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Abstract
Schizophrenia (SCZ) is a polygenic disease with a heritability approaching 80%. Over 100 SCZ-related loci have so far
been identified by genome-wide association studies (GWAS). However, the risk genes associated with these loci often
remain unknown. We present a new risk gene predictor, rGAT-omics, that integrates multi-omics data under a Bayesian
framework by combining the Hotelling and Box–Cox transformations. The Bayesian framework was constructed using
gene ontology, tissue-specific protein–protein networks, and multi-omics data including differentially expressed genes
in SCZ and controls, distance from genes to the index single-nucleotide polymorphisms (SNPs), and de novo
mutations. The application of rGAT-omics to the 108 loci identified by a recent GWAS study of SCZ predicted 103 high-
risk genes (HRGs) that explain a high proportion of SCZ heritability (Enrichment= 43.44 and p ¼ 9:30 ´ 10�9). HRGs
were shown to be significantly (padj ¼ 5:35 ´ 10�7) enriched in genes associated with neurological activities, and
more likely to be expressed in brain tissues and SCZ-associated cell types than background genes. The predicted HRGs
included 16 novel genes not present in any existing databases of SCZ-associated genes or previously predicted to be
SCZ risk genes by any other method. More importantly, 13 of these 16 genes were not the nearest to the index SNP
markers, and them would have been difficult to identify as risk genes by conventional approaches while ten out of the
16 genes are associated with neurological functions that make them prime candidates for pathological involvement in
SCZ. Therefore, rGAT-omics has revealed novel insights into the molecular mechanisms underlying SCZ and could
provide potential clues to future therapies.

Introduction
Schizophrenia (SCZ) is a mental condition with a very

complex etiology and highly variable clinical manifesta-
tions1. Although the disease has been studied for over a
century, its underlying pathogenetic mechanisms remain
unclear. Recently, two genome-wide association studies
(GWAS) were performed on SCZ in an attempt to explore
the etiology of the disease; together, they successfully
identified over 100 SCZ-related loci2,3, although the
identified GWAS loci mostly failed to identify any SCZ
risk genes. It is however often difficult to interpret the
functional links between the identified single-nucleotide

polymorphisms (SNPs) and associated genes, especially
when SNPs are located within noncoding regions. SNPs
are generally considered to affect the expression of
neighboring genes and therefore the genes in close
proximity tend to be regarded as risk genes. Obviously,
this ignores the fact that gene expression may be influ-
enced by long-range regulators remote from their tran-
scription start sites4–6.
To identify risk genes regulated by GWAS loci, many

methods have been proposed. Most of these approaches
have attempted to define candidate genes by setting a
fixed distance around each index SNP and subsequently
identifying SCZ risk genes by integrating genomic func-
tions7,8, or considering topologically associated domains
that are generated by prior chromatin interaction
experiments9,10. A recent study has explored the gene
regulatory mechanisms underlying SCZ by integrating
functional genomics and position weight matrix (PWM)7
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data. This study performed an in-depth analysis of the
genome-wide protein binding landscape and PWM data
to infer potential candidate genes for SCZ. Meanwhile, a
web-based platform, FUMA, has been presented to pro-
vide gene-based functional annotation of GWAS results
by accommodating positional, expression quantitative
trait loci, and chromatin interaction mapping11. By inte-
grating gene expression in the brain and chromosome
conformation information12, Pardiñas et al. identified 42
potentially causal genes for SCZ. Another study employed
a transcriptome-wide association study (TWAS) and
successfully identified 157 TWAS-significant genes for
SCZ, among which 42 genes were associated with specific
chromatin features as measured in independent sam-
ples13. Taken together, these methods constitute a sys-
tematic framework to predict SCZ risk genes by
integrating gene expression data with GWAS data.
Recently, the iRIGS method was proposed to identify

risk genes in SCZ by integrating GWAS data with multi-
omics data, including gene interaction and regulation
networks, variant information, and differentially expres-
sed genes14. In order to effectively integrate the data, a
Bayesian network was employed in combination with
Mahalanobis transformation15. However, the Mahalano-
bis transformation is applicable to the input matrix with a
sample size larger than the number of features or non-
singular covariance matrix. In addition, the iRIGS method
was constructed using gene–gene networks based solely
on gene ontology (GO) information without considering
tissue-specific interactions between genes. Understanding
the interactions between genes is a key step toward dis-
covering new disease risk genes because the variants
identified by genome sequencing are not independently
associated with the disease, but they do interact with each
other to form a systematic network as illustrated by many
studies performed to date16–18. BioGRID is a commonly
used database that lists interactions between proteins,
including physical interactions and genetic interactions
validated by 28 experimental systems19. Because of the
importance of tissue specificity in protein–protein inter-
action (PPI), a database, TissueNet, was constructed by
associating experimentally identified PPIs with human
tissues20. Integrating the PPI information with other
genomic features has the potential to significantly
improve the prediction of disease risk genes.
Here, we developed a new method, rGAT-omics, to

predict high-risk genes (HRGs) for a given disease. This
method employs gene networks including the GO net-
work, BioGRID network, and tissue-specific PPI network,
and a combination of the Hotelling and Box–Cox trans-
formations to integrate multi-omics data under a Bayesian
framework (Fig. 1). Its application to SCZ identified 103
HRGs, which were shown to explain a significant pro-
portion of SCZ heritability and were specifically expressed

in brain tissues and SCZ-associated brain cell types.
Among the genes, 16 HRGs had not been previously
known to be associated with SCZ. Thus, the novel SCZ
risk genes may provide new avenues for understanding the
molecular basis of SCZ and exploring potential therapies.

Results
rGAT-omics identified HRGs by integrating multi-omics
data with networks
rGAT-omics was developed by integrating multi-omics

features (differential expression (DE), de novo mutations
(DNM), gross deletions, distal regulatory elements (DRE)
promoters, distance to index SNP (DTS), and Reads Per
Kilobase of transcript per Million (RPKM) in adolescence
and adulthood from BrainSpan) with the gene interaction
networks including the GO network, BioGRID network19,
and tissue-specific network from TissueNet20 (Fig. 1).
Detailed information on the multi-omics features employed
is given in Supplementary materials (Figs. S1 and S2). The
application of rGAT-omics to 108 loci associated with SCZ
provided by the previous GWAS study2 yielded 103 HRGs
and 849 low-risk background genes (LBGs).
Among the 103 HRGs, 38 genes (36.9%) were the

nearest to the index SNPs, while the remaining 65 HRGs
were termed “non-nearest genes.” The non-nearest genes
represent risk genes linked to 64 loci. For these loci, we
collected the nearest genes to them to form the nearest
gene set. The gene enrichment analysis was then per-
formed on both the non-nearest and the corresponding
nearest genes. As is evident from Table S1, the non-
nearest genes were enriched in three gene sets (genes
related to postsynaptic density(PSD), presynaptic proteins
(PRP), and presynaptic active zone (PRAZ)) compared
with the nearest genes. The information of the gene sets
was shown in Table S2.
Compared to 849 LBGs, 103 HRGs were highly

expressed in 13 brain tissues from the Genotype-Tissue
Expression (GTEx) database and four brain regions from
the BrainEAC database according to the tissue-specificity
test (Fig. S3a, b). Specifically, the HRGs were highly
expressed in the temporal cortex, frontal cortex, hippo-
campus, and occipital cortex brain regions. These brain
regions have been shown in previous studies21–24 to be
potentially associated with SCZ. A further test of the
specificity of the HRGs in brain cell types found that the
HRGs were specifically expressed in seven brain cell types
as compared to the LBGs (Fig. S3c). Among them, four
cell types, namely pyramidal cells (somatosensory cortex),
pyramidal cells (hippocampus CA1), medium spiny neu-
rons, and cortical interneurons, were associated with SCZ
according to a recent single-cell study on cell types and
GWAS signals of SCZ25. Additional enrichment analyses
of gene sets showed that HRGs were significantly enriched
in ten gene sets compared to the LBGs (Fig. S3d).
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The proportion of SCZ heritability explained by HRGs
was calculated by stratified linkage disequilibrium score
regression26 (LDSC, https://github.com/bulik/ldsc/wiki/
LD-Score-Estimation-Tutorial). We downloaded the
SCZ summary statistics on 33,640 cases and 43,456
controls from the Psychiatric Genomics Consortium
and plink files of 1000 Genomes Phase 3 from https://
data.broadinstitute.org/alkesgroup/LDSCORE/. Since
the distance to the index SNP represents a confounder
in this regression, the risk genes used here were
obtained without using DTS. We used SNPs within a
20 kb window center at the transcription start site of
each HRG for LDSC analysis. We observed that SNPs
close to the HRGs identified by rGAT-omics explained a
large proportion of SCZ heritability with Enrichment

= 43.44 and p ¼ 9:30´ 10�9 (Fig. 2d). The enrichment was

calculated by the equation: Enrichment ¼ h2HRG=h
2
All

SNPHRG=SNPAll
,

where h2HRG and h2All represent the heritability explained by
SNPs around HRGs and by all SNPs in 1000 Genomes
Phase 3, respectively, and where SNPHRG and SNPAll denote
the number of SNPs around HRGs and the total number of
SNPs in 1000 Genomes Phase 3, respectively.

The involvement of 103 HRGs in biological functions
was explored by the enrichment test of the biological
processes functions. As a result, 45 functions were
found to be significantly (padj< 0:05) enriched by the
HRGs, which included 12 functions involving neuronal
or brain activities (Fig. S4 and Table S3). The detailed
results are given in the Supplementary materials and

Fig. 1 Schematic of the rGAT-omics framework. Candidate genes were initially defined as genes located within 1 Mb of SNPs associated with SCZ.
The multi-omics data characterizing each gene were integrated by means of the Hotelling transform, the Box–Cox transformation, and Fisher’s
method (Fisher’s combined probability test). The candidate genes were mapped to GO and PPI networks. The conditional probability of each
candidate gene being a risk gene was then calculated based on the integrated multi-omics features and moving probability of selected genes in the
GO and PPI networks obtained by a random walk with restart (RWR). One candidate gene with known conditional probability was sampled by Gibbs
sampling to calculate the selecting frequency Freqi ; the sampling was then continued until the frequency difference Freqiþ1 � Freqi

�� �� was lower
than EGibbs ¼ 0:01, which yielded the posterior probability (PP) for each candidate gene. For each locus, the candidate gene with the highest PP was
considered to be the high-risk gene (HRG), whereas the candidate genes with PP values lower than the median value for all candidate genes were
defined as low-risk background genes (LBGs). Dl denotes the multi-omics features of gene l; N denotes GO and PPI networks.
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Table S4. Moreover, we examined the involvement of
the HRGs in terms of being targets for nervous system
drugs (Supplementary materials, Table S5); 24 (23.3%)

HRGs were identified as constituting targets for 4054
nervous system drugs. The HRGs are more enriched in
drug targets for nervous system drugs than LBGs with
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Fig. 2 Comparing dHRGs and diHRGs in terms of tissue specificity, SCZ-related gene set enrichment, and cell specificity. a In GTEx data,
diHRGs (n= 25) were highly expressed in 11 brain tissues, whereas dHRGs (n= 25) were highly expressed in four brain tissues compared to cLBGs (n
= 641). Tissues names in green indicate brain tissues. b Compared to cLBGs, diHRGs were highly expressed in three brain regions, whereas dHRGs
were highly expressed in two brain regions. c The cell-specificity analysis showed that dHRGs were specifically expressed in four cell types and three
were associated with SCZ, whereas diHRGs were specifically expressed in one cell type and it was SCZ related compared to cLBGs. “*” denotes SCZ
related cell type. dHRGs or diHRGs showed no significant variation in expression in any SCZ-related cell type compared to diHRGs or dHRGs. “dHRG vs
cLBG” represents cell-specificity analysis on dHRGs using cLBGs as background genes; “diHRG vs cLBG” represents cell-specificity analysis on diHRGs
using cLBGs as background genes; “dHRG vs diHRG” represents cell-specificity analysis on dHRGs using diHRGs as background genes; “diHRG vs
dHRG” represents cell-specificity analysis on diHRGs using dHRGs as background genes. d The HRGs predicted by rGAT-omics represent a higher
proportion of SCZ heritability compared to the HRGs predicted by Maha integration. Moreover, dHRGs explained higher proportion of SCZ heritability
than diHRGs and cLBGs. The center values represent the enrichment and the error bars indicate standard errors. e dHRGs were significantly enriched
in four gene sets, while diHRGs were enriched in three gene sets compared to cLBGs.
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odds ratio= 2.25 and p ¼ 1:90 ´ 10�3. These results
suggest the potential involvement of the HRGs in the
etiology of SCZ.

Effects of the Hotelling and Box–Cox transformations
rGAT-omics was constructed by integrating multi-

omics features of genes through the Hotelling and
Box–Cox transformations. These transforming approa-
ches could be applied to non-singular covariant matrices
that are not applicable to the Mahalanobis transformation
as used in the previous study14. When the Mahalanobis
transformation was used in rGAT-omics, the approach
was termed Maha integration. The HRGs predicted by
Maha integration were compared to the HRGs predicted
by rGAT-omics. Maha integration predicted 103 HRGs.
Among them, 25 were missed by rGAT-omics. Mean-
while, Maha integration missed 25 HRGs predicted by
rGAT-omics. The HRGs missed by Maha integration
were termed dHRGs, whereas the HRGs missed by rGAT-
omics were termed diHRGs. Both rGAT-omics and Maha
integration provided 641 common LBGs that were
termed cLBGs.
Using cLBGs as background genes, we compared the

tissue specificity of dHRGs and diHRGs. The tissue-
specificity tests indicated that dHRGs were highly
expressed in four brain tissues from GTEx, and two brain
regions from BrainEAC. By contrast, diHRGs were spe-
cifically expressed in 11 brain tissues from GTEx and
three brain regions from BrainEAC, as shown in Fig. 2a, b.
Thus, the HRGs predicted by Maha integration are more
likely to be highly expressed in brain tissues.
The specificity analysis on brain cell types indicated that

dHRGs were specifically expressed in four brain cell types
including three cell types previously shown to be SCZ
associated25. In comparison, diHRGs were specifically
expressed in only one cell type, which has been previously
indicated to be SCZ associated (Fig. 2c). Thus, the HRGs
predicted by rGAT-omics are more likely to be highly
expressed in SCZ-associated brain cell types.
We observed that SNPs close to the HRGs identified by

rGAT-omics explained a proportion of SCZ heritability
with Enrichment= 43.44 and p ¼ 9:30 ´ 10�9. In com-
parison, SNPs close to the HRGs identified by Maha
integration explain a significant enrichment of SCZ her-
itability with Enrichment= 39.56 and p ¼ 7:04 ´ 10�9.
Using the same strategy, we also compared the heritability
explained by SNPs close to dHRGs and diHRGs. The
result indicated that the SNPs close to dHRGs (Enrich-
ment= 32.81, p ¼ 7:40 ´ 10�3) explained a higher
enrichment of SCZ heritability than the SNPs close to
diHRGs (Enrichment= 21.18, p ¼ 0:015). More detailed
results are shown in Fig. 2d. Thus, the HRGs predicted by
integrating multi-omics data and combining Hotelling
and Box–Cox transformation represent a higher

proportion of SCZ heritability than using the Mahalanobis
transformation.
Another comparison to be made was the enrichment of

HRGs in genes expressed significantly differently between
SCZ patients and controls. Among 25 dHRGs, eight
(32.0%) were found to be expressed significantly different
between patients and controls. By contrast, only two
(8.0%) diHRGs were found to be expressed significantly
differently between SCZ patients and controls, which is
much lower than dHRGs predicted by rGAT-omics
(p= 0.037). Thus, the HRGs predicted by a combination
of Hotelling and Box–Cox transformation are more likely
to be expressed significantly differently between SCZ
patients and controls. In terms of gene set enrichment, we
found that dHRGs are enriched in EG (Essential Genes),
HGM (Human Gene Module), AutDB, and PSD (Post-
Synaptic Density) gene sets as compared to cLBGs,
whereas diHRGs are enriched in three gene sets, EG, PSD,
and FMRP.Darnell (Fig. 2e).
When simply substituting the Mahalanobis transfor-

mation with the combination of Hotelling and Box–Cox
transformations in the iRIGS model, we compared the
predicted HRGs by two transformation approaches. The
approach using a combination of Hotelling and Box–Cox
transformations is termed HB-transformations. Using this
HB transformation, 105 genes were predicted as HRGs. In
comparison, the Mahalanobis transformation predicted
104 HRGs. Of the 105 HRGs, 17 were not identified by the
Mahalanobis transformation. Of the 104 HRGs predicted
by the Mahalanobis transformation, 16 were missed by
HB transformation. The HRGs missed by the Mahalano-
bis transformation were found to be enriched in two gene
sets, PSD27 and EG28 with one-sided Fisher’s exact test
p values, 4:90´ 10�3 and 0.017, respectively, compared to
704 common LBGs identified by two methods. PSD is a
gene set including genes involving in synaptic and pre-
synaptic functions, and EG is a gene set collecting autism-
relevant genes. The detailed information on the gene sets
is given in the “Methods” section and Table S2. However,
the HRGs predicted by the Mahalanobis transformation
but missed by HB transformation were only enriched in
the gene set EG (p ¼ 1:53 ´ 10�3) compared to common
LBGs. Table S6 shows the results of the gene set enrich-
ment test on 15 different gene sets.
Further examination revealed the enrichment of HRGs

expressed significantly different in SCZ patients and
controls. We found that seven (41.2%) of the HRGs
missed by the Mahalanobis transformation were differ-
entially expressed in SCZ patients compared to controls.
By contrast, only two (12.5%) of the HRGs missed by HB
transformation were differentially expressed in SCZ
patients and controls. Using the Hotelling and Box–Cox
transformations together improves the prediction over
that using the Mahalanobis transformation alone.
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In summary, the HRGs predicted by combining
Hotelling and Box–Cox transformations explained more
SCZ heritability, are more likely to be expressed in SCZ-
associated cell types, and are more likely to be expressed
significantly differently between SCZ patients and con-
trols than the HRGs predicted by the method using only
the Mahalanobis transformation.

The necessity of combining networks in the prediction
As shown in Table 1 and Fig. 1, rGAT-omics integrated

GO, BioGRID, and TissueNet networks with multi-omics
data to allow the inference of HRGs. To assess the con-
tributions of the networks in the prediction, we performed
rGAT-omics by networks without integrating other fea-
tures. This modified approach using only the networks
was termed rGAT-net. rGAT-net was run in six versions,
namely GO network, BioGRID network, and four types of

tissue-specific PPI network including the cerebral cortex,
cerebellum, hippocampus, and lateral ventricle, respec-
tively. The numbers of HRGs and LBGs identified in each
version are shown in Table S7. The six versions of rGAT-
net were directly compared in terms of the enrichment of
HRGs in the gene sets. As shown in Fig. 3, the HRGs
predicted by the networks from TissueNet were all sig-
nificantly enriched in genes related to PRP29 that were not
enriched by the HRGs predicted by the GO network or
the BioGRID network. In addition, the PRAZ29 dataset
was only enriched by the HRGs predicted by the cere-
bellum network from TissueNet. By contrast, the HRGs
predicted by the GO and BioGRID networks were enri-
ched in miR-137 targets30 that were not enriched by any
networks from TissueNet. Thus, it was necessary to
integrate the GO network, BioGRID network, and net-
works from TissueNet in the predictive algorithm.

Table 1 Transformation approaches, networks, and multi-omics features used by rGAT-omics.

rGAT-omics

Transformation Hotelling transformation and Cox–Box transformation

Networks GO and PPI networks from BioGRID and brain tissue

Multi-omics features DEa, DNMb, DRE promotersc, DTSd, gross deletions, and RPKMe in adolescence and adulthood from BrainSpan

aP values of differential gene expression analysis in SCZ patients and controls.
bProbability of genes with de novo mutations being carried by SCZ patients.
cDistal regulatory elements obtained from CapHiC, FANTOM5, BrainCP, and BrainGZ databases.
dDistance to index SNP.
eReads Per Kilobase of transcript per Million mapped reads from BrainSpan.

GO Biogrid CCTX CRBL HIPP LTVC
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Fig. 3 Gene set enrichment analysis of HRGs predicted by rGAT-net. The enrichment analysis was performed by one-sided Fisher’s exact test
with Bonferroni correction. The dark blue bar represents the enrichment test p value < 0.05 in one gene set and the light blue bar represents the
enrichment test p value > 0.05 in one gene set dataset. The full name and brief description of each dataset are given in Table S2. HRGs predicted by
the GO and BioGRID networks are enriched in miR-137 targets that are not enriched by using any networks from the TissueNet database in the
prediction. HRGs predicted by TissueNet are all enriched in PRP that are not enriched by the HRGs predicted by using networks from GO and
BioGRID. Only HRGs predicted by the CRBL network are enriched in gene set PRAZ.

He et al. Translational Psychiatry          (2021) 11:175 Page 6 of 12



We then integrated the GO network, the BioGRID
network, and the networks from TissueNet. The num-
ber of predicted HRGs and LBGs is shown in Table S7.
The HRGs predicted by integration of the networks are
all highly expressed in the 12 brain tissues from the
GTEx dataset (Fig. 4a) according to the tissue-
specificity analysis described in the “Methods.” How-
ever, the HRGs predicted only by means of the GO
network show no significant enrichment in any brain
tissue from the GTEx dataset (Table S8). Tissue-
specificity analysis further indicated that the HRGs
predicted by the integration of networks were highly
expressed in two brain regions obtained from the
BrainEAC database (Fig. 4b). By contrast, the HRGs
identified by the GO network were highly expressed in
one brain region obtained from the BrainEAC database
(Table S8). As shown in Fig. 4c, the HRGs identified by
integrating GO with PPIs from the BioGRID and hip-
pocampus networks were enriched in nine gene sets,
whereas the HRGs predicted by other forms of inte-
gration were enriched in eight gene sets.
Although PPI networks from different brain tissues

make similar contributions, integrating the network from

the hippocampus with the GO network and the BioGRID
network gave the best performance (Fig. 4). This network
predicted 106 HRGs and 828 LBGs. The HRGs predicted
by this network were examined in relation to their multi-
omics features, including differently expressed (DE) genes,
DNMs, gross deletions, and DRE promoters. The detailed
results are shown in the Supplementary materials. We
found that the multi-omics features of the HRGs and
LBGs predicted by the integrated networks consistently
exhibited evidence to support the higher risks of the
HRGs in SCZ than the LBGs.

Comparing rGAT-omics with other approaches
We compared the HRGs predicted by rGAT-omics with

the risk genes obtained by other approaches. A recent
TWAS on SCZ13 has been developed to implicate SCZ-
associated genes. In total, this study identified 157 unique
TWAS-significant genes for SCZ, in which ten were pre-
dicted as HRGs by rGAT-omics. The overlap represented a
significant enrichment compared to chance alone (binomial
test p ¼ 1:1´ 10�8). Moreover, the number of overlapping
genes is significantly greater than for the LBGs (one-sided
Fisher’s exact test p ¼ 0:031, OR ¼ 2:23).
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Fig. 4 Comparing the tissue specificity of HRGs and LBGs predicted by integrating GO, BioGRID, and four types of tissue-specific PPI
network. a HRGs predicted by four forms of network integration are all highly expressed in the same brain tissues compared to LBGs. “*” denotes
that the predicted HRGs are significantly enriched in the brain tissues. Tissue names in green represent brain tissues. b HRGs predicted by four forms
of network are all highly expressed in the same two brain regions compared to LBGs. c HRGs predicted by GO and PPI networks from BioGRID and
hippocampus are enriched in nine SCZ-related gene sets, and HRGs predicted by other forms of network are enriched in eight SCZ-related gene sets.
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Another GWAS study of SCZ presented 42 genes as
being potentially casual genes for SCZ12. Among these
genes, four were predicted to be HRGs by rGAT-omics,
which represents a significant enrichment compared to
chance alone (binomial test p ¼ 6:7´ 10�5). Compared to
LBGs, the number of overlapping genes is significantly
elevated (one-sided Fisher’s exact test p ¼ 6:43´ 10�3,
OR ¼ 8:50).
Finally, we compared rGAT-omics with iRIGS. iRIGS

predicted 104 genes as HRGs. Among them, 49 over-
lapped with the HRGs predicted by rGAT-omics. This
overlap is significant compared to chance alone with a
binomial test p < 2:2 ´ 10�16. By contrast, two LBGs
predicted by rGAT-omics were identified as HRGs by
iRIGS, which is significantly lower than the number that
overlapped with the HRGs (one-sided Fisher’s exact
test, p ¼ 5:51 ´ 10�16, OR ¼ 44:71).

Novel HRGs predicted by rGAT-omics
Figure. 5a shows that the HRGs predicted by rGAT-

omics overlapped with those genes present in other
datasets or predicted by other algorithms. Here, 63 HRGs
overlapped with ASD-related genes that were included in
AutDB, ECG, EG, HGM, and HRAR (highest-ranking
autism risk) datasets (Table S2). Moreover, 45 HRGs were
included in the dataset containing synaptic or presynaptic
genes from the PRAZ, PRP, PSD, and SYV datasets. In
addition, ten genes overlapped with the SCZ-related gene
set. This gene set includes 145 genes that are predicted to
be SCZ related by FUMA, or collected in the GABA
dataset or the miR.137.targets dataset (Table S2).
Importantly, 16 HRGs (Table 2 and Fig. 5a) were novel

identifications in this study. As shown in Table 2, 13 of
these 16 HRGs were not the nearest genes to the index
SNP markers, illustrating precisely why these genes would
have been difficult to identify as risk genes by conven-
tional approaches. Ten out of the 16 genes have been
reported as being associated with neurological disorders.
The detailed functions of these genes are shown in the
Supplementary materials.
We also explored the interactions between the 16 novel

genes and 87 other genes, termed non-novel genes in the
GO network, gene network from TissueNet, and protein
network from BioGRID. As shown in Fig. 5b, nine of the
novel genes connect with 74 non-novel genes through GO
annotation. This network includes 87 interactions, which
is significant compared to random chance (permutation
test p ¼ 2:8 ´ 10�3). Here, a novel gene was defined as
interacting with a non-novel gene if the shared GO
annotations between them was >30%. The permutation
test was performed by randomly sampling 16 genes from
the complement of human genes and counting the
number of interactions between them and the non-novel
genes. This process was repeated 10,000 times to calculate

an experience p value based on the number of interac-
tions. Additional analysis was performed to evaluate the
interactions between the novel genes and the non-novel
genes in TissueNet network. As shown in Fig. 5c, eight
novel genes interacted with 19 non-novel genes in Tis-
sueNet, which is significantly higher than random (per-
mutation test, p <10�4). In the BioGRID network, 16
interactions were found between five of the novel genes
and 15 non-novel genes (Fig. 5d), which is significantly
higher than expected by chance alone (permutation test,
p<10�4). These results are supportive of a relationship
between the novel genes and SCZ. The novel genes
involved in the networks are shown in Table S9.

Discussion
SCZ is a chronic and severe complex mental disorder

that affects >20 million people worldwide31. Because the
underlying pathogenic mechanisms are not yet clear, SCZ
can be suppressed and treated, but in most cases cannot
be completely cured. Recently, GWAS studies have
revealed many SNPs associated with SCZ. However,
the impact of these SNPs on gene function is largely
unknown. There are increasing evidences to support the
contention that the risk genes are not necessarily those
residing closest to the index SNP4,32. Clearly, identifying
the risk genes is a prerequisite for revealing the molecular
mechanisms underlying SCZ.
The dramatic increase in the availability of multi-omics

data has provided a large body of information that is
potentially very useful for linking SNPs to HRGs. For
example, previous studies have located index SNPs to
regulatory elements of known neuropsychiatric disorder
genes through enhancer looping4. Other studies have
highlighted the links between SNP markers and gene
deletions33,34. Adding features such as transcriptomics,
functional genomics, epigenomics, or more accurate
genomic information promises to improve the accuracy of
risk gene prediction. In this study, we developed a model,
rGAT-omics, whose novelty relies on its integration of
gene–gene and protein–protein networks with multi-
omics data from different sources to predict risk genes
using an unsupervised learning method. The networks
used in this study were the GO network, PPIs from Bio-
GRID, and PPIs from TissueNet. Integrating gene inter-
actions from three very different sources provided an
improvement in terms of the results over those obtained
by using only one kind of network. Another novel aspect
of rGAT-omics is that it used Hotelling and Box–Cox
transformations to accommodate multifeatures with sin-
gular covariance matrix and integrating multi-omics fea-
tures. When there are too many features or a large linear
correlation between features, variable dimensionality
reduction helps to remove redundant information
and improve prediction accuracy. Comparison of two
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transformation approaches indicated that combining the
Hotelling and Box–Cox transformations can identify risk
genes (and help to explain a larger proportion of herit-
ability) that are more likely to be expressed in SCZ-
associated brain cell types than using Mahalanobis
transformation alone.

The performance of the prediction was further evaluated
by false-positive rate (FPR) calculated using simulation data.
In this study, a total of 6,688 genes were used for functional
enrichment analysis of the predicted genes. After excluding
these genes from human genes, the simulated datasets were
generated by sampling 6,688 genes from the remaining

2 4 10
10

16

45

49

63 ASD-related genes

iRIGS

synaptic or presynaptic

Novel genes

SCZ-related genes

TWAS

FINEMAP+HiC+SMR

calcium-channel genes

Fig. 5 The HRGs predicted by rGAT-omics exhibited partial overlap with those in other datasets or predicted by other methods. a “ASD-
related gene sets” represents genes associated with ASD and is from AutDB, ECG, EG, HGM, and HRAR sets (Table S2). In total, 5,138 genes were
present in this set, while 63 were predicted to be HRGs by rGAT-omics. “iRIGS” represents HRGs predicted by the iRIGS method. In all, 104 HRGs were
predicted by iRIGS, which included 49 already predicted by rGAT-omics. “Synaptic or presynaptic genes” denotes a set of genes involving synaptic or
presynaptic functions, which are from FMRP, PRAZ, PRP, PSD, and SYV datasets as shown in Table S2. In total, 2,803 genes were included in this
dataset, which include 45 predicted as the HRGs by rGAT-omics. “SCZ-related genes” represent genes from GABA or miR.137.targets gene sets or
FUMA (Table S2). In total, 145 genes are included in this dataset, in which ten were predicted as HRGs by rGAT-omics. “TWAS” represents a TWAS
study for SCZ that identified 157 SCZ-associated genes, of which ten overlaps with the HRGs predicted by rGAT-omics. “FINEMAP+HiC+SMR”
represents SCZ causal genes identified by integrating FINEMAP, chromosome conformation, and SMR analysis. In total, 42 genes were predicted to be
SCZ associated and four of them were predicted to be HRGs by rGAT-omics. “Calcium channel genes” denotes genes from CCS dataset that include
73 genes. Among them, two were predicted as HRGs by rGAT-omics. “Novel genes” represent the HRGs predicted by rGAT-omics but not included in
any other datasets or methods. b Red spots denote novel genes and blue spots denote non-novel genes. Nine novel genes interact with the non-
novel genes in the GO database. Genes with >30% annotations in common were lined up. c Eight novel genes have >30% interactions shared with
the non-novel genes in TissueNet (hippocampus). Genes with >30% interactions in common were lined up. d Five novel genes have 16 interactions
with the non-novel genes in the BioGRID database.
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human genes for 1,000,000 times. The genes obtained from
each simulation were used to evaluate the FPRs of two
methods, rGAT-omics and iRIGS. These two methods
computed posterior probability (PP) as association scores for
all candidate genes with each SNP. The FPRs of both
methods were calculated for genes with association scores
ranked from top 1 to top 6. FPR was the number of pre-
dicted genes overlapped with the negative dataset divided by
the total number of predicted genes. The significance of
FPR difference for the two methods was evaluated by one-
sided Wilcoxon’s rank-sum test. The result indicated
that the FPRs of rGAT-omics were significantly lower
(p <2:2´ 10�16) than the FPRs of iRIGS (Fig. S5a).
In order to compare the per SNP heritability of HRGs

predicted by rGAT-omics to LBGs, we calculated per SNP
heritability (the proportion of phenotypic variation
explained by the SNP) by BLD-LDAK Model within
LDAK35. The average heritability of SNPs within a 20 kb
window of the transcription start site of the predicted
HRGs was compared to that of SNPs within 20 kb of the
predicted LBGs in Fig. S5b. As shown in Fig. S5b, the
average heritability of SNPs around HRGs is significantly
(p<2:2 ´ 10�16) higher than the average heritability of
SNPs around LBGs.
One of the advantages of rGAT-omics is that it can

detect genes not the nearest to the index SNP markers,
which would have been difficult to identify as risk genes

by conventional approaches. This methodology can in
principle also be applied to other psychiatric disorders,
and indeed any multifactorial condition with a genetic
component, to predict risk genes by selecting corre-
sponding genetic characteristics according to the question
being posed. If we combine the links between psychiatric
disorders, thereby giving more weight to the risk genes
known to be related to other related diseases, the results
could in principle be improved still further.
This method attributes each gene a PP associated with

SCZ. The PP of genes can be used to select more than one
risk gene for each locus by setting a threshold according
to the number of candidate genes associated with each
locus. However, the precise number of risk genes at each
locus is unknown; hence, the selection of risk genes at
each locus remains a challenge. Here, we provided can-
didate genes with PP ranked in the top 10% in Table S10.
Another shortcoming of this method is in defining

candidate genes as genes within 1Mb of index SNPs, an
approach that ignores the actual three-dimensional dis-
tances between SNPs and genes. If genes within a certain
distance of the three-dimensional space described by the
locus can be chosen, the selection of candidate genes will
become biologically and clinically more appropriate.

Methods
Constructing Bayesian model for prediction of risk genes
The goal of rGAT-omics was to probabilistically rank

candidate genes at each GWAS locus based on their
multi-omics supporting evidence and closeness in
gene–gene networks. The framework of rGAT-omics is
shown in Fig. 1. We selected genes in the ± 1Mb region
centered at a GWAS index SNP as candidates for that
locus. Finally, we selected genes with the highest-ranking
score in each locus. Let L be the number of GWAS loci
and ðX1;X2; ¼ ;XLÞ be a set of candidate risk genes, each
being selected from one of the L loci. We used D to
denote the genomics data for all candidate genes for all
GWAS loci and N to denote gene–gene networks. Now
the goal was to calculate P X1; ¼ ;XLjD;Nð Þ and selected
L risk genes, which maximize P X1; ¼ ;XLjD;Nð Þ. How-
ever, enumerating all possible gene combinations was
infeasible. Thus, we used Gibbs sampling to transition the
problem into a conditional single-dimensional sampling
procedure.
According to Bayesian theory, P X1; ¼ ;XLjD;Nð Þ can

be calculate as Eq. (1).

P X1; ¼ ;XLjD;Nð Þ ¼ QL
l¼1

P XljX�l;Nð ÞP DljXlð Þ ð1Þ

As shown in Eq. (1), the association probability of each
candidate risk gene from locus l was composed of two
terms, P DljXlð Þ and P XljX�l;Nð Þ, that represent the

Table 2 Novel SCZ risk genes predicted by rGAT-omics.

Gene symbol Index SNP Distance to index SNP (bp)

▲SNX8* chr7_2025096_I 368,857

▲NDUFAF4* rs117074560 886,106

▲LRRIQ3 rs12129573 895,505

▲MATN1 rs1498232 762,483

▲CRBN* rs17194490 673,608

DPF3* rs2332700 943,483

▲VPS37B* rs2851447 284,122

▲FTL* rs56873913 622,633

XRCC6* rs9607782 429,567

RPRD1B* rs6065094 791,246

▲BRINP2 rs6670165 140,058

▲STAU1* rs7267348 326,132

▲NCAPD3* rs75059851 272,779

MLH1* rs75968099 176,240

STAM* rs7893279 1,058,981

BTBD1* rs950169 970,355

*The gene is not the nearest gene to the index SNP among all candidate genes.
▲The gene is reported as being associated with neurological functions.
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genomics features of gene l, and the complex correlations
of genes with other candidate risk genes, respectively. X�l

denotes a vector of candidate risk genes with the lth gene
removed.
Here, P XljX�l;Nð Þ represents a Bayesian factor on

correlations of a gene with other candidate risk genes X�l

through network N . A gene from locus l closer (larger
edge weight) to X�l was more likely to be a risk gene
compared to other candites from the same locus. The
distance between Xl and X�l is calculated by a random
walk with restart algorithm (Supplementary materials).
The other Bayesian factor, P DljXlð Þ, was calculated by

employing Hotelling transform and Box–Cox transform.
Each gene was represented by collected multi-omics fea-
tures that could be separated into two categories. The first
category is features represented by p values including DE,
DNMs, and gross deletions, and the second are features
not represented by p values including DTS, DRE pro-
moters, and RPKM in adolescence and adulthood from
BrainSpan. In order to combine these two categories, we
used the Hotelling and Box–Cox transformations to
convert the second feature categories into p values for a
combination. For a given feature matrix P 2 Rg ´m with g
genes and m features, the Hotelling transform is per-
formed as

P0 ¼ U P �Mð ÞT ð2Þ

where V ¼ v1; v2; ¼ ; vm½ � are eigenvectors for the
covariance matrix of P corresponding to decreasing
eigenvalues with λ1 � λ2 � � � � � λm. M is the column
mean of P, and U ¼ v1; v2; ¼ ; vn½ �Twith n � m as the
number of chosen principal components.
The Box–Cox transformation is

pi0 ¼
piβi�1

βi
; βi ≠ 0

log pið Þ; βi ¼ 0

(
ð3Þ

where pi is the ith row vector of P0 and should be made all
elements positive by adding a constant; βi is the optimal
transformation parameter for pi.
Then, we standardized each pi0 and calculated their

p values in a Gaussian distribution. For each gene Xl, we
combined its p values from two categories by Fisher’s
method (Fisher’s combined probability test) as

P DljXlð Þ ¼ � ln χ2nþn0
�1 �2

Pn
i¼1

log pi0l
� �þPn0

j¼1
log plj
� � ! ! !

ð4Þ
where, n is the number of p values from the second
feature category attached to each gene and pi0l is the lth
element of pi0, which is a vector obtained from Eq. (3); n0

is the number of p values from the first feature category

attached to each gene; plj is the jth p value of gene l in the
first feature category.
Finally, we applied Gibbs sampling to sample candidate

risk genes for a given locus l to maximum
Pl ¼ PðXljX�l;NÞPðDljXlÞ. We iterated the sampling
process until the selected frequency (PP) of genes con-
verged. Specifically, Gibbs sampling were performed in two
cycles of iteration. In the first cycle of iteration, Gibbs
sampling was initiated by selecting the genes for each locus
with equal sampling probabilities. Then, the candidate risk
gene for locus l was sampled according to one-dimensional
PP Pl, and then iterated across each locus. In the second
cycle of iteration, Gibbs sampling was initiated with the
candidate risk genes obtained from the last iteration of the
first cycle. In both cycles, the selected frequency

(# of times the gene is selected
# of sampling ) of each gene was updated after each

time of sampling. All selected frequencies of candidate
genes in ith iteration were denoted as a vector, Freqi. When
the Euclidean norm of Freqi � Freqi�1 was smaller than
EGibbs (EGibbs was set as 0.01), the iteration was stopped.

Gene sets enrichment analysis
We downloaded 12 gene sets that were obtained on the

basis that they were related to SCZ or other neurological
disorders including autism. These gene sets (FMRP.
Ascano, FMRP.Darnell, GABA, PRP, PRAZ, SYV, ECG,
EG, miR.137.targets, PSD, AutDB, and CCS) were
obtained from different sources as described in a previous
study14, and in Table S2. In addition, we collected HRAR,
genes associated with autism in HGM from SFARI36, and
84 risk genes for SCZ predicted by FUMA11. In total, 6,688
genes were collected in the gene sets. The number of genes
included in each gene set is shown in Table S2. The pro-
portions of genes that were overlapping between datasets
are shown in Fig. S6. The gene set enrichment analysis was
assessed by means of one-sided Fisher’s exact test with
Bonferroni correction. All tests in this article were defined
as being significant if the p values were < 0.05.

HRGs and LBGs
We performed rGAT-omics on 108 loci reported in a

previous GWAS2. All genes located within a 2Mb win-
dow centered at the index SNP were defined as candidate
genes. From these, the genes with PP values less than the
median PP values of all candidate genes were defined as
LBGs. A gene was defined as an HRG if its PP value was
higher than that of any other candidate gene from the
same locus. We predicted HRGs and LBGs after merging
the overlapping genes across loci.
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