulate
cortex region after MPH treatment, suggesting that NAA
levels in ADHD may be influenced by changes related to
MPH165. Another MRS study examined changes in
neurometabolite levels in ADHD adults with synapsin III
(SYN3) gene polymorphisms in response to MPH. The
study found higher levels of Cho in the striatum of
ADHD subjects with synapsin III rs133945 polymorph-
ism and higher NAA level in ADHD subjects with
synapsin III rs133945 polymorphism166. A similar MRS
study was conducted to determine the effect of treatment
with MPH on brain metabolite levels in ADHD subjects
with COMT gene polymorphism. Increased levels of
NAA were reported in the anterior cingulate cortex and
prefrontal dorsolateral cortex regions in the Val/Val and
Val/Met genotype (rs4680) carriers and elevated levels of
Cho were reported in the Val/Val and Val/Met genotype
carriers striatum after treatment with MPH suggesting
that MPH had a positive impact on impaired neuronal
function and activity167. We believe that the integration
of pharmacogenomics and metabolomics in future stu-
dies may open up new horizons in the diagnosis and
treatment of ADHD.
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Future perspective
Accurate and specific diagnosis or profiling of ADHD

symptoms remains a significant challenge in the pediatric
cohort168. Notably, it is difficult to distinguish whether the
symptoms are signs of ADHD or merely a sign of a young
active child or symptoms of other neurodevelopmental or
neuropsychiatric disorders169–171. The fundamental chal-
lenge in diagnosing ADHD is that the symptoms of
ADHD are distributed in the general population, with a
wide range of factors contributing to the etiology172. Since
ADHD comprises different subtypes (inattention, hyper-
active, and combined) and comorbidity with psychiatric
conditions, a joint research strategy on ADHD and other
neuropsychiatric disorders is required to define the basis
of these phenotypes. The use of targeted next-generation
sequencing for coding and noncoding regions can identify
different genes and pathways involved in ADHD, paving
the way for the development of enhanced diagnostic tools
with improved treatment outcomes173. The advancement
in neuroimaging and molecular genomics offers the
opportunity to examine genetic variations on imaging-
derived phenotypes in ADHD and the development of
polygenic risk scores to predict the risk of developing
ADHD and improve the diagnosis and tailored treat-
ments. The epigenetic pathways involved in ADHD must
be investigated and how they interact with genetic factors
or risks involved in ADHD. Because of the broad-ranging
consequences of the heterogenic nature of ADHD, it may
be challenging to unravel the entire genetic profile of
ADHD. However, it still appears to be achieved through
genomic technology progressions and advanced neuroi-
maging. There is also a need to link the increasing evi-
dence of genetic anomalies in ADHD with measures of
brain dysfunction in longitudinal studies to determine
whether the brain abnormalities change throughout the
life cycle. It would be also helpful to conduct studies that
use identical measures to assess neurobiological con-
tinuity in children and adults with ADHD. Besides clinical
interventions, pharmaceutical medications that include
psychostimulants are the most widely recognized medi-
cines used to treat ADHD symptoms but have been found
to be of limited utility due to the heterogeneous nature of
ADHD disorder174.

Conclusion
The ADHD neurobiology is intricate and involves

multiple neural pathways, but dopamine, noradrenaline,
and serotonin are the critical neurotransmitters high-
lighted in ADHD pathogenesis. The combined efforts
from psychologists, psychiatrists, geneticists, and neu-
roscientists have resulted in an improved understanding
of ADHD etiology. Given the multifaceted symptomatol-
ogy and multifactorial origin of ADHD, significant
research efforts have been made over the past years to

explore ADHD-related genetic and neural modifications.
Notwithstanding the involvement of candidate genes and
neurotransmitter systems in ADHD, genome-wide cor-
relations between ADHD symptoms and individual
genetic variants have yet to be established. Therefore,
their contributions to our understanding of the etiology of
ADHD are limited. Larger-scale, multicenter neuroima-
ging genetic approaches are now in progress, however,
representing one hopeful avenue to translate this poly-
genic disorder’s genetic architecture. Besides, there has
been considerable progress in finding vital brain circuits
and regions whose structure, function, and connectivity
are impaired in ADHD. One of the biggest challenges yet
to be faced is developing causal relationships between
these neural fluctuations and the disorder. Improved
neuroimaging methods combined with experimental
manipulations such as advanced neuromodulation and
pharmacological approaches would probably require a
deeper understanding of neural circuits and their func-
tions. Also, relying on well-characterized animal models
and the latest technologies, such as in vivo optogenetics,
could allow selective manipulation of the neural circuitry
involved during ADHD-related tasks. A critical future
direction for ADHD research is to couple human and
animal neuroimaging genetic studies to explore how the
risk genes associated with ADHD neurobiology affect the
brain changes in knock-out rodent models. This will help
to identify the abnormal biological pathways involved in
ADHD pathophysiology.
The intermediate or endophenotype approach allows

mapping the effects of individual risk genes on neuro-
biological parameters, such as brain structure, chemistry,
and ultimately function. In addition, the combination of
neuroimaging-related endophenotypes with genetic net-
works is now seen as an explanatory combinatorial model
for understanding detailed ADHD pathogenesis including
the generation of polygenic risk scores. The combination
of neuroimaging, psychiatric genetics, and behavioral
genetics will not only contribute to the diagnosis of
ADHD but can also be a useful tool for personalized
medicine. In the years to come, we will gain a more
comprehensive understanding of ADHD, thereby allowing
for new medications that are more successful than those
currently in use.
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