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heartbeat dynamics in subclinical depression
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Abstract
Subclinical depression (dysphoria) is a common condition that may increase the risk of major depression and leads to
impaired quality of life and severe comorbid somatic diseases. Despite its prevalence, specific biological markers are
unknown; consequently, the identification of dysphoria currently relies exclusively on subjective clinical scores and
structured interviews. Based on recent neurocardiology studies that link brain and cardiovascular disorders, it was
hypothesized that multi-system biomarkers of brain–body interplay may effectively characterize dysphoria. Thus, an ad
hoc computational technique was developed to quantify the functional bidirectional brain–heart interplay.
Accordingly, 32-channel electroencephalographic and heart rate variability series were obtained from 24 young
dysphoric adults and 36 healthy controls. All participants were females of a similar age, and results were obtained
during a 5-min resting state. The experimental results suggest that a specific feature of dysphoria is linked to an
augmented functional central-autonomic control to the heart, which originates from central, frontopolar, and occipital
oscillations and acts through cardiovascular sympathovagal activity. These results enable further development of a
large set of novel biomarkers for mood disorders based on comprehensive brain–body measurements.

Introduction
Depression is a severe clinical entity described in the

Diagnostic and Statistical Manual of Mental Disorders
(DSM), whereas paucisymptomatic, prodromic, and mild
forms of depressive conditions have only recently been
considered as full-title diagnostic entities1. A common
condition, variously called minor or subclinical depres-
sion, or dysphoria (from Greek: ‘δiσϕoρiα’, literally hard
to bear), has gained increasing attention. While it can be
considered to be a less severe form of major depression,
its effects on a patient’s quality of life and even life
expectancy are similar to that of major depression dis-
order2,3. Although not described in the DSM, this mood
alteration is characterized by the presence of some
depressive symptoms without satisfying all the criteria for

major depression: for instance, a widely accepted defini-
tion of dysphoria is that it fulfils between two and five
symptoms of depression according to the DSM-51 and has
a score higher than 12 according to the Beck Depression
Inventory-II (BDI–II4,5).
Studies investigating clinical and subclinical depression

have been primarily focused on brain dynamics of subjects
with depressive symptoms, reporting changes in electro-
encephalographic (EEG) low frequency spectral activity
when compared to healthy controls6,7, as well as changes in
connectivity8 and symmetry7,9,10 metrics. These results have
also been confirmed by neuroimaging investigations11–13.
However, depression is not just a mental disorder, it is
linked to several leading causes of cardiovascular diseases,
often referred to as the ‘vascular depression’ hypothesis14.
Furthermore, cardiovascular dynamics is known to affect
significantly the depression risk through direct physical or
indirect biological, bodily, or psychosocial changes15.
Indeed, cardiovascular diseases are among the most

frequent somatic comorbidities of depressive condi-
tions14,15. Despite the increasing interest in the literature,
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only a few studies have specifically assessed whether the
clinical interaction between mood and cardiac alterations
is bidirectional or if there is a stronger causative relation
from mood alterations to heart dynamics, or vice versa. It
has been hypothesized that the interplay between
depressive and cardiac disorders should be considered as
a ‘downward spiral’, in which they strengthen each
other15,16. Finally, depressive disorders are also associated
with a higher risk and worse prognosis of coronary heart
disease17,18, whereas patients with cardiac diseases have a
higher prevalence of depression and depressive symptoms
compared with the general population19,20.
Similar results have been described for individuals with

sub-threshold depression3,21–23. Considering the studies
cited above, a potential method to investigate the rela-
tionship between cardiac and mood alterations is through
the autonomic nervous system (ANS). Studies have
identified several links between ANS dynamics and
depressive symptoms (for a review, refer to ref. 24). In
particular, a reduced vagal tone has been identified using a
linear analysis comparing depressive patients with healthy
controls25, and a sympathetic hyper-tone was identified in
patients with major depression26. Moreover, symptoms of
depression, such as somatomotor deficits, lower social
engagement, and stiff behavioural response, were identi-
fied as singularly related to vagal hypo-activity27. Further
complex and nonlinear methodologies have presented
significant differences in people affected by mood dis-
orders compared to healthy controls25,28. For instance, a
previous study by our group indicated that subclinical
depression is associated with a significant increase in
heart rate variability (HRV) complexity. This was
observed in features extracted from a lagged Poincaré plot
and in the first two order moments of the HRV series.
Moreover, an inverse trend was observed in parameters
from a recurrence quantification analysis with respect to
healthy controls29. Interestingly, in ref. 30 authors hypo-
thesized that the neural control over ANS is higher in
patients with mood disorders than healthies, because of
the increased risk of cardiovascular diseases. Nevertheless,
more general clinical evidence indicates that a bidirec-
tional relationship exists between a patient’s mood and
cardiovascular dynamics and function31, and that
depressive conditions are associated with an alteration of
the ANS modulating cardiac activity. Thus, little is known
regarding the directionality of such alterations. However,
while easy to monitor, the use of cardiac biomarkers is
challenging, particularly because of specificity issues in
human cardiovascular pathophysiology. In fact, different
severity of a specific disease may exhibit a clear correla-
tion with cardiac biomarkers, but many other psycho-
physiological stressors (e.g. emotional elicitations,
cognitive load, autonomic maneuverers), may exhibit
similar variations. To overcome this limitation as a

complement to the approach of studying the relationship
linking depressed mood and heart dynamics, the asso-
ciations between ANS and central nervous system (CNS)
should be considered, which is usually referred to as
Brain–Heart Interplay (BHI).
Indeed, more deeply in the CNS, the complexities of the

functionalities and brain regions involved in autonomic
control over the heart have been identified and defined as
the central autonomic network (CAN)32–35. The CAN
consists of several components comprising sympathetic
and parasympathetic connections to the CNS, as sum-
marized in Fig. 1, and is involved in acute and chronic
stress responses14. Even though several activities of CAN
regions have been found significantly altered in depres-
sion13, the role of CAN in depressive mood alterations is
still under debate. From a methodological viewpoint, the
time-varying estimation of functional BHI can be achieved
by employing several techniques36, most of them based on
EEG recordings, which allows for a good time resolution
and an acceptable spatial resolution onto the scalp. A
classical approach is to look for EEG synchronizations
time-locked to the heartbeats, that is, the heartbeat-
evoked potentials (HEP) analysis37, which is known as an
index of the directional interaction going from heart to
brain38. Most of the other BHI estimation methods exploit
information-transfer coupling quantifiers adapted to the
BHI application, such as the maximal information coef-
ficient39, Granger causality index40, transfer entropy41, or

Fig. 1 CAN scheme. Schematic diagram showing the major central
pathways regulating cardiac sympathetic (red) and parasympathetic
(blue) outflows. Common pathways are indicated in purple. No
distinction is made between the excitatory and inhibitory
connections. DMNX dorsal motor nucleus of the vagus nerve, l lateral,
MDH medullary dorsal horn of the trigeminal nucleus, MPFC medial
prefrontal cortex, NAmb nucleus ambigus, NTS nucleus of the tractus
solitarius, PAG periaqueductal grey matter, PVN hypothalamic
paraventricular nucleus, vl ventrolateral, CVLM caudal ventrolateral
medulla, DMH dorsomedial hypothalamus, RVLM rostral ventrolateral
medulla, RVMM rostral ventromedial medulla (for more abbreviations,
refer to text).
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convergent cross-mapping42. Recently, an ad hoc syn-
thetic data generation (SDG) model was presented43,44

that quantifies the directional time-varying interplay
among different EEG and HRV frequency bands in both
directions and in a physiologically inspired fashion.
In light of the above, and the information found in

refs. 5,29,45, with the aim of investigating the functional
directional BHI in individuals with dysphoria, in this study
the SDG and HEP estimation methods were applied
during a short-term resting state, and the results were
compared with analogous measurements from healthy
volunteers.

Materials and methods
Participants’ enrolment and study design
Sixty undergraduate female students from the University

of Padua (with an average age of 21.89 ± 2.06 years)
volunteered to participate in this study. Sample size was
determined based on previous studies. They gave informed
consent to the protocol, which was previously approved by
the Department of General Psychology Ethical Committee,
University of Padua (Italy). Participants were not taking
antidepressants or medicines that could affect ANS or
CNS activity. Moreover, they did not have alcohol use
disorders or diseases related to neurological or cardio-
vascular systems. Moreover, the researchers asked the
participants not to consume coffee from 2 h before the
experimental acquisition.
During the 5-min resting state, the subjects were seated

on a comfortable chair in a silent, soundproof, and dark
environment. To minimise artefacts, participants were
asked not to move or talk throughout the protocol.
The experimental acquisition comprised EEG and ECG

recordings. The EEG was gathered from a 32-channel
Electro-Cap (Electrocap, Inc.) with tin electrodes placed
following the 10–20 standard. Impedance electrodes were
maintained below 5 kΩ. The EEG was amplified using a
Neuroscan Synamps (El Paso, Texas, USA), which was
filtered online in the range of 0.1–70Hz, sampled and
digitised at 500 Hz (AD converter at 16 bits, with an
accuracy of 0.034 μV/bit), and finally saved on a Pentium
II computer. The ECG was acquired using Ag/AgCl
shallow electrodes placed on the subject’s chest, following
a modified lead II configuration. The recording was
amplified (with a gain of 150), filtered (between 0.3 and
100 Hz), sampled at 500 Hz (16-bit A/D converter; with a
resolution of 0.559 μV/LSB). Participants were asked to
fulfil the following psychometric tests before beginning
the experiment:

● The BDI–II test4,46 to investigate the presence of
possible depressive symptoms. This questionnaire is
acknowledged as a valid self-report test that
evaluates the severity level of depression over a

preceding period of 2 weeks. Responses are on a
4-point (0–3) Likert scale, and scores may be
between 0 and 63; a higher score indicates more
severe depressive symptoms. A score above 12 in the
Italian variant is considered as an indicator of
depression problems in the Italian population46.

● The State and Trait Anxiety Inventory (STAI) test,
which consists of two independent questionnaires
(STAI-Y1 for state anxiety and STAI-Y2 for trait
anxiety), both consisting of 20 multiple-choice
items47. The idea behind the test is the conceptual
distinction between ‘state’ and ‘trait’ anxiety; with
these questionnaires, a physician is able to
distinguish anxiety as a transitory state from
anxiety as a relatively stable personality trait.

● The Emotion Regulation Questionnaire (ERQ)48,
which is considered to quantify a person’s
inclination in regulating her/his emotions through
expressive suppression and cognitive reappraisal.
The ERQ test consists of a 10-item scale, and each
item has a 7-point Likert-like scale, ranging from 1
(strongly disagree) to 7 (strongly agree).

Moreover, participants with a BDI–II score that
exceeded a threshold of 12 were submitted to the mood
episode module (module A) of the SCID-I49 by an expert
psychologist. This proved the presence of dysphoria and
excluded those subjects who met the criteria for a diag-
nosis of mood disorders, dysthymia, or major depression.
Participants’ age, health status, smoking habits, and

regular alcohol use were then investigated through a
personal interview that the subjects were asked to attend
after completing psychometric tests.
Participants were part of a broader group of 224

University of Padua undergraduate students who had
completed an online version of the BDI–II. Participants
were enrolled in the study only if they achieved a
BDI–II score ≤8 or ≥12. Subjects who received a
BDI–II test score ≥12, manifesting for at least 2 weeks
between two and four depressive symptoms, were
assigned to the dysphoric group. Individuals who
achieved a BDI–II score ≤8 (belonging to the 53rd
percentile), and did not show any depressive symp-
toms, as defined by the SCID-I, were enrolled as
healthy controls. Finally, the non-dysphoric group
comprised 36 subjects, whereas the dysphoric group
comprised 24 subjects. Table 1 presents the primary
general characteristics of both groups.
The present study was conducted within an extensive

research project, and most of the participants’ data have
also been described in the previous publications29,50,51.
Data were collected between February and May 2014, and
a novel approach to data analysis has been applied in the
present study.
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Estimation of functional brain–heart interplay
The EEG recordings were pre-processed using the so-

called HAPPE pipeline, proposed by ref. 52. To summar-
ise, the pipeline extracts the average log power normalised
joint probability, from 1 to 70 Hz, and the electrodes that
are external to the 1% tails of the distribution are rejected
as bad channels. The rejected electrodes are recovered
through a spherical interpolation algorithm employing
neighbouring channels. A multitaper regression algorithm
was employed to filter out spectral components below
1 Hz, the main electrical frequency noise at 50 Hz, and its
first harmonic52. A wavelet-enhanced independent com-
ponent analysis (ICA)-based algorithm detected and
rejected muscular and ocular artefacts and discontinuities.
An additional fast-ICA algorithm was applied, and the
derived components were input to a machine learning
algorithm that recognises artefact components52. Finally,
a re-referencing procedure was applied, which employed
the time-varying average from all electrodes53.
For the ECG series, a Pan–Tompkins algorithm54

detected R-peak events. Possible physiological or algo-
rithmic artefacts in the RR-series (such as ectopic beats or
peak misdetections) were detected and corrected using
point-process statistics, which included a log-likelihood
prediction55. For more details on a heartbeat dynamics
analysis performed on this dataset, please refer to ref. 29. A
visual inspection analysis ensured that the quality of the
EEG and RR series was retained for further analyses.

Spectral analysis
For the EEG, the power spectral density (PSD) was

estimated using the Welch method, employing a Ham-
ming window of 500 samples (1 s) with a 75% overlap. The
PSD was integrated in the five classical EEG frequency

bands: δ∈ [1−4 Hz), θ∈ [4−8 Hz),

α 2 8� 12Hz½ Þ; β 2 12� 30Hz½ Þ; and γ 2 30� 70Hz½ �:

For the HRV, the smoothed pseudo-Wigner–Ville dis-
tribution method (SPWVD) was employed56. It estimates
the PSD with a relatively low variance, and it has inde-
pendent control of filtering in the temporal and frequency
domains57.

Quantification of functional brain–heart interplay
The functional directional BHI was estimated using

the SDG model, designed in ref. 43. Therefore, the EEG
series is modelled using the oscillators model proposed
by ref. 58, in which amplitudes (i.e., aj (tn)) are shaped
using an exogenous autoregressive model of the first
order:

EEG tnð Þ ¼
XK

j¼1
aj tnð Þsin ωjtn þ ϕj

� �
ð1Þ

aj tnð Þ ¼ ηjaj tn�1ð Þ þ ξ 0j tn�1ð Þ þΨj tn�1jPBC tn�1ð Þ;CBC!j tn�1ð Þ� �

ð2Þ

where j � B, BC 2 LF ¼ 0:04; 0:15½ �Hz;HF ¼ 0:15;½
0:4�Hz;HT ¼ 0:04; 0:4½ �Hz, and CBC!j � CHeart!Brain. Fol-
lowing this definition, the model formulates the heart-to-
brain interplay as:

Ψj tn�1ð Þ ¼ CBC!j tn�1ð Þ ´PBC tn�1jHC
t0

� � ð3Þ

with HC
t0 and PBC tn�1ð Þ representing past heartbeat

dynamics and the heartbeat PSD, respectively. The model
shapes the RR series with an integral pulse frequency
modulation model, as in:59

RR tð Þ ¼
XN

k¼1

δ0 t � tkð Þ ð4Þ

where δ′ denotes a Dirac delta function, t is the time in the
continuous domain, and tk is the time of the kth heartbeat
occurrence determined from:

1 ¼
Z tkþ1

tk

HRþm tð Þ½ �dt ð5Þ

where HR represents the mean heart rate, expressed in
Hz. The autonomic activity function, represented as m(t),
is formulated as:

m tnð Þ ¼ CLF tnð Þ sin ωLFtnð Þ þ CHF tnð Þ sin ωHFtnð Þ
ð6Þ

Table 1 Participants’ characteristics represented by their
Median value (25th, 75th, percentile) of each group.

Variables Whole group Controls (36) Dysphoric (24)

Age (y) 22 (20, 24) 23 (20, 26) 21 (20, 22.5)

Education (y) 16 (14, 17) 16 (15, 17) 15 (14, 17)

STAI-Y1 33 (30, 36) 31.5 (29.5, 34.5) 34 (32, 40)

STAI-Y2 39.5 (33.5, 52) 35 (31, 39) 52.5 (49, 61.5)

BDI–II 7 (2, 13.5) 2.5 (1, 5.5) 14 (12.5, 20.5)

ERQ-R 31 (25.5, 33.5) 31 (29, 35) 29.5 (23, 32.5)

ERQ-S 13 (8.5, 17) 12 (7.5, 15.5) 14.5 (11, 17)

ERQ-R represents ERQ-Reappraisal; ERQ-S represents ERQ Suppression.
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CLF tnð Þ ¼ C0
s þΨLF tn�1jPj tn�1ð Þ; Cj!LF tn�1ð Þ� � ð7Þ

CHF tnð Þ ¼ C0
p þΨHF tn�1jPj tn�1ð Þ; Cj!HF tn�1ð Þ� �

ð8Þ

with Cj!BC � CBrain!Heart. Thus, the from-brain-to-heart
interplay function ΨBC tn�1ð Þ is defined as:

ΨBC tn�1ð Þ ¼ Cj!BC tn�1ð Þ ´PSDEEGj tn�1jHB
t00

� � ð9Þ

where BC 2 fHF;LFg, as in Eqs. (7) and (8); HB
t00 and

PSDEEGj tn�1ð Þ, represent the brain activity history and the
related time-frequency, respectively. The time-varying
heart-to-brain and brain-to-heart interactions are quanti-
fied through the directional BHI biomarkers as CBC!j tð Þ
and Cj!BC tð Þ, respectively, which have the same time
resolution as the input PSDs. Following this model, both
the electrophysiological dynamics (i.e., EEG and HRV
series) are mutually dependent, and their interaction is
modulated by the introduced coupling terms. In sum-
mary, a positive Cδ!LF tkð Þ indicates that the EEG-δ band,
at time tk, leads to a linearly proportional increase (i.e.
exerting a positive influence) in the HRV-low frequency
(LF) band PSD time course. Employing the inverse model
formulation, described in detail in ref. 43, leads to the
derivation of an entire family of BHI biomarkers.
Through this framework, the directional BHI indices

listed in Table 2 were derived. To implement the model,
an easy-to-use MATLAB (Mathworks) implementation
was exploited, which is freely available at ref. 60.
In summary, the model quantifies the functional from-

brain-to-heart directional interplay as well as the from-
heart-to-brain directional interplay throughout the EEG
oscillations in different frequency bands (i.e. δ, θ, α, β, and
γ) and HRV power in the low-frequency and high-
frequency (HF) bands. Following recent evidence on
autonomic dynamics, in this study, HRV-LF power was
considered as a marker of sympathovagal activity, and the
HF power a vagal activity marker61–64. Furthermore, the
functional interplay was investigated in the from-heart-to-
brain direction, originating from the whole HRV spec-
trum, which is associated with the LF+HF power, namely
HT (i.e. [0.04–0.4] Hz).
Intra-subject time-varying BHI estimates were con-

densed using the median value, and between-group

statistical differences are shown as p-value topographic
maps from a non-parametric Mann–Whitney test for
independent samples. The statistical significance thresh-
old was chosen to be α= 0.05, and p-values were adjusted
for multiple comparisons through permutation tests, with
1000 permutations. A cluster-mass permutation correc-
tion was applied to assess the physiological plausibility of
the results65. Preliminary results of this study were pub-
lished in45.

Heartbeat-evoked potentials analysis
To investigate further the causal activity originating

from heartbeat dynamics in the brain, a heartbeat-evoked
potentials (HEP) analysis was also performed. The HEP
technique was proposed in ref. 37, and the actual existence
of such potentials was documented66,67, particularly in the
frontal and central cortex68 and in the somatosensory
cortex66. Note that such areas are consistent with CAN
regions32,33,35. The HEP calculation was performed on a
positive EEG potential, bound in the range of [250–500]
ms, after the ventricular contraction (i.e. the R-peak
timing of the ECG)68. Group-wise grand-average esti-
mates from all recordings of such potentials were used to
investigate differences between the dysphoric and healthy
control groups.

Experimental results
The experimental results show functional BHI changes

associated with dysphoric individuals in the short-term
resting state with respect to the healthy controls. To this
end, the BHI synthetic data generation computational
model (SDG)43 was applied using the EEG and HRV
series.
Figures 2 and 3 show group-wise statistics (median) for

BHI biomarkers in the dysphoric group and the control
group, respectively. Interestingly, all the maps related to
the results that involve the from-heart-to-brain interac-
tion, in both groups, exhibit a gradient from the central
region of the scalp to the peripheral regions on the
medial-axis. This indicates that BHI values in the central
and temporal lobes are lower than those in the frontal and
occipital areas. For the opposite BHI direction, i.e. from-
brain-to-heart, it can be observed that an inverse gradient
is present. This is particularly clear in the BHI from all
EEG bands to the HRV-HF frequency band in both sub-
ject groups and from the whole brain spectrum to the
HRV-LF band only in the healthy controls group. It is
interesting to note that very high values have been mea-
sured in both classes related to the BHI from the brain to
the HRV-HF band.
Results from the statistical analysis of the SDG model

output are depicted in Fig. 4, where the green areas
indicate that changes between groups are not significant,
whereas the blue areas indicate that the BHI values of the

Table 2 BHI indices extracted through the model.

Index From Band To Band

CBrainj!HeartBC
Brain δ, θ, α, β, γ Heart LF, HF

CHeartBC !Brainj Heart LF, HF, HT Brain δ, θ, α, β, γ
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dysphoric subjects are higher than those of the control
group. No red areas are highlighted, indicating that gen-
erally healthy subjects did not have higher BHI indexes
than the dysphoric individuals. Figure 4 shows that all the
combinations of heart-to-brain interactions (i.e. first three
rows) and the BHI from the brain to the HRV-HF band
(i.e. last row) are not significant.
The only significant maps in the figure are those

belonging to the fourth row, showing the BHI from the
brain to the HRV-LF band. The statistically significant
regions are primarily located along the central vertical
axis of the maps, with the EEG-γ band being less involved.
More specifically, the between-groups from-brain-to-
heart BHI indexes difference in the central region of the
scalp was significant in almost all the EEG bands, together
with the mid-frontal and occipital areas. The BHI indexes
difference in prefrontal left and ventro-parietal right lobes
appear to be more significant at lower frequencies (δ, θ,
and α); however, the β band still depicts some significant
electrodes in those regions. Particularly, the temporal
lobes are progressively less spotlighted from the lower to
higher frequency bands (i.e. from δ to γ), highlighting a
much broader significant region in the δ and θ bands in
comparison with the β and γ ranges.

To investigate further the absence of significant heart-
to-brain interplay, the HEP approach was applied; the
experimental results are depicted in Fig. 5. The two
topographic maps exhibit a high similarity, with higher
HEP values in the posterior-central scalp areas and a
negative gradient in the radial direction toward the
external electrodes. A statistical analysis, performed on
each channel using the non-parametric Mann–Whitney
test for unpaired samples, did not enhance any channels
to a 95% level of significance. Thus, HEP indexes that
were extracted during a resting state in dysphoric subjects
did not differ from healthy controls.

Discussion
The present study investigated the functional direc-

tional BHI occurring in patients with dysphoria during a
short-term resting state in 60 young females. Functional
directional BHI was quantified using the SDG model43 on
EEG and heartbeat oscillations. In particular, this work
investigated functional coupling between EEG and sym-
pathovagal dynamics and it identified a significantly
higher from-brain-to-heart coupling in dysphoric subjects
than in healthy controls. This occurred considering the
HRV-LF, at the heartbeat level, and different frequency
bands at the central level. The central axis between the

Fig. 2 Topographic distribution of the extracted BHI indexes in healthy participants during a resting state. BHI indexed are explained in
Table 2. (arbitrary units).
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hemispheres, from the midline frontal to occipital cortex,
was the most activated.
More specifically, these results evidence that major

changes in BHI occur at low EEG frequencies (i.e. δ, θ,
and α), as opposed to higher frequencies (i.e. β and γ).
EEG low frequency ranges have been associated both with
cardiovascular control69,70, and with depressive symp-
toms8–10. In addition, EEG functional connectivity chan-
ges in the θ and α frequency bands were measured in
healthy subjects when introspective mental rumination
was performed6, which is a peculiar depressive/dysphoric
symptom, and similar changes were obtained comparing
healthy and dysphoric individuals51. Our results might
give insights on the BHI role in the relationship bounding
the EEG connectivity changes at low frequencies6,51, and
the association found between rumination, other depres-
sive symptoms, or meditation to sympathovagal dys-
functions70–72.
Furthermore, focusing on the BHI indexes from the

EEG-α band to the HRV-LF band, depicted in Fig. 4, a
region vertically spanning from the right posterior to the
left anterior areas is highlighted. Intriguingly, similar
patterns have already been pointed out during investiga-
tions of EEG asymmetries in clinical and subclinical
depression in the α frequency band7,9,10. At a speculation

level, this result may link the BHI phenomenon to the
appetitive motivational system dysfunctions, suggesting
further investigation in this field.
Note that a previous study on heartbeat dynamics in

dysphoria showed significant differences at rest in the
mean and standard deviation of RR series, as well as LF
power with respect to healthy controls, whereas no dif-
ferences between groups were observed in HF power or
LF/HF ratio29. It could be argued that such changes in LF
power may partially be due to an intensification of the
cortical control onto sympathovagal dynamics through
oscillations in the LF band.
The present study further investigated heart-to-brain

interplay using the HEP approach and did not observe any
significant difference between healthy controls and dys-
phoric subjects. Our results, which were obtained by
applying the two methodologies (i.e. SDG and HEP), are
consistent in depicting a comparable heart-to-brain inter-
play in the two experimental groups. Moreover, our results
confirm the hypotheses of a higher CNS influence on heart
dynamics in individuals with depressed mood30. These
results suggest a possible involvement of CAN dysfunc-
tions in dysphoria. While the interplay between subcortical
and cortical CAN areas and its effect on EEG dynamics are
currently unknown, our results suggest a dysfunctional

Fig. 3 Topographic distribution of the extracted BHI indexes in participants with dysphoria during a resting state. BHI indexes are explained
in Table 2. (arbitrary units).
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activity of the MPFC in dysphoria. Moreover, differences
between groups were also linked to posterior midline
regions, which might result from the activity of posterior
cingulate and the precuneus cortices. Further, these find-
ings functionally mirror the causal relationship of over-
activation in CAN-associated regions, such as the caudal
subgenual region of primate ventro-medial prefrontal
cortex, anticipating the cardiovascular and behavioural
arousal typical of stress-related disorders73.

Possibly, an alteration of such control may partially
explain the clinical interaction between depressed mood
and cardiac disorders such as the increased risk of car-
diovascular diseases (e.g. CHD) in patients diagnosed with
mood disorders30 and vice versa25–27. Interestingly, a solo-
EEG analysis that was recently performed on the same
dataset51 did not identify any difference between the two
experimental groups when investigating changes in power
distributions, thus strengthening the necessity of the BHI
approach to highlight psychophysiological patterns cor-
related with the psychopathology.
Owing to previous evidence linking depression to HRV

abnormalities16,31, and linking depression to dysfunctional
activity at the CAN level14,74, and considering the results
presented in this work, it can be claimed that dysphoria
may be associated with irregular functional BHI changes.
This work comes with limitations: larger experimental

groups are needed and different physiological conditions
than resting state remain to be investigated. Future stu-
dies should inspect the role of inter-subject variability and

Fig. 4 P-value topographic maps from non-parametric Mann–Whitney tests for unpaired samples in the proposed brain–heart model,
between healthy subjects and dysphoric ones, in a resting state. Significant brain regions (p < 0.05, corrected through multiple comparisons) are
highlighted with respect to the green areas, which indicate no significant changes between conditions. Blue regions represent a BHI that is
significantly higher in dysphoric subjects.

Fig. 5 Topographic distribution of the extracted HEP indexes in
healthy (left) and dysphoric (right) participants during 5 min in a
resting state.
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other brain- and heart-related physiological markers,
owing to the known heterogeneity of mood disorders75.

Conclusion
This study suggested that mood disorders, such as

dysphoria, are associated with impaired functional BHI.
Specifically, dysphoria is characterized by an overdrive of
the functional neural control on heartbeat regulation,
which acts through different brain oscillations to the
sympathovagal dynamics and the so-called central-auto-
nomic network at rest76. No significant differences were
associated with the HRV-HF power, suggesting that the
sympathetic nervous system and sympathovagal interplay
are crucial in dysphoria.
In conclusion, the BHI approach constitutes a promis-

ing framework to yield biomarkers for mood disorders,
with the aim to develop an objective characterization and
diagnosis of mood disorders.
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