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Abstract
Gene-environment interactions (GxE) are often suggested to play an important role in the aetiology of psychiatric
phenotypes, yet so far, only a handful of genome-wide environment interaction studies (GWEIS) of psychiatric
phenotypes have been conducted. Representing the most comprehensive effort of its kind to date, we used data from
the UK Biobank to perform a series of GWEIS for neuroticism across 25 broadly conceptualised environmental risk
factors (trauma, social support, drug use, physical health). We investigated interactions on the level of SNPs, genes, and
gene-sets, and computed interaction-based polygenic risk scores (PRS) to predict neuroticism in an independent
sample subset (N= 10,000). We found that the predictive ability of the interaction-based PRSs did not significantly
improve beyond that of a traditional PRS based on SNP main effects from GWAS, but detected one variant and two
gene-sets showing significant interaction signal after correction for the number of analysed environments. This study
illustrates the possibilities and limitations of a comprehensive GWEIS in currently available sample sizes.

Introduction
Neuroticism is a personality trait that is characterised

by emotion dysregulation and negative affect. It has been
thought to confer a general susceptibility to mental
health problems, resulting in the frequent experience of
negative emotions such as worry, sadness, self-con-
sciousness, or anger1–3. High neuroticism is associated
with increased psychiatric comorbidity, and there is a
substantial overlap between neuroticism and a wide
range of psychiatric disorders, particularly depression
and anxiety4–6. The associated societal costs of neuro-
ticism are substantial7, leading to increased use of both
mental and physical health services due to poorer overall
health and quality of life8.

Twin studies have estimated the heritability of neuro-
ticism to be around 40%, with the rest typically attributed
to non-shared environmental factors9–13. In recent years,
the genetic aetiology of neuroticism has been studied
using large-scale genome-wide association studies
(GWAS) which have uncovered more than a hundred
genomic loci that point towards genes and pathways
involved in brain functioning14,15.
In the epidemiological literature, neuroticism and rela-

ted phenotypes have been linked with a range of different
environmental factors, with traumatic events, childhood
maltreatment, and social support receiving the greatest
attention16–23. Despite such studies consistently implicat-
ing environments that are shared within families, twin
studies tend to assign very little or no proportion of var-
iance to shared environmental factors:10–13 a phenomenon
called the ‘the shared environment paradox’24.
It has been hypothesised that shared environments

simply do not matter as much as do non-shared
environments25, a notion which has been related to
the distinction between the ‘objective’ and ‘effective’
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environments26. That is, while an environment may
‘objectively’ be shared between family members, their
‘effective’ environment, i.e., the environment as they
experience it, is nevertheless unique; as is then also the
resulting impact of that environment on each individual.
More recently, Uher and Zwicker proposed that the

most parsimonious explanation for this shared environ-
ment paradox is the presence of gene-environment
interactions (GxE). They argue that GxE would lead
monozygotic twins to respond more similarly to shared
environmental exposures than dizygotic twins and that
GxE should therefore result in a substantial proportion of
the shared environmental influences being wrongly
attributed to genetic factors, causing an inflation of the
heritability estimate instead24.
From a biological perspective, GxE can be seen as the

process by which environmental influences are moderated
by genetic factors (or vice versa). GxE has been speculated
to play an integral role in the aetiology of psychiatric
phenotypes for a long, as it provides an explanation for
why some develop psychiatric symptoms after particular
risk exposures while others do not24,27–30. Though neu-
roticism has traditionally been viewed as a relatively stable
trait, a more dynamic aetiology has been proposed
whereby it is continuously influenced by ongoing gene-
environment interactions throughout the life span31.
To date, however, there have been few truly genome-

wide GxE studies (GWEIS) of psychiatric phenotypes, and
the majority of molecular GxE research has been limited
to candidate genes29,32–36. It is only quite recently that the
available data and computational resources have begun to
allow for the conduction of GWEIS, but as interactions
may require larger sample sizes to detect effects of similar
magnitude as main effects, sample size requirements may
be even greater for GWEIS than for GWAS37,38.
To overcome this, some have reduced the multiple

testing burden by pre-selecting variants based on main
effects from GWAS39,40. While these two-stage approa-
ches could potentially yield more significant SNPs, indi-
vidual SNP effects are unlikely to yield insight into the
higher-order biological mechanisms underlying GxE (as is
the case for GWAS41), and the lack of genome-wide GxE
data limits the opportunity for follow-up analyses such as
gene-set analysis, which could elucidate the function of
GxE effects42. In addition, since interacting SNPs may not
display strong main effects, this approach could also lead
to potential key interactions going undetected40,43.
Another option may be to model interactions of indivi-
dual variants with multiple environments simulta-
neously44, though this is also at the cost of environmental
specificity which could complicate the interpretation of
any functional follow-up analysis.
Alternatively, global GxE effects across the entire

genome may be investigated by estimating the

proportion of variance explained by GxE effects45, or by
modelling interactions with polygenic risk scores con-
structed using SNP main effects from GWAS46–49. But
while such approaches may indicate the presence of
GxE, they cannot determine which SNPs or genes are
driving the interactions. For the purposes of gaining
relevant biological information from the GxE analyses,
we, therefore, considered GWEIS to be the most sui-
table approach.
Beyond issues with power, GWEIS requires particular

consideration regarding the control of error rate inflation,
as it is particularly vulnerable to the effects of hetero-
scedastic residuals50. While this can be resolved with the
use of heteroscedasticity consistent, or so-called robust,
standard errors51,52, these are not currently available in
software optimised for large-scale genetic analysis like
PLINK53, and researchers have had to implement this
them themselves34,54. Interaction effects may also be
confounded by covariate-SNP and covariate-environment
interaction effects unless these are accounted for55, but
doing so can dramatically increase the number of vari-
ables analysed and add further computational constraints
to this already intensive analysis.
To our knowledge, there have only been three GWEIS

of psychiatric phenotypes to date, all of which have
focused on depressive symptoms and used some compo-
site measure of stressful life events as environment32–34.
These studies have found few significant interactions,
though only one of these studies featured a sample size
close to 100,000 individuals (the rest fewer than 10,000).
As such, it is evident that there is a substantial gap in the
available genome-wide evidence for GxE in mental health
phenotypes in general, including neuroticism for which
there are currently none.
To address this, we used data from the UK Biobank56 to

perform a series of GWEIS for neuroticism, with a total
of 25 broadly defined environmental variables (N=
84,711–313,339; Table 1). While ensuring proper control
for inflation and confounding as mentioned above, we
first explored SNP-environment interactions between all
25 environmental variables and a total of 8,614,007 SNPs
genome-wide.
Given that conceptually meaningful interaction effects

may not be evident on the level of individual SNPs, whose
effects are likely small in magnitude, we sought to eluci-
date relevant biological mechanisms that might govern
GxE by testing whether single SNP-environment inter-
action effects were over-represented within particular
genes, tissues, or gene-sets. We also evaluated the pre-
dictive ability of SNP-interaction effects across the gen-
ome by constructing interaction-based polygenic scores
(iPRSGxE) for each environment and used these to predict
neuroticism in an independent subset of the UKB sample
(N= 10,000).
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In parallel with all interaction-based analyses, we per-
formed a traditional neuroticism GWAS in the same
sample to evaluate the concordance between the top
interaction effects and corresponding main effects, as well
as to allow the predictive power of the iPRSs to be con-
trasted to that of a traditional main effect PRS constructed
from the GWAS results (see Fig. 1 for an overview of the
analysis workflow).
The selection of environmental variables was based on

the epidemiological literature, and consisted primarily of
variables relating to trauma and social support, but also to
physical health, socioeconomic status, cognitive function,
sleep, and substance use (Table 1; see “Methods” section).
While some of these environmental variables are not
traditionally seen as ‘environments’ (such as cognitive
function, insomnia, BMI), we decided to include these
here anyway as they have often been highlighted as risk
factors in epidemiological studies in the past57–59. Given
that many of these environments are themselves heritable,
it is thus possible that some interactions we observe could
reflect gene-gene interactions (GxG) rather than pure
GxE (see Plomin et al.60 and Vinkhuyzen et al.61 for dis-
cussions about the heritability of the environment).
Though our rationale for including these is that any
potential interactions, be it GxE or GxG, may nonetheless
highlight relevant biological mechanisms that contributeTa
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Fig. 1 Overview of the analysis workflow. We first obtained SNP-
environment interaction effect estimates for the 25 environments
(GWEISs), as well as SNP main effects (GWAS). Results from these
analyses were used to perform gene and gene-set analyses. The effect
of SNPs, genes, and gene-sets that reached standard genome-wide
significance (i.e., not corrected for the 25 environments) in the
interaction-based analyses were compared with their corresponding
main effects. Interaction-based polygenic risk scores (iPRSs) were
constructed in an independent subset of the sample to predict
neuroticism: this was done by modelling the interactions between
each environment and a polygenic risk score constructed based on
either the SNP-environment interaction effect from GWEIS (iPRSGxE), as
well as the SNP main effect from GWAS (iPRSG) as a comparison.
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to neuroticism. For reasons of convenience, we chose to
retain the general term ‘GxE’ throughout the paper, but
acknowledge that the term ‘Gene x Trait’ interaction is
more suitable.
We note that although a potential correlation between the

genetic influences on the environment and the outcome
phenotype has been a cause for concern for the estimation
of GxE in twin studies62, we would not expect this to lead to
spurious detection of interaction effects in a GWEIS setting,
since the linear regression model allows the SNP and
environment main effects to be modelled simultaneously,
and can thus account for any correlation that exists between
these, as well as with the interaction term.

Results
Interacting SNPs implicated by GWEIS
Due to the risk of inflation of the GWEIS test statistics

that were mentioned previously50,54, we analysed SNP-
environment interactions in a linear regression framework
in R, computing t-statistics for the interaction coefficients
using robust standard errors in the form of the Huber-
White sandwich estimator51,52 (see “Methods” section for
more detail, and Suppl. Info (A): ‘Heteroscedasticity and
Spurious Inflation of GWEIS Test Statistics’ for compar-
ison with traditional, model-based standard errors). In
order to account for any potentially confounding covari-
ate interactions55, we also included covariate-SNP and
covariate-environment interaction effects in the model in
addition to covariate main effects (see “Methods” section).
We analysed the single SNP-by-environment interac-

tions between each of the 25 environments (N=
84,711–313,339; Table 1) and a total of 8,614,007 SNPs
(minor allele frequency >0.01; imputation quality >0.9; see
“Methods” section), from which we identified 8 inde-
pendent SNPs (r2 < 0.8) for 7 environments that showed
interaction effects at the standard genome-wide sig-
nificance threshold of p < 5e−8 (Table 2; Suppl. Figures).

Of these, one intergenic SNP on chromosome 6 remained
significant after applying further Bonferroni correction
for the number of environments analysed (p < 5e−8/25=
2e−9; rs115385310, ‘felt hated as a child’); an SNP which
was also suggestively significant for ‘childhood physical
abuse’ (p= 6.93e−7).
These results are in stark contrast to a traditional

GWAS on neuroticism performed using the same main
effect covariates as the GWEISs (see “Methods” section),
for which 103 independent significant SNPs were detec-
ted. For the 8 SNPs that showed significant interactions at
the standard genome-wide significance threshold (p < 5e
−8), we did not find any evidence of a significant main
effect in the GWAS (p > 0.05; Table 2).

Genes implicated by SNP-environment interactions
To facilitate functional interpretation of GWEIS results,

we sought to determine whether SNP-environment
interaction effects across the genome tended to con-
gregate within particular genes. Although any direction of
effect is inevitably lost when aggregating the effects from
multiple SNPs, this analysis nonetheless provides infor-
mation about whether variants in certain genes could
moderate the effect of specific environmental exposures
on the phenotype.
We thus performed 25 gene-based tests for 19,831

protein-coding genes in MAGMA using the interaction
p-values from the GWEISs as input (see “Methods” sec-
tion). From these analyses, we found a total of 10 genes
from 7 environments that reached standard genome-wide
significance, correcting only for the number of genes
analysed (p < 2.52e−6 (0.05/19,831); Table 3; Suppl.
Tables 1a–1y); though none survived further correction
for the number of environments (p < 2.52e−6/25).
Similar to the SNP-level results, the concordance

between suggestive main and interaction effects on the
gene-level was low, and only one gene (FHIT, ‘sexual

Table 2 SNPs-environment interactions detected in the GWEIS.

Environment SNP Chr BP Gene PGWEIS PGWAS MAF

Felt hated rs115385310 6 6,721,120 — 6.09e−10* 0.454 0.02

Able to confide rs874616 15 87,901,482 — 8.57e−9 0.310 0.66

Work satisf. rs4461224 2 23,485,507 — 1.44e−8 0.223 0.10

TDI rs11700517 21 33,273,542 HUNK 1.76e−8 0.195 0.16

Adult confiding rel. rs12649942 4 38,261,175 — 2.86e–8 0.996 0.58

Social activities rs111497581 4 91,033,882 CCSER1** 3.98e−8 0.756 0.02

Terminal illness rs5928040 X 32,623,390 DMD 4.97e−8 0.705 0.19

Terminal illness rs185839186 5 7,409,995 ADCY2 4.98e−8 0.842 0.02

SNPs from all 25 GWEIS analyses with a p-value below the standard genome-wide significance threshold (p < 5e−8), i.e., not corrected for the number of
environments. *= survived Bonferroni correction for the 25 environments (p < 5e−8/25= 2e−9); **= SNP located within 15 kb upstream of the transcription
start site.
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assault’) reached suggestive significance in the main
effects gene analysis for neuroticism (p= 1e−4; Table 3;
Suppl. Table 1z).

Gene sets enriched by the most interactable genes
In order to determine whether the most strongly asso-

ciated genes for any environment (including sub-
significant ones) tended to be overrepresented within
particular pathways, cellular locations, or implicated in
particular tissue-specific gene expression patterns, we
performed competitive gene-set and gene-property ana-
lyses in MAGMA using the results from the 25 GWEIS-
based gene analyses as input. These analyses concerned

7426 gene sets (MSigDB) and 53 tissues (GTEx; see
“Methods” section).
At a p-value threshold of 6.85e−6 (.05/(7246+ 53)), 12

gene sets from 7 environments were significant (Table 4),
but no tissues (Suppl. Tables 2a–2y and 3a–3y). Of these
12 gene sets, two survived the additional correction for
the number of environments analysed (p < 6.85e-6/25):
‘nucleotide transmembrane transporter activity’ (terminal
illness), and ‘glucose binding’ (insomnia).
Again, none of the interacting gene-sets showed evi-

dence of a significant, or even suggestively significant,
the main effect in neuroticism (Table 4; Suppl. Tables 2z
and 3z).

Table 3 Genes detected in the MAGMA gene analyses.

Environment Gene Chr BPSTART BPSTOP PGWEIS PGWAS

Alcohol intake CLDN4 7 73,213,872 73,247,014 1.16e−7 0.190

WBSCR27 7 73,248,920 73,256,865 1.44e−6 0.093

Chronic pain VPS9D1 16 89,773,542 89,787,394 5.59e−7 0.532

FANCA 16 89,803,957 89,883,065 1.30e−6 0.016

Intelligence EIF5A 12 7,210,318 7,215,774 8.43e−7 0.116

POLE 12 133,200,348 133,263,951 1.18e−6 0.080

Family satisf. CWC27 5 64,064,757 64,314,590 1.22e−6 0.054

Sexual assault FHIT 3 59,735,036 61,237,133 1.15e−6 1e−4

Social activities ZSWIM3 20 44,486,256 44,507,761 1.85e−6 0.097

Y/o schooling TUSC5 17 1,182,957 1,204,281 2.14e−6 0.702

Results from MAGMA gene analysis of 19,831 genes, using the GWEIS interaction p-values as input (p < 0.05/19,831= 2.52e−6); No gene survived additional
Bonferroni correction for the number of environments analysed (p < 2.52e−6/25= 1.01e−7).

Table 4 Gene-sets detected in the MAGMA gene-set analyses.

Environment Pathway/Tissue PGWEIS PGWAS

Insomnia Glucose binding 1.44e–8* 0.095

Terminal illness Nucleotide transmembrane transport 1.61e–8* 0.151

Nucleotide transmembrane transporter activity 1.09e–6 0.091

Nucleotide transport 3.40e–6 0.011

Sexual assault Telomerase pathway 1.60e–6 0.219

RNA-dependent DNA biosynthetic process 3.68e–6 0.572

Friendship satisf. Positive regulation of ion transport 1.70e–6 0.763

Regulation of metal ion transport 1.71e–6 0.360

Regulation of calcium ion transport 4.41e–6 0.354

Child. physical abuse PKA mediated phosphorylation of CREB 4.03e–6 0.645

Physical assault Negative regulation of DNA metabolic process 4.73e–6 0.254

Family satisf. Advanced glycosylation endproduct receptor signalling 6.13e–6 0.807

Results from MAGMA analysis of 7,246 MSigDB gene sets and 53 gene expression patterns from GTEx (p < 0.05/(7,246+ 53)= 6.85e–6). *= gene sets that survived
Bonferroni correction for the number of analysed environments (p < 6.85e–6/25= 2.74e–7).
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Interaction-based polygenic risk scores (iPRS)
To evaluate the predictive accuracy of our SNP-

environment interactions, we constructed interaction-
based polygenic risk scores (iPRSGxE)—taking the sum of
effect alleles weighted by the interaction beta and the
environment—and used these to model neuroticism in an
independent subset of the UKB sample (N= 10,000; see
“Methods” section). An alternative to GWEIS mentioned
earlier is to model the interaction between a traditional
main effect PRS from GWAS and an environmental
variable of interest (henceforth: iPRSG). Since the iPRSG is
more widely accessible than the iPRSGxE (as it does not
require existing GWEISs), we also computed iPRSGs for
each environment as a comparison.
The variance explained by each iPRS was evaluated by

comparing the fit between a full model containing the
iPRS and covariates to that of a covariate only model
(here, the environment main effect and the main effect
PRS were included in addition to the standard covariates
used for the GWEIS/GWAS, as well as the interactions
between these and the standard covariates; see “Methods”
section). This was done using the anova() function in R.
For any of the 25 environments, neither the iPRSGxE nor

the iPRSG provided a significant increase in model fit (p <
0.05/25/2; see “Methods” section) above that of the cov-
ariates only model, with the attributable variance reaching
a maximum of .04% for the iPRSGxEs and .03% for the
iPRSGs (Fig. 2). This contrasts with the traditional main
effect PRS, which explained 2.06% of the variance in
neuroticism beyond standard covariates (p= 6.31e−49;
see “Methods” section).
We, therefore, conclude that based on the environments

and sample population analysed here, there is currently

limited evidence that genome-wide GxE effects in the
form of iPRSs can improve prediction accuracy in neu-
roticism beyond what can already be achieved using SNP
and environment main effects.

Discussion
In this study, we have investigated genome-wide gene-

environment interactions in neuroticism across a total of
25 different environmental variables previously associated
with mental health outcomes. From all SNP, gene,
and gene-set based analyses, we detected one SNP
(rs115385310 for ‘felt hated as a child’) and two gene-sets
(‘glucose binding’ for ‘insomnia’ and ‘nucleotide trans-
membrane transport’ for ‘terminal illness’) that survived
Bonferroni-correction for the number of environments
analysed.
Although multiple interactions were found at standard

genome-wide significance thresholds (i.e., not correcting
for the number of environments), they were substantially
fewer than that detected in a traditional GWAS on neu-
roticism, in which we identified just over 100 independent
significant SNPs. This is in line with the notion that the
power to detect interactions is lower than that of main
effects, and suggests that even larger data sets will be
required before we can uncover a more considerable
fraction of relevant interactions. The lack of predictive
value for interaction-based polygenic risk scores (iPRSs)
echoed this further.
A GWEIS analysis will naturally suffer more from an

increased multiple testing burden compared to, for
example, two-stage GxE approaches which pre-select
genetic variants based on their observed main effects. In
this study, however, we found that none of the interacting

Fig. 2 Prediction accuracy of interaction-based polygenic risk scores. Interaction-based polygenic risk scores (iPRS) were computed for an
independent subset of 10,000 individuals, using the sum of risk alleles weighted by the SNP betas and the environment. For the iPRSGxEs the SNP-
environment interaction beta was used as a weight, whereas for the iPRSGs, the SNP main effect betas from GWAS was used instead. The Y-axis
reflects the Δr2, i.e., the difference in adjusted r2 between models containing the iPRSs and all covariates to a covariates-only model. The differences in
model fit between the full model and the covariate only model were evaluated using anova in R. Only environments with a Δr2 greater than zero are
shown; none of the iPRSGs or iPRSGxEs explained a significant proportion of variance in neuroticism beyond covariates (p < 0.05/25/2).
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SNPs identified at standard genome-wide significance
thresholds (i.e., uncorrected for the number of environ-
ments) showed any evidence of even suggestive main
effects in the GWAS—the same was largely true the gene
and gene-set level results—implying that preselection
based on main effects could result in key interactions
being overlooked. In addition, as individual SNP interac-
tion effects might themselves not yield notable insight
into the biological mechanisms that govern GxE (as is
typically the case with single SNP analyses41), the
genome-wide nature of GWEIS is vital as it allows for
follow-up analyses, such as gene-set analysis, which can
elucidate the function of GxE effects.
Although the multiple testing burden was further exa-

cerbated by the analysis of multiple environments here,
we argue that this approach could enable the identifica-
tion of common patterns across environments and further
strengthen the evidence for any particular gene or path-
way (particularly when restricted to environments already
thought to be implicated). While a systematic investiga-
tion of shared GxE effects was not conducted here due to
the lack of power even when not correcting for the
environments, we hope that our results may prove useful
for researchers conducting similar studies in the future,
for example, as a basis for replication or meta-analysis. As
increased sample sizes lead to the detection of more
reliable SNP-environment interactions, we expect that
results from GWEIS and related functional follow-up
analyses will become valuable for our understanding of
the biological mechanisms that underlie GxE.
In this study, we selected neuroticism as our phenotype

of interest due to its significant public health impact7,8

and widespread links with several clinical psychiatric
disorders3–6. Although evidence suggests that neuroticism
is more dynamic than traditionally thought31, as a per-
sonality trait, it may nonetheless be more stable than
some clinical phenotypes, such as depression or alcohol
use disorder63–66, and could also be comparatively less
sensitive to GxE. In addition, it should be noted that the
UKB sample analysed here consists of a relatively older
population, and since the influence of GxE may be more
pronounced at an earlier stage of development67, the age
of this sample might have affected our power to detect
certain GxE effects.
Here, we chose to model the relationships between all

variables as linear (and thus, treating ordinal environ-
ments as continuous), but there is a possibility that some
interactions may have a more complex, non-linear form.
For instance, for the ordinal environmental variable
‘physical assault’ we now assumed that having been
assaulted recently versus in the past results in a similar
change in the SNP effect as having been assaulted in the
past compared to never. While this may not be a fully
accurate representation of the data, we expected that the

increased multiple testing resulting from analysing the
levels of each ordinal variable separately would never-
theless have had a more severe impact on power.
Finally, we wish to reiterate a key limitation regarding the

interpretation of our results in the context of heritable
environments. The environmental component in GxE is
sometimes seen as an independent force that regulates the
penetrance of genetic effects (or vice versa), while in prac-
tice, any environmental measure obtained in a cross-
sectional design is unlikely to be free from genetic influ-
ence60,61. Although there have been efforts to distinguish
GxG from GxE in the twin modelling literature62,68, doing so
in this setting is not uncomplicated, and simply conditioning
on heritable components could induce collider bias69.
In this study, we chose to be particularly lenient with

what we considered ‘environment’ in favour of covering as
broad a range of relevant variables as possible. Based on
these results alone, it is therefore not possible to deter-
mine whether any interaction detected here represents
one with the environmental components directly (GxE) or
with some heritable component thereof (GxG). If well-
powered, however, we argue that GWEISs of heritable
environments are still useful as they could elucidate
important sources of aetiological heterogeneity which can
be followed up in greater depth using experimental or
more controlled observational designs in the future.
Representing the largest effort of its kind to date, we

used a total of 25 environmental variables to investigate
gene-environment interactions in neuroticism. Although
power is low compared to GWAS, we detected one var-
iant and two gene sets that showed significant interaction
after correction for the number of environments analysed.
Larger sample sizes are, however, needed to obtain more
reliable estimates of relevant SNP-environment interac-
tion effects, which will be required in order to understand
the molecular mechanisms that govern gene-environment
interactions in neuroticism.

Methods
Genotype data and quality control
All genotype and phenotype data were obtained from

the UK Biobank56 (release 3, March 2018), and this study
was conducted under the UK Biobank application 16406.
Data collection, primary quality control, and imputation
of the genotype data were performed by the UK Biobank
itself, the full details of which have been described else-
where70. We applied further quality control in order to
ensure the inclusion only of high-quality variants. This
entailed filtering SNPs with a minimum info score of .9
(HRC panel imputed), maximum missingness of 5%, and a
minor allele frequency of at least 1%, resulting in a total of
8,614,007 SNPs for the analysis.
We used only European, unrelated samples with con-

cordant sex (see Suppl. Info (A): UK Biobank Sample
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Information and Quality Control). Thirty principal compo-
nents (computed with FlashPCA71) were included as cov-
ariates in all analyses to control for population stratification.
To ensure that the selection of SNPs remained constant
across environments, quality control and filtering were
performed on the full subset of individuals with complete
neuroticism data (see below), and it is, therefore, possible
that exact minor allele frequencies and call rates may vary
slightly between the sample subsets for each environment.

Phenotype
Neuroticism was measured using the Eysenck Personality

Questionnaire (Revised Short Form72), which contains 12
dichotomous items asking participants to indicate whether
they agree with statements such as “Do you worry too long
after an embarrassing experience?”, or “Do you ever feel
‘just miserable' for no reason?”. An individual’s level of
neuroticism was quantified as the sum of items with which
they agreed, ranging from 0 and 12. We included only
individuals who had provided complete responses to all
items (thus performing no imputation of missing values),
resulting in 313,467 samples. To ensure that neuroticism
and each environment had been measured simultaneously,
we used data collected from the first visit only.

Environmental factors
We considered broadly as ‘environment’ a wide range of

variables available from the UKB Biobank that have been
associated with neuroticism and related mental health
phenotypes in the literature. This included primarily those
relating to trauma exposure16–20 and social support21–23,
but also socioeconomic deprivation73,74, education75 and
cognitive ability57,76, substance use77,78, sleep58,79,80, and
physical health (overweight/obesity59,81, physical dis-
ability82,83, chronic pain84,85). We gathered all available
variables that related to any of these categories, limiting the
final selection to a subset of 25. We selected variables as
such that there was at least one variable from each category,
then giving preference to those with larger total sample
sizes and less skew in relation to the remaining variables.
Given their central role in the literature, we prioritised a
wider selection of items related to trauma and social sup-
port but sought to include at least one item related to all
other domains. Here, we refer to these variables as ‘envir-
onments’ as that is their role in the current analyses while
acknowledging that many of the selected environments
have a (sometimes considerable) heritable component.
The majority of environments were ordinal, consisting

of responses such as ‘never true’ to ‘very often true’, or
‘never or almost never’ to ‘almost daily’ (see Table 1).
There were two categorical environments that allowed
endorsement of multiple answer options: ‘social activities’
and ‘multiple stress’, which we converted to sum scores
representing the number of endorsed options. ‘Chronic

pain’ was constructed using a collection of pain items that
indicated whether participants had experienced pain in
multiple regions for three months or more (category ID:
100048). Scores on this variable reflect the sum of regions
in which participants experienced pain for 3+ months,
with a maximum score of 3. Indicating no pain or pain for
less than 3 months in any number of regions gave a score
of 0. Indicating chronic pain in one region gave a score of
1, in two regions a score of 2, and indicating pain all over
the body, or pain in three or more regions for 3+ months,
gave a score of 3. The reason for this truncation was to
allow the inclusion of pain all over the body without
making strong assumptions about the severity compared
to multiples of separate areas.
To ensure that neuroticism and all environmental

measures were measured at the same time point, we
analysed data from the first visit only. All environments
were analysed as continuous, and as with neuroticism, we
performed no imputation of missing responses for any of
the environments.

GWEIS
SNP-environment interactions were analysed in a linear

interaction model in R (v3.2.1). As have been shown pre-
viously50,54, GWEIS test statistics are particularly suscep-
tible to spurious inflation of test statistics due to
heteroscedasticity of the residuals. To deal with this, we
relied on Huber-White estimated standard errors, also
known as a sandwich estimator. Unlike model-based stan-
dard errors, which are computed using a single residual
variance term for all observations, the sandwich estimator
allows a unique residual variances term across observations,
approximated using the squared residuals51,52.
Our script is an adaptation of a PLINK R plugin ori-

ginally developed by Almli et al.54, which performs a
joint test of SNP and SNP-environment interaction
effects (https://epstein-software.github.io/robust-joint-
interaction). Beyond run-time optimisation, we com-
puted p-values for the gene-environment interaction
(rather than the joint test of SNP main and interaction
effects, as done initially), and included covariate-SNP
and covariate-environment interactions in addition to
covariate main effects. As has been shown55, covariate
main effects alone do not effectively control for poten-
tially confounding interactions of the covariate with the
SNP or the environment, and unless controlled for, such
interactions may be captured in the SNP-environment
interaction term. We thus implemented the following
linear regression model for every SNP and environment:

Yi ¼ β0 þ GiβG þ EiβE þ GiEiβGxE þ C0
iβC þ C0

iGiβCxG þ C0
iEiβCxE þ ϵi

where Yi represents the phenotype measure for any
individual i, Gi the SNP allele count, and Ei the
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environmental measure. Ci is a k × 1 vector of covariates,
with k equalling the total number of covariates, and ϵi the
residual, and ′ denotes the transpose. The intercept (β0)
and betas for the SNP (βG), environment (βE), and SNP-
environment interaction term (βGxE) are all scalars, while
the betas for the covariate-environment (βCxE) and
covariate-SNP (βCxG) interactions are k × 1 vectors. The
parameter of interest here is βGxE: the beta for the SNP-
environment interaction.
As covariates, we included age, sex, 30 PCs, and all

assessment centres with N > 10,000. As recommendations
or standards regarding the number of PCs that should be
included typically concern main effects analyses, we could
not exclude the possibility that potentially more complex
confounding effects of ancestry might arise when ana-
lysing interactions, and therefore chose a more cautious
approach of including as many as 30 PCs.
For the analysis, PLINK formatted genotype data was

read into R (v3.2.1) using the read.plink() function from
the snpStats package (see the Suppl. Info (B)–Analysis
script for the full R script). As per the snpStats default
settings, autosomal SNPs were coded as 0, 1, and 2,
representing the homozygous minor, heterozygous, or
homozygous major genotypes, respectively. On the X
chromosome, male genotypes were coded as 0 and 2,
representing single copies of the minor or major alleles.

GWAS
We conducted two GWASs of neuroticism in PLINK

v.2.053 using the same set of covariates as in the GWEIS:
one using the full neuroticism sample (N= 313,467), done
with the purpose of determining whether interacting
SNPs, genes, or gene-sets displayed any main effects on
neuroticism, and one that excluded a test set of 10,000
individuals done for the purpose of constructing a main
effect polygenic risk score.

Gene analyses
To investigate whether SNP-environment interaction

signals tended to congregate within genic regions, we
performed genome-wide gene analyses with MAGMA
(v1.07b)42 using the p-values from the GWEIS as input.
Gene locations for 20,260 protein-coding genes were
obtained from Ensembl (GRCh37, p13, v96), of which
19,831 contained at least one SNP in our data. To allow
the inclusion of nearby, potentially regulatory SNPs, we
used windows of 2 kb upstream and 1 kb downstream of
the transcription start and stop sites, respectively. For
computational efficiency, a random subset of 10,000
individuals from the UKB data set was used as a reference
for the estimation of LD.
As an aggregation method for the SNP effects, we

employed the ‘multi model’ which is a hybrid between the
commonly used ‘mean model’, which simply averages the

SNP effects across the gene, and the ’top model’, which
uses the lowest SNP p-value corrected for gene size. In
essence, the ‘multi model’ applies both the ‘mean’ and
‘top’ models and selects the one with the best fit.

Gene-set and gene property analyses
Competitive gene-set and gene-property analyses were

performed for all GWEISs and the GWAS using
MAGMA (v1.07b)42. A total of 7246 gene set definitions
were obtained from MsigDB (v6.2), including gene
ontology (GO) terms, cellular locations, and biological
pathways from multiple sources (e.g., KEGG, Reactome,
BioCarta). These were analysed in a competitive frame-
work (as is the default in MAGMA), testing whether the
average association with genes within a gene set is greater
than that of genes outside the gene set, while correcting
for LD.
To test for tissue specificity of associated genes, we used

the recently implemented conditional gene property
analysis in MAGMA. In this framework, any given tissue
can be conceptualised as a gene-set, where gene mRNA
expression levels represent the continuous gene-set
membership for any given gene, with its mean gene
expression level across tissues included as a covariate. For
this analysis, we used the mean log-transformed gene
mRNA expression profiles in 53 different tissues obtained
from GTEx (v7).

Polygenic risk scores (PRS)
In order to evaluate the predictive ability of our GWEIS

results, we constructed interaction-based polygenic risk
scores (iPRSGxE) using the SNP-environment interaction
effects from each of the 25 GWEISs. As a comparison, we
created alternative iPRSs representing the interactions
between a standard main effect PRS and each environ-
ment (iPRSG). We evaluated the predictive accuracy of all
iPRSs (i.e., the iPRSGxEs and iPRSGs) against that of a
traditional main effect PRS.
To obtain GWEIS and GWAS effect sizes for these PRS

analyses, we excluded a hold-out sample of 10,000 indi-
viduals (to be used for prediction) and re-analysed all
main and interaction effects as described previously. For
each analysis, we extracted the independent significant
SNPs using clumping in PLINK53 (r2 < 0.2; 250kb), and
used these SNPs to construct PRSs for every individual in
the hold-out sample.
The different PRS scores were defined as follows. The

standard main effect PRS was computed as PRSi ¼Pk
j Gijβ

G
j for each individual i, with Gij their genotype

value for SNP j (k being the number of SNPs used), and
βGj the GWAS effect size. For environment E, the iPRSG

score was computed as iPRSGi ¼ PRSi ´Ei, and the
iPRSGxE as iPRSGxEi ¼ Pk

j GijEiβ
GxE
j , with βGxEj the GWEIS

interaction effect size of SNP j.
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A possible alternative to how we computed the iPRSGxE

here may be to include the SNP main effect from the
interaction analyses in the iPRSGxE itself, i.e.,
iPRSGþGxE

i ¼ Pk
j GijEiβ

GxE
j þ Gijβ

G
j . As we are interested

in determining the extent to which GxE predicts neuro-
ticism beyond any gene and environment main effects,
however, we constructed our iPRSGxEi using only the
interaction terms, and instead included PRSi as a covariate
to account for the genetic main effect.
The PRS scores were constructed using SNPs significant

at different p-value thresholds (.001, .05, .1, .2,…, .8, .9, 1).
For each PRS score, we then fit a linear regression in the
hold-out sample with neuroticism as an outcome, with
the PRS score and a set of covariates as predictors. An
estimate of the predictive ability of the PRS score was then
computed as the difference between the adjusted r2 for
this model and the corresponding covariate-only model.
Here, we chose to use the adjusted r2, rather than the full
r2, as this provides an unbiased estimation of the popu-
lation explained variance in models with multiple pre-
dictors. For the main effect PRS, as well as for both the
iPRSGxE and iPRSG for each environment, we selected the
PRS based on the p-value threshold for which the pre-
dictive ability was greatest.
As covariates, we used the same base covariates as in the

GWEIS/GWAS analyses (age, sex, array, and all assessment
centres with N > 50). For the traditional PRS, the covariates
only model was Yi ¼ β0 þ C0

iβC þ ϵi, with Yi the neuroti-
cism score for any one individual i in the holdout sample,
Ci the 1 × k vector of base covariates (with ‘ denoting
the transpose, and k the number of covariates), β0
the intercept, βC the covariate effect sizes, and ϵi the
residual. The full model including the PRS is then
Yi ¼ β0 þ C0

iβC þ PRSiβPRS þ ϵi, with PRSi representing the
main effect PRS for that individual, and βPRS the beta coef-
ficient for the PRS on neuroticism in the hold-out sample.
For the iPRSGxE and iPRSG scores, however, we also

included the relevant environment and the main effect
PRS as covariates, as well interaction between these and
the base covariates (similar to the GWEIS setup). Thus,
the covariate only model used for any iPRS with envir-
onment E is:

Yi ¼ β0 þ C0
iβC þ PRSiβPRS þ EiβE þ C0

iPRSiβPxC þ C0
iEiβExC þ ϵi

with PRSi and Ei representing the traditional main effect
PRS and the environment, respectively (with βPRS and βE
their effect on the neuroticism), and C0

iPRSi the interac-
tion between the main effect PRS and the covariates (with
related effect size βPxC), and C0

iEi the covariate-
environment interaction (with effect size βExC). The full
model for any iPRS would then also contain the term for
the iPRS and its effect on neuroticism in addition to all

variables in the null model, i.e.:

Yi ¼ β0 þ C0
iβC þ PRSiβPRS þ EiβE þ C0

iPRSiβPxC
þC0

iEiβExC þ iPRSiβiPRS þ ϵi:

The reason why we include the main effect PRS derived
from the GWAS as a representation of the SNP main
effects, rather than simply a PRS constructed from the
SNP main effect from the GWEIS, is because the GWEIS
PRSs will have been pruned based on the interaction
effects, and will thus underestimate the total amount of
variance contributed by SNP main effects across the
genome. Since we are specifically interested in how much
the iPRSs contribute above and beyond what can be
obtained using a simple main effect PRS from GWAS, the
SNP main effects as obtained in the GWEIS would not
have been appropriate.
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