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Abstract
The aim of this study was to explore the association between genetically predicted circulating levels of immunity and
inflammation, and the risk of Alzheimer’s disease (AD) and hippocampal volume, by conducting a two-sample
Mendelian Randomization Study. We identified 12 markers of immune cells and derived ratios (platelet count,
eosinophil count, neutrophil count, basophil count, monocyte count, lymphocyte count, platelet-to-lymphocyte ratio,
monocyte-to-lymphocyte ratio, CD4 count, CD8 count, CD4-to-CD8 ratio, and CD56) and 5 signaling molecules (IL-6,
fibrinogen, CRP, and Lp-PLA2 activity and mass) as primary exposures of interest. Other genetically available immune
biomarkers with a weaker a priori link to AD were considered secondary exposures. Associations with AD were
evaluated in The International Genomics of Alzheimer’s Project (IGAP) GWAS dataset (21,982 cases; 41,944 controls of
European ancestry). For hippocampal volume, we extracted data from a GWAS meta-analysis on 33,536 participants of
European ancestry. None of the primary or secondary exposures showed statistically significant associations with AD or
with hippocampal volume following P-value correction for multiple comparisons using false discovery rate < 5%
(Q-value < 0.05). CD4 count showed the strongest suggestive association with AD (odds ratio 1.32, P < 0.01, Q > 0.05).
There was evidence for heterogeneity in the MR inverse variance-weighted meta-analyses as measured by Cochran Q,
and weighted median and weighted mode for multiple exposures. Further cluster analyses did not reveal clusters of
variants that could influence the risk factor in distinct ways. This study suggests that genetically predicted circulating
biomarkers of immunity and inflammation are not associated with AD risk or hippocampal volume. Future studies
should assess competing risk, explore in more depth the role of adaptive immunity in AD, in particular T cells and the
CD4 subtype, and confirm these findings in other ethnicities.

Introduction
The immune system is increasingly recognized to be

involved in the pathogenesis of Alzheimer’s disease
(AD)1,2. Recent genome-wide association studies
(GWASs) have established AD risk loci within or near

genes that are expressed in microglia3. This led to the
concept of the innate immune system being involved in
the early steps of the disease and, thus, much effort has
been dedicated in studying innate immunity in relation to
AD. A recent meta-analysis of observational studies
revealed that the immune-related signaling molecules C-
reactive protein (CRP), interleukin (IL)-6, α1-antic-
hymotrypsin, lipoprotein-associated phospholipase A2
(Lp-PLA2) activity, and fibrinogen were each associated
with risk of all-cause dementia4. Less is known about the
contribution of the adaptive immune system in relation to
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AD, but a recent observational study discovered clonally
expanded CD8+ T-effector memory cells in the cere-
brospinal fluid of AD patients, revealing an adaptive
immune response in AD5. Moreover, we previously found
that higher levels of innate immune cells lead to a higher
dementia risk, whereas higher levels of adaptive immune
cells are protective for developing dementia6. Given the
observational design of the majority of available studies
and the difficulty of studying the effect of the immune
system on AD in a trial, it is uncertain whether the
observed associations are causal, i.e., independent of other
risk factors, and not biased by reverse causation7.
Mendelian randomization (MR) exploits genetic var-

iants influencing the exposure of interest as unbiased
proxies for the exposure, i.e., instruments, to infer caus-
ality8. To our knowledge, there are only few MR studies
performed where the association between circulating
biomarkers of immunity and inflammation, and dementia,
was studied9–13. Moreover, a large GWAS meta-analysis
on hippocampal volume14 allows exploration of these
biomarkers with hippocampal volume as imaging endo-
phenotype of AD, which, to date, has not been performed.
Furthermore, as GWAS studies are increasing in size, the
number of instruments that can be used to estimate the
causal effect of a risk factor on an outcome also increases.
This could lead to more heterogeneity among the causal
estimates obtained from multiple genetic variants, point-
ing to a possible violation of the necessary instrumental
variable assumptions, but also to a scenario in which
causal estimates based on each variant in turn differ more
strongly than expected by chance alone. These variants
could then be divided into distinct clusters, such that all
variants in the cluster have similar causal estimates. There
are now novel techniques available, which allow for
cluster analyses of variants, which can capture distinct
causal mechanisms by which a risk factor influences an
outcome with different magnitudes of causal effect15.
Here, by leveraging data from large-scale genomic stu-

dies on circulating biomarkers of immunity and inflam-
mation, and the large AD dataset from The International
Genomics of Alzheimer’s Project (IGAP) GWAS3 and
hippocampal volume GWAS14, we implemented a two-
sample MR study to (1) explore the associations between
genetic predisposition to higher or lower circulating levels
of immune cells12,16 and signaling molecules13,17–19 with
risk of AD; (2) explore the associations between genetic
predisposition to these biomarkers with hippocampal
volume; (3) explore the associations between genetic
predisposition to circulating biomarkers of immunity and
inflammation with limited a priori evidence with AD and
hippocampal volume; and (4) explore whether different
genetic variants influence the exposures, and thus AD and
hippocampal volume in distinct ways by performing
cluster analyses.

Methods
Study design, data sources, and genetic instrument
selection
Table 1 summarizes the data sources used in the current

MR study. The genetic instruments were taken from
publicly available summary statistics. For each of the
circulating immunity traits, we selected single-nucleotide
polymorphisms (SNPs) associated with their circulating
levels at a genome-wide threshold of significance (P < 5 ×
10−8). After extracting the summary statistics for sig-
nificant SNPs, we pruned all SNPs in linkage dis-
equilibrium (LD) (r2 < 0.01 in the European 1000
Genomes Project reference panel), retaining SNPs with
the lowest P-value as an independent instrument. For
some exposures (IL-6, CRP, Lp-PLA2, 23 cytokines, and
IL-1), we used previously selected instruments (Table 1).
We identified independent SNPs significantly associated
with circulating biomarker levels of immunity and
inflammation, and merged these with the outcome data-
sets; the SNPs that were also available in the outcome
datasets were used as final instruments for analysis. As all
analyses are based on publicly available summary statistics
and not individual-level data, no ethical approval from an
institutional review board was required.

Primary exposures (biomarkers of immunity and
inflammation with strong a priori evidence)
To minimize weak instrument bias and maximize

power, we carefully selected our primary exposures prior
to data analysis based on the underlying GWAS size,
population characteristics, and a priori evidence for the
associations with AD (Table 1)20. We identified 12
immune cells and derived ratios (platelet count, eosino-
phil count, neutrophil count, basophil count, monocyte
count, lymphocyte count, platelet-to-lymphocyte (PLR)
ratio, monocyte-to-lymphocyte ratio, CD4 count, CD8
count, CD4 : CD8 ratio, and CD56) and 5 signaling
molecules (IL-6, fibrinogen, CRP, and Lp-PLA2 activity
and Lp-PLA2 mass) as primary exposures of interest.

Secondary exposures (biomarkers of immunity and
inflammation with limited a priori evidence)
Other immune-related exposures, for which there are

less validated biomarkers of immunity and inflammation
or less valid instruments available, were selected as sec-
ondary exposures (Table 1). More specifically, a GWAS
identified multiple common genetic variants that influ-
ence circulating levels of 41 cytokines and growth fac-
tors21, of which we used pre-selected instruments for 23
cytokines or growth factors that were not in LD and not
associated with levels of >1 cytokine22. These instruments
have a weaker a priori link to AD and were therefore
selected as secondary exposures. Furthermore, we used
genetic instruments for IL-1, intercellular adhesion
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molecule 1 (ICAM-1), and P-selectin as additional sec-
ondary exposures due to smaller powered underlying
GWASs.

Outcomes
The primary outcome for this study was AD defined by

clinical diagnosis of AD. In addition, we looked at hip-
pocampal volume as an imaging AD endophenotype as
hippocampal degeneration is one of the pathological
hallmarks of AD. We extracted estimates for the asso-
ciations of the selected instruments with AD from IGAP
GWAS dataset (21,982 cases; 41,944 controls of Eur-
opean ancestry)3. For hippocampal volume, we extracted
data from publicly available summary statistics of the
Cohorts for Heart and Aging Research in Genomic
Epidemiology–Enhancing Neuro Imaging Genetics
through Meta Analysis GWAS meta-analysis on 33,536
participants of European ancestry14.
Our power calculations23 revealed that based on the

sample size of IGAP, we had sufficient power for most
biomarkers of immunity and inflammation to detect
meaningful effect sizes. Specifically, we had >80% power
to detect significant associations with AD for 8 out of 12
immune cells and for 3 out of 5 signaling molecules at an
effect size (odds ratio [OR]) of 1.10 or 0.90 (Supplemen-
tary Table S1). All markers were analyzed, even when
potentially underpowered, to guide future research.

Statistical analysis
We first extracted data and harmonized the effect alleles

across GWASs. The MR association between each
immune cell or signaling molecule and AD or hippo-
campal volume was then estimated using the Wald esti-
mator and the delta method after pooling individual SNP
MR estimates using inverse variance-weighted (IVW)
meta-analysis24. Fixed-effect IVW was used in the absence
of heterogeneity and random effects in the presence of
heterogeneity (Cochran Q-derived P < 0.05). Statistical
significance for the MR associations with AD and hip-
pocampal volume were set at a P-value corrected for
multiple comparisons using false discovery rate (FDR) <
5%. A P < 0.05, but above the FDR-corrected threshold,
was considered as suggestive for an association. These
analyses were repeated for the secondary exposures with
AD and hippocampal volume, and we set a separate
corrected P-value for multiple comparisons of secondary
exposures using FDR < 5%.
Cochran’s Q-derived P < 0.05 from the IVW MR was

used as indicator of possible horizontal pleiotropy25. For
markers with >2 SNPs showing either significant or sug-
gestive associations or significant heterogeneity in the
primary IVW MR analysis, we conducted additional
sensitivity analyses that vary in their underlying assump-
tions regarding the presence of pleiotropic genetic

variants that may be associated with the outcome inde-
pendently of the exposure. In particular, we used the
weighted median method, which requires that at least half
of the information for the MR analysis comes from valid
instruments26. We also used the weighted mode
approach, which requires that the largest number of
similar (identical in infinite samples) individual-
instrument causal effect estimates comes from valid
instruments, even if the majority of instruments are
invalid27. For consistency with other literature and to
further relax the IVW assumptions, we used MR-Egger
regression, which provides a consistent estimate of the
causal effect, under a weaker assumption—the InSIDE
(INstrument Strength Independent of Direct Effect)
assumption28. In addition, we used the contamination
mixture method, which is implemented by constructing a
likelihood function based on the variant-specific causal
estimates. If a genetic variant is a valid instrument, then
its causal estimate will be normally distributed about the
true value of the causal effect, but if a genetic variant is
not a valid instrument then its causal estimate will be
normally distributed about some other value29. We also
tested for outlier SNPs using MR-Pleiotropy Residual
Sum and Outlier30.
Finally, as it is possible that different genetic variants

influence the risk factor in distinct ways, e.g., via distinct
biological mechanisms, we further examined hetero-
geneity by performing cluster analyses using the MR-
Clust package15. As recommended, we implemented this
method conservatively, i.e., only assigning a variant to a
cluster if the conditional probability of cluster assignment
is ≥0.8 and only reporting a cluster if at least 4 variants
satisfy this criterion. Variants that do not satisfy these
criteria and that do not fit into a null cluster will be
assigned to a “junk” cluster. Immune cells or signaling
molecules that showed suggestive associations and for
which more genome-wide significant SNPs were available
were also explored for potential clustering of variants.
Statistical analyses were conducted in RStudio (R ver-

sion 3.6.3).

Results
Primary exposures with AD
The primary results of the MR analyses for the genetic

variants of immune cells and signaling molecules with
AD are presented in Fig. 1. Following P-value correction
for multiple comparisons using FDR < 5% (Q-value <
0.05), none of the immune cells or signaling molecules
showed statistically significant associations with AD.
CD4 count showed the strongest suggestive association
with AD by an OR of 1.32, P= 0.005, Q= 0.170 (P <
0.01, Q > 0.05) with the next strongest suggestive asso-
ciation being between CRP and AD with P= 0.029 (P <
0.05, Q > 0.05).
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Primary exposures with hippocampal volume
The primary results of the MR analyses for the immune

cells and signaling molecules with hippocampal volume
are presented in Fig. 1 and Supplementary Table S1. None
of the immune cells or signaling molecules showed sta-
tistically significant associations with hippocampal
volume following P-value correction for multiple com-
parisons. Only PLR ratio showed a suggestive P= 0.037
(P < 0.05, Q > 0.05) association with hippocampal volume.

Secondary exposures with AD and hippocampal volume
The secondary results of the MR analyses are presented

in Fig. 2 and Supplementary Table S2. Similarly, none of
the biomarkers of immunity and inflammation showed
statistically significant associations with AD or hippo-
campal volume following P-value correction for multiple
comparisons. MIP-1b showed a suggestive association
with AD, with P= 0.024 (P-value < 0.05, Q > 0.05),
whereas stem cell factor (P= 0.031) and ICAM-1 (P=
0.016) showed suggestive associations with hippocampal
volume (P < 0.05 level, Q > 0.05).

Sensitivity analyses
There was evidence for heterogeneity in the primary

and the secondary MR IVW analyses as measured by
Cochran Q. Alternative tests furthermore revealed varying
estimates changing direction for multiple exposures
(Supplementary Table S3). Cluster analyses did not reveal
clusters of variants (Fig. 3).

Discussion
Exploring genetically predicted circulating biomarkers

of immunity and inflammation in an adequately

powered two-sample MR approach involving the largest
GWAS datasets available, we found no association
between genetically predicted circulating levels of
immune cells and signaling molecules as primary
exposures and AD or hippocampal volume. Similarly,
none of the secondary exposures including genetically
predicted levels of biomarkers of immunity and
inflammation showed statistically significant associa-
tions with AD or hippocampal volume. Sensitivity ana-
lyses showed evidence for heterogeneity, but we found
no clustering of variants.
Our findings are in contrast with observational studies

that reported on significant associations between several
circulating blood biomarkers of signaling molecules,
immune cells, and AD4,6. For example, we expected to
find an association between higher platelet count and
higher AD risk, as we previously found that an increase of
circulating platelets as measured in the blood over time
increased AD risk6. However, if the risk factor is a protein
biomarker, such as CRP, we can select genetic variants
located in or around the coding region for that protein as
instruments. This is more difficult for polygenic risk fac-
tors such as platelets, as the influence of genetic variants
on such a risk factor is unlikely to be specific31. Indeed, we
found substantial heterogeneity when studying immune
cells and signaling molecules, but could not find mean-
ingful clusters of genetic variants that could have a dis-
tinct effect on the risk factor, supporting the conclusion
that our findings are truly null. On the other hand, our
power calculations revealed that some analyses were
underpowered to detect significant associations, e.g., for
platelet count and AD. However, these exposures in
particular did not even show suggestive associations with

Fig. 1 Primary Mendelian randomization associations of circulating immune cell and signaling molecule levels with Alzheimer’s disease
and hippocampal volume. Shown are the results derived from the primary inverse variance-weighted meta-analysis. None of the immune cells or
signaling molecules survived the multiple testing threshold of false discovery rate < 5% (q < 0.05). CD, cluster of differentiation; CRP, C-reactive
protein; IL, interleukin; Lp-PLA2, Lipoprotein-associated phospholipase A2; MLR, monocyte-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio.
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AD, implying that estimates are very small and probably—
even if sufficiently powered—would not have survived
correction for multiple testing.

The strongest suggestive association we found in our
study was between CD4 cell count and AD, where higher
levels of CD4 cell count increase AD risk, although only

Fig. 2 Secondary Mendelian randomization associations of circulating cytokines and growth factors with Alzheimer’s disease and
hippocampal volume. Shown are the results derived from the secondary inverse variance-weighted meta-analysis. None of the immune traits
survived the multiple testing threshold of false discovery rate < 5% (q < 0.05). BNGF, β-nerve growth factor; CTACK, cutaneous T-cell-attracting
chemokine; GRO-α, growth-regulated oncogene α; HGF, hepatocyte growth factor; ICAM-1, intercellular adhesion molecule 1; IL, interleukin; IP-10,
interferon γ-induced protein 10; MCP-1, monocyte chemoattractant protein-1; MIF, macrophage migration inhibitory factor; MIG, monokine induced
by γ-interferon indicates; MIP-1b, macrophage inflammatory protein-1β; PDGF-bb, platelet-derived growth factor-bb; SCF, stem cell factor; SCGF-b,
stem cell growth factor β; TRAIL, TNF-related apoptosis-inducing ligand; VEGF, vascular endothelial growth factor.

Fig. 3 Exploration of heterogeneity by cluster analyses. Shown are the genetic associations for the individual variants with the exposure and
outcome; lines indicate confidence intervals. When restricting to a cluster probability assignment of ≥0.8 and ≥4 variants per cluster, no clusters of
variants were identified. AD, Alzheimer’s disease; CRP, C-reactive protein; HV, hippocampal volume; Lp-PLA2, lipoprotein-associated phospholipase
A2. The junk cluster denotes variants with estimates that do not fit in any cluster.
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one SNP could be used as an instrument. This suggestive
association is unexpected, as HIV-associated dementia is
accompanied by a lower CD4 cell count32. However, it is
recognized that T lymphocytes play a central role in the
pathogenesis of multiple sclerosis (MS), with CD4+
T cells predominating in acute MS lesions33. Combined
with the recent finding that clonally expanded CD8+ T-
effector memory cells have been found in the cere-
brospinal fluid of AD patients5, the role of adaptive
immunity in AD, in particular T cells and the
CD4 subtype, is worth investigating further in relation
to AD.
In contrast to our findings, one MR study13 found a

protective effect of CRP on AD. An explanation for this
difference could be the selection of instruments for CRP.
In our study, we used 24 SNPs as instruments that are
gene specific for CRP, thereby reducing pleiotropy. When
examining CRP further by performing a cluster analysis
including all genome-wide significant SNPs, we found no
clusters of variants, in particular no cluster forming a
biologically meaningful protective pathway of CRP on AD.
Our study has limitations. First, we could not assess

competing risk by, e.g., mortality in this study, which
could generate paradoxical MR estimates34. Second, we
cannot exclude that the additional adjustments for body
mass index, alcohol consumption, and smoking status
performed in the blood cell trait GWAS12 led to collider
bias (i.e., a collider between a genetic variant and con-
founders of the risk factor-outcome association) during
instrument selection. However, the potential impact of
such collider bias is likely to be less than other biases34.
Third, as we used multiple proposed instruments where
effect heterogeneity is likely, effect estimates need to be
interpreted with caution. Fourth, for some exposures,
especially those reflecting adaptive immunity, we were
limited by the few known genome-wide significant genetic
variants influencing these traits, potentially leading to
weak instrument bias. Targeted studies incorporating
further GWAS data on individual circulating adaptive
immune biomarkers might reveal additional associations
not captured by our approach. Furthermore, despite using
the largest available datasets, some of our analyses could
be limited by power to detect small but functionally
relevant causal effects. This lack of power applies to both
the discovery of the exposure and to the outcome. Fifth,
the IGAP GWAS dataset contains mainly clinically diag-
nosed cases of AD (only 8% of cases and controls are
pathologically confirmed), thus potentially leading to
misclassification of the outcome35. Similarly, although
hippocampal atrophy is a hallmark feature of AD, a
recently recognized disease entity named limbic-
predominant age-related TDP-43 encephalopathy has
shown to be mimicking Alzheimer’s type dementia,
causing hippocampal and medial temporal lobe atrophy in

more than 20% of old demented people36. Sixth, the
underlying study populations were of European ancestry,
limiting generalizability to other ethnicities. Finally,
although we have tried to deal with these factors in our
study, LD, pleiotropy, canalization, and population stra-
tification remain potential flaws in the MR approach37.

Future perspectives
SNP and biomarker studies investigating age-related

diseases play a crucial role in unraveling the mechanisms
underlying disease development. Apart from AD, exam-
ples of such studies include suggesting new targets for
age-related macular degeneration, amyotrophic lateral
sclerosis, and other neurodegenerative disorders38. These
various targets need validation in suitable animal models.
Creating these animal models can be challenging, as it
requires undertaking standardization39. The blood–brain
barrier forms an additional layer of complexity, as drug
molecules are unable to reach the brain40. Nevertheless,
the SNP animal model therapeutics field provides an
excellent framework for studying interventions reducing
risks. The pace of translation in the field of AD could be
accelerated by understanding the causative events and
mechanisms in the pathogenesis of AD using this fra-
mework. Integrating MR analysis when undertaking such
studies could aid in the clinical translation, combined with
other techniques involving genetics41–43. Despite the
many successes in the field of genetics, in total only 53%
of phenotypic variance is explained, with known AD SNPs
only explaining 31% of the genetic variance44. Thus, the
whole spectrum of research, including non-genetics, is
needed in order to detect the functional ways to underpin
the association between the immune system and the
physiopathologic network that facilitates the manifesta-
tion of AD. In conclusion, this study suggests that
genetically predicted circulating biomarkers of immunity
and inflammation are not associated with AD risk or
hippocampal volume. Future studies should assess com-
peting risk, explore in more depth the role of adaptive
immunity in AD, in particular T cells and the
CD4 subtype, and confirm these findings in other
ethnicities.
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