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Phenotypically independent profiles relevant to
mental health are genetically correlated
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Lars T. Westlye 1,4 and Tobias Kaufmann 1,5

Abstract
Genome-wide association studies (GWAS) and family-based studies have revealed partly overlapping genetic
architectures between various psychiatric disorders. Given clinical overlap between disorders, our knowledge of the
genetic architectures underlying specific symptom profiles and risk factors is limited. Here, we aimed to derive distinct
profiles relevant to mental health in healthy individuals and to study how these genetically relate to each other and to
common psychiatric disorders. Using independent component analysis, we decomposed self-report mental health
questionnaires from 136,678 healthy individuals of the UK Biobank, excluding data from individuals with a diagnosed
neurological or psychiatric disorder, into 13 distinct profiles relevant to mental health, capturing different symptoms as
well as social and risk factors underlying reduced mental health. Utilizing genotypes from 117,611 of those individuals
with White British ancestry, we performed GWAS for each mental health profile and assessed genetic correlations
between these profiles, and between the profiles and common psychiatric disorders and cognitive traits. We found
that mental health profiles were genetically correlated with a wide range of psychiatric disorders and cognitive traits,
with strongest effects typically observed between a given mental health profile and a disorder for which the profile is
common (e.g. depression symptoms and major depressive disorder, or psychosis and schizophrenia). Strikingly,
although the profiles were phenotypically uncorrelated, many of them were genetically correlated with each other.
This study provides evidence that statistically independent mental health profiles partly share genetic underpinnings
and show genetic overlap with psychiatric disorders, suggesting that shared genetics across psychiatric disorders
cannot be exclusively attributed to the known overlapping symptomatology between the disorders.

Introduction
Psychiatric disorders are highly polygenic, exhibiting a

multitude of significantly associated genetic variants with
small effect sizes. Recent large-scale genome-wide asso-
ciation studies (GWAS) have identified a large number of
single-nucleotide polymorphisms (SNP) associated with
psychiatric disorders such as schizophrenia (SCZ)1,
bipolar disorder (BD)2, major depression (MD)3, attention
deficit hyperactivity disorder (ADHD)4, autism spectrum

disorders (ASD)5, post-traumatic stress disorder (PTSD)6,
and anxiety (ANX)7. In addition to substantial poly-
genicity, previous findings have documented genetic
overlap between disorders8–11, even in the absence of
genetic correlations expressed as additive genetic effects
for two traits, as recently demonstrated for schizophrenia
and educational attainment12,13. Adding to the complex-
ity, psychiatric disorders also overlap with multiple
complex traits, such as BMI14, cardio-metabolic dis-
eases15, and a number of psychosocial and other risk
factors for reduced mental health16–18. The latter are
particularly challenging in the context of genetics, since
genetic overlap may not necessarily point to causative
effects but rather point at common underlying fac-
tors19,20. Taken together, the landscape of current
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psychiatric genetics suggests highly complex patterns of
associations and unclear specificity for many common
psychiatric disorders.
While GWAS studies have allowed to disentangle parts

of the genetic architecture of psychiatric disorders, these
methods alone are not sufficient to answer some of the
challenges posed in psychiatric genetics. One of those
challenges is the lack of clinical demarcation between
psychiatric disorders. For example, patients with the same
diagnosis may not necessarily exhibit common symp-
toms21 and patients with different diagnoses may show
highly overlapping clinical phenotypes22. The notion that
mental disorders like schizophrenia and bipolar disorders
reflect biologically heterogeneous categories is also sup-
ported by neuroimaging studies23,24. Nonetheless, a
majority of large-scale genetic studies use a classical
case–control design based on a categorical oper-
ationalization of disease without stratifying other mea-
sures such as symptoms, functioning, or symptom
severity. Likewise, control groups are rarely screened for
sub-threshold symptoms. For example, in the case of
psychosis, approximately 6% of the general population are
reported to have a psychotic experience in their lifetime,
and only a minority of that group will develop a diagnosed
psychiatric illness such as schizophrenia or bipolar dis-
order25. Finally, the likelihood of inducing selection bias
when drawing cases and controls from different popula-
tions are high and may impose confounds in case–control
designs26. Thus, whereas studies using the classical
case–control design have been instrumental and pro-
duced a strong body of discoveries in psychiatric genetics,
these designs have limitations that may prevent us from
discovering signal more closely related to clinical char-
acteristics of the disorder. In addition, case–control
designs require immense effort and resources given that
the high polygenicity of common psychiatric disorders
requires vast sample sizes to detect effects27.
Recent large-scale population level efforts such as the

UK Biobank28 now provide alternatives for the study of
psychiatric disorders. The mental health data available in
the UK Biobank includes data from more than 150,000
individuals and covers questions on current and previous
symptoms in different psychiatric domains29. For exam-
ple, a recent study revealed genetic associations with
psychotic experiences in the UK Biobank and reported
genetic correlations between psychotic experience and
common psychiatric disorders30. While this study formed
two groups of subjects (with and without psychotic
experience), others have suggested continuous measures
of psychopathology obtained from questionnaire data,
such as the p-factor31. While bundling variance of psy-
chopathology in a single common factor can be a useful
proxy of mental health vulnerability, the specificity of the
p-factor to disorder-specific mechanisms is limited31.

Independent component analysis (ICA)32,33 provides a
complementary approach to decompose the variance
from mental health questionnaires into independent
latent variables. For example, using ICA on mental health
questionnaires of children and adolescents, Alnæs et al.34

have identified a set of independent components reflect-
ing symptoms of attention deficit, psychosis, depression,
anxiety, and more. Independent components obtained
from mental health questionnaires may each capture
either global (e.g. joint symptoms of depression, stress,
and anxiety) or specific aspects (e.g. pure psychosis
symptoms) of mental health in a data-driven fashion,
thereby yielding multiple distinct profiles relevant to
mental health symptoms beyond a common p-factor.
Here, in order to disentangle the genetic architecture

underlying psychiatric symptoms and traits as well as
psychosocial and other risk factor for reduced mental
health, we investigated structures of psychopathology and
corresponding genetics using ICA in the UK Biobank
mental health data. This allowed us to study the genetic
relationships between statistically independent profiles
relevant to mental health, and between these profiles and
psychiatric disorders as well as cognitive traits. We focused
our analysis on data from individuals who had no previous
diagnosis with a neurological or psychiatric disorder,
yielding novel insights into variation in mental health in a
healthy (undiagnosed) population. Given that preclinical
symptoms in healthy individuals may share biological
mechanisms with symptoms in diagnosed individuals, we
hypothesized that the genetic architecture of specific var-
iations in mental health in healthy (undiagnosed) indivi-
duals overlaps with specific major psychiatric disorders.
However, we did not have an a priori hypothesis for the
degree of specificity. The known pleiotropy between major
psychiatric disorders (reproduced in Suppl. Fig. 1) might
reflect similar symptoms or risk factors occurring in dif-
ferent disorders or similar mechanisms underlying differ-
ent symptoms or risks. We therefore investigated if
statistically independent mental health profiles are also
genetically independent or if they share a common genetic
architecture, which may yield insights into the sources of
pleiotropy in psychiatric genetics.

Methods and materials
Sample and exclusion criteria
We accessed data from the UK Biobank28 with permis-

sion no. 27412, and included data from individuals who
had participated in an online follow-up questionnaire on
mental health (UK Biobank category 136). All participants
provided signed informed consent before inclusion in the
study. The UK Biobank was approved by the National
Health Service National Research Ethics Service (ref. 11/
NW/0382). Participants with a diagnosed psychiatric or
neurological disorder (F or G ICD10 diagnosis) were
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excluded from the analysis except for those with a nerve,
nerve root, and plexus disorders (categories G50 to G59).
In addition, we excluded participants with more than 10%
missing answers in the mental health questionnaires. This
resulted in mental health data from 136,678 individuals,
which was used in an ICA. For the genetic analysis, we
selected data from all White British individuals with

available genotypes, yielding a set of 117,611 participants
aged 47–80 years (mean: 64, SD: 7.66, age at mental health
assessment) comprised of 56.2% females.

Processing of mental health data
Figure 1A depicts the analysis workflow. The UK Bio-

bank database contains about 140 questions on mental

Fig. 1 Workflow and variable weight matrix of the resulting decomposition. A Outline of the analysis workflow. B Weight matrix reflecting how
each mental health question loaded on each IC. Brighter colors indicate higher loading and darker colors indicate lower loading. All 43 questions
were captured by at least 1 of the 13 independent components. To facilitate interpretation, loadings of IC1, IC2, IC5, IC9, IC10, IC11, and IC12 were
inverted so that all components showed the same direction of effect (higher component score indicating increased scoring on the items).
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health and risk factors related to reduced mental health.
The questions on the mental health risk factors are ret-
rospective (e.g. “have you ever …”, “at any point in your
lifetime …” etc.). This warrants some caution in the
interpretation, since retrospective analysis yields lower
power than a prospective design. We selected only pri-
mary questions that were answered by all participants,
excluding follow-up questions. Of the 60 resulting ques-
tions that were available, we removed questions that asked
specifically about symptoms occurring in the past 2 weeks
to remove potential short-term temporal effects. Fur-
thermore, we excluded questions where more than 10% of
the responses were missing (1 question excluded). In the
resulting set of 43 questions (Suppl. Table 1), we imputed
missing data using k-nearest neighbor imputation with
k= 3 with the bnstruct package35 in R36 and z-standar-
dized the data (Suppl. Fig. 2).
The resulting data covering 43 questions from 136,678

individuals were decomposed using ICA. ICA is a statis-
tical clustering method that decomposes multiple related
variables into statistically independent components. The
resulting components show a high degree of within-
cluster correlation, but no correlation between the clus-
ters. Of note, the number of components needs to be pre-
specified, and this selection of appropriate model order is
to a certain degree a subjective task where, depending on
the stringency of the criteria defined for model order
selection, it is possible to obtain several different solutions
that meet the requirements for an appropriate threshold.
Here, we used icasso37 in MATLAB in combination with
visual inspection of the loadings of the questions on the
components. The PCA identified 13 components with an
eigenvalue larger than 1, and stability (Iq) was effectively
1. A model order lower than 13 would group together
questions into components which we preferred to keep
separate. A model order larger than 13 was not reasonable
as it would yield components that largely reflect single
items. We therefore concluded that a model order of 13
independent components yields the best clustering solu-
tion where the resulting components are stable and highly
interpretable. The individual scores for each of the 43
questions were subsequently residualized for age (both
linear and quadratic term), sex, and the first 20 genetic
principal components. Next, we decomposed the items
into 13 independent components using the fastICA
algorithm as implemented in R38. Figure 1B depicts how
each of the 43 items loaded on the components, indicating
independent components (ICs) that captured questions
on sexual abuse (IC1), psychosis (IC2), anxiety, depression
and mental distress (IC3), a diagnosis with a life-
threatening illness (IC4), social instability (IC5), trau-
matic experiences (IC6), stress in the past month (IC7),
experiences of feeling loved (IC8), thoughts around self-
harm behavior (IC9), general happiness (IC10), addiction

behavior and manic experiences (IC11), experiences of
emotional abuse (IC12), and alcohol abuse (IC13). Of
note, we here introduced this labeling of the ICs only to
improve legibility of the results yet caution is warranted as
the label is not necessarily encompassing all facets of a
given component. The labels only highlight some of the
core domains of questions weighing strongly on a given
component, yet all interpretations need to be made in the
light of the ICA framework (Fig. 1B)
The distribution of IC2 indicated very few non-zero

scores (Suppl. Fig. 3). This component loaded mostly on
psychosis questions (Fig. 1B), indicating that only a few of
the included healthy individuals had symptoms in this
domain. We therefore conducted an additional supple-
mental analysis in which we dichotomized IC2 such that
loadings lower than 1 were labeled as “no/few symptoms”,
and loadings equal to or higher than 1 were labeled as
“with symptoms”.

Processing of genetic data
From the UK Biobank v3 imputed genetic data, we

removed SNPs with an imputation quality score below
0.5, with a minor allele frequency below 0.001, missing in
more than 5% of individuals, and that failed the
Hardy–Weinberg equilibrium test at p < 1e−9. We
removed also individuals with more than 10% missing
data. We performed a genome-wide association analysis
(GWAS) on each of the 13 independent components in
PLINK 239,40. Using a publicly available conversion tool-
box for GWAS summary statistics (github.com/precimed/
python_convert), we removed the MHC region and cal-
culated a z-score for every SNP (8,165,726 SNPs after
QC). We utilized linkage-disequilibrium score regres-
sion10,41 to estimate genetic correlations between each of
the independent components, and between the compo-
nents and publicly available GWAS summary statistics for
SCZ1, BD2, MD42, ADHD4, ASD5, PTSD6, ANX7, as well
as intelligence43, and educational attainment44 (Suppl.
Table 2). For all aforementioned GWASs, we used those
versions that did not have UK Biobank participants
included. From the MD GWAS, we removed participants
from the 23andMe dataset as well, leaving only cases with
a diagnosed major depressive disorder (MDD). Prior to
estimating genetic correlations, we set a threshold that
only ICs with a heritability 1.96 times larger than its
standard error should be included in the analysis and only
those where visual quality control of corresponding Q–Q
plots indicated genetic signal. These quality control steps
were implemented to ensure that we did not make
inferences on data that did not provide sufficient variance
explained by genetics. Partitioned heritability45 was esti-
mated using the LDSC toolbox41 and Q–Q plots were
generated using custom scripts in R. Finally, we processed
the GWAS summary statistics of each independent
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component through the Functional Mapping and Anno-
tation toolbox (FUMA) to map lead SNPs onto genes46.
FUMA parameters were kept as default, and we used the
FUMA default European ancestry reference panel.

Results
Figure 2 depicts SNP-based heritability (h2) for the 13

ICs (Suppl. Table 3 for additional statistics). Heritability
was generally low, yet all components yielded a herit-
ability that was higher than 1.96 times the standard error.
IC13, capturing questions on alcohol abuse had the
highest heritability (h2= 0.0763, SE= 0.0055), closely
followed by IC3, capturing anxiety, depression, and
mental distress (h2= 0.0744, SE= 0.0052). The lowest
heritability among the components was for IC2, reflecting
psychosis questions (h2= 0.0089, SE= 0.0043), likely
owing to the low number of individuals with psychosis
symptoms (Suppl. Fig. 3). We therefore performed a
supplemental analysis to investigate if dichotomization of
this IC would benefit the analysis (Suppl. Fig. 4). In brief,
as dichotomization only slightly improved heritability
estimates, we kept IC2 as a continuous component for the
main analysis to stay consistent with the other compo-
nents, yet we provide results with the dichotomized
component in Suppl. Fig. 4. In addition to passing the
heritability criterion of 1.96 times the standard error, the
Q–Q plots of all ICs passed visual quality control (Suppl.
Fig. 5) warranting inclusion of all components into sub-
sequent genetic correlation analyses.
Except for IC4, all ICs showed genome-wide significant

SNPs at a threshold of 5e−8 (Suppl. Fig. 6). Using FUMA,
we discovered seven independent loci for IC13, two for

IC2, IC7, and IC8, one locus for IC1, IC3, IC5, IC10, IC11,
and IC12, and IC4, IC6, and IC9 had no significant genetic
risk loci. Supplementary Table 4 provides a list of mapped
genes for all ICs, illustrating that IC13 had the most
mapped genes among all ICs (74 mapped genes).
We assessed genetic correlations between each of the 13

ICs and a set of psychiatric disorders as well as cognitive
traits. Out of 117 comparisons, 70 were significant after
FDR correction (α= 0.05), which amounts to 59%. Figure 3
depicts all genetic correlations with ICs, sorted separately
for each disorder or cognitive trait (sorted by absolute
genetic correlation). Supplementary Figure 7 shows the
same genetic correlations separated by IC. We found that
in most cases the strongest genetic correlation was with the
IC most closely related to that disorder or trait. For
example, anxiety most strongly correlated with IC3, which
reflects anxiety, depression, and mental distress (genetic
correlation rg= 0.70, pFDR < 0.00027). SCZ was most highly
correlated with IC2, which represents psychosis questions
(rg= 0.54, pFDR= 0.001). The highest genetic correlation of
BD was with IC11, which represents addiction and mania
(rg= 0.5, pFDR= 6.5e−12). For PTSD, the component
reflecting traumatic experience (IC6) only ranked sixth
among the sorted associations, yet the two ICs showing
strongest association with PTSD reflected anxiety,
depression, and mental distress (IC3; rg= 0.53, pFDR=
0.0017) and diagnosed with life-threatening illness (IC4;
rg= 0.51, pFDR= 0.080), both of which are closely related
to PTSD. ASD correlated strongest with IC2 (reflecting
psychosis; rg= 0.40, pFDR= 0.031) and ADHD correlated
strongest with IC8 (Felt loved; rg=−0.51, pFDR= 4.7e
−21). Educational attainment and intelligence were both

Fig. 2 Heritability estimates of the independent components SNP-based heritability for each IC sorted by decreasing heritability (h2).
Heritability calculated using the LDSC toolbox41. Error bars reflect standard errors.

Roelfs et al. Translational Psychiatry          (2021) 11:202 Page 5 of 10



strongest negatively correlated with the IC reflecting social
instability (IC5, rg=−0.74 and rg=−0.76, respectively;
both pFDR < 2.5e−74). In general, the strongest associations
among all ICs, either positive or negative, were with MDD
while the weakest associations were with educational
attainment.
Next, we assessed the genetic correlations between the

ICs. Independent components are statistically indepen-
dent by design, and thus on the phenotype level the ICs
were not correlated with each other (Fig. 4, lower half;
correlations essentially zero). However, approximately
half of the IC pairs were nonetheless significantly
genetically correlated with each other (51%, p < FDR). IC3
(anxiety, depression, mental illness) was genetically cor-
related with 10 other ICs. IC9 (self-harm) was correlated
with nine other ICs and IC6 (traumatic experiences) and
IC8 (felt loved) were each genetically correlated with eight
other ICs. IC11 (addiction/mania) and IC12 (emotional
abuse) were each genetically correlated with seven other

ICs. IC1 (sexual abuse) and IC5 (social instability) were
both genetically correlated with six other ICs. IC2 (psy-
chosis) was correlated with five other ICs. IC4 (diagnosed
with life-threatening illness) and IC13 (alcohol abuse)
were both genetically correlated with four other ICs. And
IC7 (stress last month) and IC10 (general happiness) were
both genetically correlated with three other ICs. No IC
had no significant genetic correlations with other ICs. The
analysis therefore revealed a large amount of genetic
correlations despite statistical (phenotypic) independence
of the symptom profiles.

Discussion
In the present study, we decomposed mental health

questionnaire data from more than 130,000 individuals
into phenotypically distinct profiles relevant to mental
health (independent components) that reflected compo-
sitions of symptoms, psychosocial and other risk factors
for reduced mental health. We found that variations in

Fig. 3 Genetic correlation between the independent components and disorders and cognitive traits. For each disorder, the associations with
ICs are sorted by decreasing absolute genetic correlation such that the most leftward box reflects the strongest association between a given disorder
and the 13 ICs. Numbers in brackets under each IC label denote the genetic correlation (rg). Size of the boxes reflect the standard error. Significant
correlations (p < FDR) are indicated with a black border.
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these profiles in healthy individuals (without a neurolo-
gical or psychiatric diagnosis) were genetically correlated
with psychiatric disorders and cognitive traits. Strongest
correlations were observed between components and
disorders with known symptoms in a similar domain (e.g.
psychosis symptoms with schizophrenia), but the large
amount of significant correlations between disorders and
mental health profiles suggested limited specificity.
Indeed, we found a large proportion of significant genetic
correlations between the phenotypically uncorrelated
profiles, suggesting overlapping genetic architectures
underlying distinct symptoms and risk factors. A number
of the questions included in the analyses revolved around
risk factors for mental health, such as a history of child-
hood abuse, sexual abuse, and an unstable home situation.
Caution is warranted in the interpretation of these effects.
The genetic correlation with the independent compo-
nents capturing these items do not suggest that there is a
genetic component to high-risk environments but rather
are likely to capture second order effects. In other words,
a GWAS on such risk factors is more likely to reflect other
factors underlying these risk factors than the risk factors
directly.
The implications of our findings are twofold. First, our

results support pleiotropy in psychiatric disorders beyond
overlapping symptoms (e.g. BD and MDD both involving
depressive episodes), suggesting that even distinct

psychiatric symptoms are genetically overlapping. Sec-
ond, our findings support that normal variability in
mental health within healthy individuals may inform the
study of the biology of psychiatric disorders.
While pleiotropy between major psychiatric disorders

has been widely established9–11 (reproduced in Suppl. Fig.
1), the sources underlying pleiotropy remain largely
unknown. Specifically, disorders oftentimes overlap in
symptomatology and therefore the degree to which the
observed genetic correlations between disorders reflect
phenotypic overlap between disorders remains to be
investigated. Our approach of decomposing mental health
data into distinct profiles allowed us to study genetic
correlations in a sample with known phenotypic correla-
tions and to assess how these profiles correlate with the
genetics of different diagnoses. We observed that most
disorders correlated strongest with the independent
components capturing a related phenotype. For example,
the strongest association with IC3, which reflects variance
in anxiety, depression, and mental distress, was with
ANX, the strongest association with IC2 (psychosis) was
with SCZ. Therefore, the ranking of association strengths
suggested a certain degree of specificity. However, that
degree was strongly limited as most of the disorders and
components were significantly genetically correlated. For
example, MDD showed significant correlations with all
but one component, ASD correlated with all but four

Fig. 4 Phenotypic and genetic correlation between the ICs. The lower half of the IC by IC matrix depicts phenotypic correlations, reflecting the
Pearson correlation of subject level component scores between independent components. As expected by ICA design, correlations were close to
zero. The upper half of the matrix depicts the genetic correlations (rg), indicating significant genetic correlations in 40 of 78 tests. Size of the boxes
indicate standard error and significant correlations (p < FDR) are indicated with a black border.
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components, and ANX and ADHD were correlated with
all but five components, though correlation strengths
were overall lower than with MDD, possibly due to lower
sample size. There were also significant associations
between components and cognitive traits, although
overall weaker associations compared to those with dis-
orders. About half of the genetic correlations with intel-
ligence and educational attainment pointed in the
opposite direction, considerably more than for the psy-
chiatric disorders, reflecting higher cognitive ability with
fewer psychiatric symptoms. Importantly, when looking at
the correlations between mental health profiles, we found
that approximately half of the genetic correlation matrix
between ICs yielded significant genetic correlations
despite a lack of phenotypic correlations (independence of
the components). This suggests that some of the same
genes are involved in the genetics of distinct profiles
relevant to mental health and may indirectly support
pleiotropy independent of phenotypic overlap in psy-
chiatric disorders. Whereas more research is needed
before conclusions on the sources underlying the
observed pleiotropy can be drawn, one possible explana-
tion for the significant genetic correlations in the ICs
could be that, since all independent components each
capture a facet of mental health, there may be a number of
SNPs that are involved across mental health symptoms.
These SNPs may be involved in overall mental health,
from psychological well-being to psychosis symptoms.
Our analysis of significant SNPs in FUMA did not identify
overlapping SNPs between ICs; however, this may be
attributed to the relatively low number of significant loci
discovered for the ICs. Advanced statistical tools and
further increasing sample sizes may help pinpoint specific
genes involved with different symptoms. Furthermore, it
is also plausible that environmental effects may factor into
the explanation of the significant genetic correlations
despite phenotypic independence if the environmental
factors differ markedly between the ICs.

Limitations
Notable strengths of the present study include the use of

data-driven decomposition of mental health data in a
large sample of healthy individuals and its application to
study pleiotropy in psychiatric genetics. Its main limita-
tions include the low heritability of the resulting inde-
pendent components, and the limited number of
individuals with psychosis symptoms yielding suboptimal
distribution in IC2 (Suppl. Fig. 3). First, it is important to
note that all ICs passed quality control. Heritability of all
ICs exceeded our pre-defined heritability threshold of 1.96
times its standard error, and all Q–Q plots indicated
genetic signal (Suppl. Fig. 5). Furthermore, low heritability
can still produce good genetic signal as a result from a low
number of genetic variants involved but where each has

large effects13. For example, while IC2 had the lowest
heritability among the ICs, it showed one of the strongest
genetic signals and, together with IC7 and IC8, it ranked
second in terms of the number of loci discovered in
FUMA, following IC13 (alcohol abuse) that showed the
highest heritability, strongest genetic signal on the Q–Q
plot and the largest number of significant loci and map-
ped genes. Second, although sample size and symptom
distributions factored into the results, these are mostly
reflected in the standard error of genetic associations, not
in a lack of effect. For example, ANX7 (n= 21,761) and
PTSD6 (n= 9,537) GWASs have relatively little power as
reflected in the larger standard errors in genetic correla-
tions with these disorders, but nonetheless the strongest
associations with these disorders were with components
that match symptoms of the disorders (both correlated
strongest with IC3, reflecting anxiety/depression/mental
distress). Likewise, the suboptimal symptom distributions
in IC2 and corresponding low heritability is reflected in
large standard errors of the resulting genetic correlations
but nonetheless IC2, reflecting psychosis, was most
strongly associated with SCZ. Supplemental analysis with
dichotomized IC2 also confirmed that the distribution
alone is unlikely to explain the observed associations
(Suppl. Fig. 5).
Furthermore, it is important to note that while we

excluded individuals with psychiatric disorders based on
ICD codes, we may still include individuals with (sub-
threshold) psychiatric disorders that have not been diag-
nosed. For example, most patients with depressive
symptoms in the UK will be treated by first-line care,
which may not be registered in the UK Biobank47. How-
ever, distributions of z-scores on the individual questions
appear quite similar between individuals without and
individuals with a diagnosis (Suppl. Fig. 2). While we
cannot rule out subtle contributions to IC decomposition
by the potential remaining inclusion of a subset of
patients in primary care, these results support that should
such a confound be present, it is unlikely to have intro-
duced enough structural variance to diminish our main
findings.

Conclusion
In the present study, we revealed genetic overlap

between statistically independent profiles relevant to
mental health capturing compositions of symptoms, psy-
chosocial, and other risk factors for reduced mental
health, and provide evidence that variations in mental
health in healthy individuals relate genetically to psy-
chiatric disorders and cognitive traits. These findings
support that pleiotropy between psychiatric disorders
cannot simply be explained by overlapping symptoms or
risks, but may rather point to similar biological under-
pinnings of distinct symptoms or risks. Our results
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underscore the potential of data-driven approaches to the
study of mental health, and suggests that supplementing
the classic case–control design with a dimensional
approach may improve our understanding of the genetic
underpinnings of complex disorders of the mind.

Acknowledgements
The authors were funded by the Research Council of Norway (#276082
LifespanHealth, #223273 NORMENT, #283798 ERA-NET Neuron SYNSCHIZ,
#249795), the South-East Norway Regional Health Authority (2019101, 2019107,
and 2020086), and the European Research Council under the European Union’s
Horizon2020 Research and Innovation program (ERC Starting Grant #802998),
as well as the Horizon2020 Research and Innovation Action Grant CoMorMent
(#847776). This research has been conducted using the UK Biobank Resource
(access code 27412, https://www.ukbiobank.ac.uk/). This work was performed
on the TSD (Tjenester for Sensitive Data) facilities, owned by the University of
Oslo, operated and developed by the TSD service group at the University of
Oslo, IT-Department (USIT). Computations were also performed on resources
provided by UNINETT Sigma2—the National Infrastructure for High
Performance Computing and Data Storage in Norway.

Author details
1NORMENT, KG Jebsen Centre for Neurodevelopmental Disorders, Division of
Mental Health and Addiction, Oslo University Hospital & Institute of Clinical
Medicine, University of Oslo, Oslo, Norway. 2Bjørknes College, Oslo, Norway.
3School of Mental Health and Neuroscience, Faculty of Health, Medicine and
Life Sciences, Maastricht University, Maastricht, The Netherlands. 4Department
of Psychology, University of Oslo, Oslo, Norway. 5Department of Psychiatry and
Psychotherapy, University of Tübingen, Tübingen, Germany

Author contributions
D.R. and T.K. conceived the study; D.R. analyzed the data with contributions
from T.K.; all authors contributed with conceptual input on methods and/or
interpretation of results; D.R. and T.K. wrote the first draft of the paper and all
authors contributed to the final manuscript.

Code availability
Code and GWAS summary statistics will be made publicly available via GitHub
(github.com/norment/open-science) upon acceptance of the manuscript.
Furthermore, the derived independent components (individual level data) will
be made available to the UK Biobank upon acceptance (derived variable
return) to allow its use in future UK Biobank studies.

Conflict of interest
D.R., D.A., O.F., D.vd.M., O.B.S., L.T.W. and T.K. declare no conflicts of interest. O.A.
A. is a consultant to HealthLytix and received speakers honorarium from
Lundbeck.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Supplementary information The online version contains supplementary
material available at https://doi.org/10.1038/s41398-021-01313-x.

Received: 13 January 2021 Revised: 15 February 2021 Accepted: 3 March
2021

References
1. Pardiñas, A. F. et al. Common schizophrenia alleles are enriched in mutation-

intolerant genes and in regions under strong background selection. Nat.
Genet. 50, 381–389 (2018).

2. Stahl, E. A. et al. Genome-wide association study identifies 30 loci associated
with bipolar disorder. Nat. Genet. 51, 793–803 (2019).

3. Howard, D. M. et al. Genome-wide meta-analysis of depression identifies 102
independent variants and highlights the importance of the prefrontal brain
regions. Nat. Neurosci. 22, 343–352 (2019).

4. Demontis, D. et al. Discovery of the first genome-wide significant risk loci for
attention deficit/hyperactivity disorder. Nat. Genet. 51, 63–75 (2019).

5. Grove, J. et al. Identification of common genetic risk variants for autism
spectrum disorder. Nat. Genet. 51, 431–444 (2019).

6. Duncan, L. E. et al. Largest GWAS of PTSD (N=20070) yields genetic overlap
with schizophrenia and sex differences in heritability. Mol. Psychiatry 23,
666–673 (2018).

7. Otowa, T. et al. Meta-analysis of genome-wide association studies of anxiety
disorders. Mol. Psychiatry 21, 1391–1399 (2016).

8. Andreassen, O. A. et al. Improved detection of common variants associated
with schizophrenia and bipolar disorder using pleiotropy-informed condi-
tional false discovery rate. PLoS Genet. 9, e1003455 (2013).

9. Anttila, V. et al. Analysis of shared heritability in common disorders of the
brain. Science 360, eaap8757 (2018).

10. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases
and traits. Nat. Genet. 47, 1236–1241 (2015).

11. Smeland, O. B. et al. Genome-wide analysis reveals extensive genetic overlap
between schizophrenia, bipolar disorder, and intelligence. Mol. Psychiatry
https://doi.org/10.1038/s41380-018-0332-x (2019).

12. Bansal, V. et al. Genome-wide association study results for educational
attainment aid in identifying genetic heterogeneity of schizophrenia. Nat.
Commun. 9, 3078 (2018).

13. Frei, O. et al. Bivariate causal mixture model quantifies polygenic overlap
between complex traits beyond genetic correlation. Nat. Commun. 10,
2417–2417 (2019).

14. Bahrami, S. et al. Shared genetic loci between body mass index and major
psychiatric disorders: a genome-wide association study. JAMA Psychiatry
https://doi.org/10.1001/jamapsychiatry.2019.4188 (2020).

15. Amare, A. T., Schubert, K. O., Klingler-Hoffmann, M., Cohen-Woods, S. & Baune,
B. T. The genetic overlap between mood disorders and cardiometabolic
diseases: a systematic review of genome wide and candidate gene studies.
Transl. Psychiatry 7, e1007 (2017).

16. Chen, L. P. et al. Sexual abuse and lifetime diagnosis of psychiatric disorders:
systematic review and meta-analysis. Mayo Clin. Proc. 85, 618–629 (2010).

17. Gunnell, D., Kidger, J. & Elvidge, H. Adolescent mental health in crisis. BMJ 361,
k2608 (2018).

18. Straatmann, V. S. et al. How do early-life factors explain social inequalities in
adolescent mental health? Findings from the UK Millennium Cohort Study. J.
Epidemiol. Community Health 73, 1049–1060 (2019).

19. Selzam, S. et al. Predicting educational achievement from DNA. Mol. Psychiatry
22, 267–272 (2017).

20. Anderson, J. S., Shade, J., DiBlasi, E., Shabalin, A. A. & Docherty, A. R. Polygenic
risk scoring and prediction of mental health outcomes. Curr. Opin. Psychol. 27,
77–81 (2019).

21. Andreasen, N. C. A unitary model of schizophrenia: Bleuler’s “fragmented
phrene” as schizencephaly. Arch. Gen. Psychiatry 56, 781–787 (1999).

22. Craddock, N. & Owen, M. J. The Kraepelinian dichotomy—going, going… But
still not gone. Br. J. Psychiatry 196, 92–95 (2010).

23. Hibar, D. P. et al. Cortical abnormalities in bipolar disorder: an MRI analysis of
6503 individuals from the ENIGMA Bipolar Disorder Working Group. Mol.
Psychiatry 23, 932–942 (2018).

24. Alnaes, D. et al. Brain heterogeneity in schizophrenia and its association with
polygenic risk. JAMA Psychiatry 76, 739–748 (2019).

25. McGrath, J. J. et al. Psychotic experiences in the general population: a cross-
national analysis based on 31,261 respondents from 18 countries. JAMA Psy-
chiatry 72, 697–705 (2015).

26. Pirastu, N. et al. Genetic analyses identify widespread sex-differential partici-
pation bias. Preprint at BioRxiv https://doi.org/10.1101/2020.03.22.001453
(2020).

27. Holland, D. et al. Beyond SNP heritability: polygenicity and discoverability of
phenotypes estimated with a univariate gaussian mixture model. PLoS Genet.
16, 1–30 (2020).

28. Sudlow, C. et al. UK biobank: an open access resource for identifying the
causes of a wide range of complex diseases of middle and old age. PLoS Med.
12, e1001779 (2015).

29. Davis, K. A. S. et al. Mental health in UK Biobank—development, imple-
mentation and results from an online questionnaire completed by 157 366
participants: a reanalysis. BJPsych Open 6, e18 (2020).

Roelfs et al. Translational Psychiatry          (2021) 11:202 Page 9 of 10

https://www.ukbiobank.ac.uk/
https://doi.org/10.1038/s41398-021-01313-x
https://doi.org/10.1038/s41380-018-0332-x
https://doi.org/10.1001/jamapsychiatry.2019.4188
https://doi.org/10.1101/2020.03.22.001453


30. Legge, S. E. et al. Association of genetic liability to psychotic experiences with
neuropsychotic disorders and traits. JAMA Psychiatry 76, 1256–1265 (2019).

31. Caspi, A. et al. The p factor: one general psychopathology factor in the
structure of psychiatric disorders? Clin. Psychol. Sci. 2, 119–137 (2014).

32. Comon, P. Independent component analysis, a new concept? In Signal Pro-
cessing Workshop on High Order Statistics Vol. 36, 287–314 (1994).

33. Jutten, C. & Hérault, J. Détection de grandeurs primitives dans un message
composite par une architecture de calcul neuromimétique en apprentissage
non supervisé. 10° Colloq. sur le. traitement du signal et. des. images, FRA 1985,
1017–1022 (1985).

34. Alnæs, D. et al. Association of heritable cognitive ability and psychopathology
with white matter properties in children and adolescents. JAMA Psychiatry 75,
287–295 (2018).

35. Franzin, A., Sambo, F. & di Camillo, B. bnstruct: an R package for Bayesian
Network structure learning in the presence of missing data. Bioinformatics 33,
1250–1252 (2017).

36. R. Core Team. R: A Language and Environment for Statistical Computing (R
Foundation for Statistical Computing, Vienna, Austria, 2017). www.R-project.
org.

37. Himberg, J. & Hyvarinen, A. Icasso: Software for investigating the reliability of
ICA estimates by clustering and visualization. In 2003 IEEE XIII Workshop on
Neural Networks for Signal Processing (IEEE Cat. No.03TH8718), 259–268 (IEEE,
2003).

38. Marchini, J., Heaton, C., & Ripley, B. FastICA: FastICA Algorithms to Perform ICA
and Projection Pursuit. https://CRAN.R-project.org/package=fastICA (2019).

39. Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger
and richer datasets. Gigascience 4, 7 (2015).

40. Purcell, S. et al. PLINK: a tool set for whole-genome association and
population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575
(2007).

41. Bulik-Sullivan et al. LD Score regression distinguishes confounding from
polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295
(2015).

42. Wray, N. R. et al. Genome-wide association analyses identify 44 risk variants
and refine the genetic architecture of major depression. Nat. Genet. 50,
668–681 (2018).

43. Savage, J. E. et al. Genome-wide association meta-analysis in 269,867 indivi-
duals identifies new genetic and functional links to intelligence. Nat. Genet. 50,
912–919 (2018).

44. Lee, J. J. et al. Gene discovery and polygenic prediction from a genome-wide
association study of educational attainment in 1.1 million individuals. Nat.
Genet. 50, 1112–1121 (2018).

45. Finucane, H. K. et al. Partitioning heritability by functional annotation using
genome-wide association summary statistics. Nat. Genet. 47, 1228–1235
(2015).

46. Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional
mapping and annotation of genetic associations with FUMA. Nat. Commun. 8,
1826 (2017).

47. Glanville, K. P. et al. Multiple measures of depression to enhance validity of
major depressive disorder in the UK Biobank. BJPsych Open 7, e44 (2021).

Roelfs et al. Translational Psychiatry          (2021) 11:202 Page 10 of 10

https://CRAN.R-project.org/package=fastICA

	Phenotypically independent profiles relevant to mental health are genetically correlated
	Introduction
	Methods and materials
	Sample and exclusion criteria
	Processing of mental health data
	Processing of genetic data

	Results
	Discussion
	Limitations
	Conclusion
	Acknowledgements




