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Abstract
Antidepressant outcomes in older adults with depression is poor, possibly because of comorbidities such as
cerebrovascular disease. Therefore, we leveraged multiple genome-wide approaches to understand the genetic
architecture of antidepressant response. Our sample included 307 older adults (≥60 years) with current major
depression, treated with venlafaxine extended-release for 12 weeks. A standard genome-wide association study
(GWAS) was conducted for post-treatment remission status, followed by in silico biological characterization of
associated genes, as well as polygenic risk scoring for depression, neurodegenerative and cerebrovascular disease. The
top-associated variants for remission status and percentage symptom improvement were PIEZO1 rs12597726 (OR=
0.33 [0.21, 0.51], p= 1.42 × 10−6) and intergenic rs6916777 (Beta= 14.03 [8.47, 19.59], p= 1.25 × 10−6), respectively.
Pathway analysis revealed significant contributions from genes involved in the ubiquitin-proteasome system, which
regulates intracellular protein degradation with has implications for inflammation, as well as atherosclerotic
cardiovascular disease (n= 25 of 190 genes, p= 8.03 × 10−6, FDR-corrected p= 0.01). Given the polygenicity of
complex outcomes such as antidepressant response, we also explored 11 polygenic risk scores associated with risk for
Alzheimer’s disease and stroke. Of the 11 scores, risk for cardioembolic stroke was the second-best predictor of non-
remission, after being male (Accuracy= 0.70 [0.59, 0.79], Sensitivity= 0.72, Specificity= 0.67; p= 2.45 × 10−4).
Although our findings did not reach genome-wide significance, they point to previously-implicated mechanisms and
provide support for the roles of vascular and inflammatory pathways in LLD. Overall, significant enrichment of genes
involved in protein degradation pathways that may be impaired, as well as the predictive capacity of risk for
cardioembolic stroke, support a link between late-life depression remission and risk for vascular dysfunction.

Introduction
Major Depressive Disorder (MDD) occurring in adults

≥60 years is frequently referred to as Late-Life Depression

(LDD) and has an annual prevalence estimate of 4% in
community-dwelling older adults in the United States1.
The multidimensional interaction between ageing and
depression presents a challenge in the treatment of LLD,
with a significant proportion (>50%) of patients failing to
achieve remission with antidepressant pharmacotherapy2.
In particular, older adults who do not achieve LLD
remission are at an increased risk of cognitive decline and
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dementia, possibly due to cerebrovascular disease co-
occurring with depression3. Therefore, finding genetic
markers to predict clinical outcomes may help identify
novel drug targets and develop combinatorial pharma-
cogenomic treatment approaches and have been shown to
improve depression outcomes in older adults4.
A growing body of evidence suggests that individual

genetics contribute to antidepressant treatment outcomes
and adverse drug events5. Genetic variability in cyto-
chrome P450 (CYP) enzymes, which mediate the phase I
oxidation of various antidepressants, has been associated
with inter-individual differences in drug response and
tolerability. In particular, CYP2D6, which metabolizes
50–60% of all antidepressants, appears to have the most
actionable pharmacogenetic effect in older adults6.
Although there are no specific CYP2D6 guidelines for
antidepressant dosing in older adults, those with reduced
enzyme function require lower doses, similarly to middle-
aged adults6. Furthermore, age-related changes to neu-
rotransmitter systems, such as the serotonergic system,
have also been noted7. Although there are no actionable
guidelines for the serotonin transporter gene (SLC6A4), a
modest level of evidence suggests that older adults car-
rying the 5-HTTLPR low function variant (S) respond
worse to antidepressant pharmacotherapy than those with
high functioning variants (L/L)6. Although these findings
are inconsistent, the observed effects of 5-HTTLPR may
be similar to those in middle-aged adults, particularly of
European-ancestry8.
Given the biological overlap between LLD, neurodegen-

erative disease (e.g. Alzheimer’s disease), and cerebrovascular
disease, there may be common risk pathways also con-
tributing to antidepressant non-response9–11. A common
process overlapping these diseases is neuroinflammation.
Notably, antidepressants also decrease inflammation, and
conversely, anti-inflammatory treatments may alleviate
depressive symptoms12,13. The inflammation hypothesis of
depression postulates that excessive inflammatory cascades
result in neurotoxicity and neuronal death in key brain
regions, such as the hippocampus, contributing to depressive
symptoms14. These effects coincide with Alzheimer’s disease
neuropathology, whereby the excessive microglial response
to the presence of amyloid plaques results in hippocampal
atrophy15. Similarly, the neuroinflammatory and neurotoxic
processes associated with cerebrovascular disease are
observed in depressed older adults. For example, an
increased burden of ischemic brain lesions (i.e. white matter
hyperintensities) has been observed in neuroimaging studies
of LLD16. Furthermore, there is an increased frequency of
depression in individuals with cerebrovascular disease11.
This co-prevalence of cerebrovascular disease and

depression supports the vascular depression hypothesis,
which posits that ischemic lesions in frontostriatal regions
contribute to cognitive dysfunction, depressed mood and

treatment resistance11,16. Evidence from structural mag-
netic resonance imaging has shown that ischemic lesions,
known as white matter hyperintensities (WHMs), are
associated with and predict the onset of depression17.
Supporting molecular evidence suggests that vulner-
abilities in multiple pathways contribute to the etiology of
vascular pathology, including dysregulation of the
hypothalamic-pituitary-adrenal axis, endothelial function,
atherosclerosis and microglial activation11. As such, this
bidirectional relationship between vascular and neurode-
generation processes underscores the importance of the
risk pathways both for LLD risk and antidepressant non-
response. As such, we are interested in identifying genetic
variants across enriched in vulnerable inflammatory18,
neurodegenerative and vascular pathways, which may
inform molecular targets or pathways involved in the
treatment response of LLD. This project has two dis-
covery aims. First, to describe the first genome-wide study
of antidepressant response in depressed older adults. Our
second aim was to present comprehensive post-GWAS
analyses investigating both inflammatory and vascular
pathways involved in antidepressant response and the
predictive potential of polygenic risk scores.

Methods
Discovery cohort—IRL-GREY
Our sample consisted of adults ≥60 years from the NIH-

funded clinical trial IRL-GREY (Incomplete Response
in Late-Life Depression: Getting to Remission;
NCT00892047). Participants received open-label venla-
faxine (37.5 mg/day, up to 300mg/day) for 12 weeks19.
Inclusion criteria included a DSM-IV diagnosis of MDD
with at least moderately severe symptoms as defined by a
Montgomery-Åsberg Depression Rating Scale20

(MADRS) score ≥15. Participants with Folstein Mini-
Mental State Examination (MMSE)21 score of <24 or
DSM-IV diagnosis of dementia were exclude. In addition,
individuals with unstable medical conditions, which may
have required treatment with strong anti-inflammatory
medications were excluded. Our final sample included
335 individuals who passed clinical and genetic data
quality control (see Supplementary Figs. 1–2). The sample
included 4,471,676 genotyped (Illumina PsychArray
BeadChip) and imputed single-nucleotide polymorphisms
(SNPs) at a 5% minor allele frequency and 99.1% call rate.
All participants provided written, informed consent. The
study received ethics approval from institutional review
boards at the University of Pittsburgh Medical Center,
Washington University School of Medicine, and Centre
for Addiction and Mental Health.

Validation cohorts
To validate any top-associated SNPs, we explored three

external cohorts, which included adults treated with
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citalopram from Level 1 of STAR*D22, CANBIND-123 and
STOP-PD II24. All studies received ethics approval at
relevant institutional boards and all participants provided
written, informed consent. We applied the same quality
control and imputation criteria to all cohorts as described
for the IRL-GREY sample.

STAR*D
We included 821 individuals of European-ancestry from

Level 1 of the multi-site, clinical study STAR*D
(Sequenced Treatment Alternatives to Relieve Depres-
sion; NCT00021528)22. Participants were diagnosed with
MDD according to DSM-IV criteria and had a baseline
Hamilton Depression Rating Scale (HRSD) score of ≥14.
Individuals received prospective treatment with citalo-
pram for ~8–12 weeks. Genotyping for the sample was
conducted by the original authors, with approximately
half the samples genotyped on the Affymetrix Human
Mapping 500k Array Set and half on the Affymetrix
Genome-Wide Human Array 5.025.

Canadian Biomarker Integration Network for Depression
Study (CANBIND-1)
The CANBIND-1 cohort is a multicentre cohort of

individuals diagnosed with MDD receiving treatment for
up to 16 weeks23. For the first eight weeks, all participants
received escitalopram (10–20mg/day). Individuals who
reached remission at eight weeks continued for another
eight weeks on escitalopram, which non-remitters
received augmentation with aripiprazole (2–10mg/day).
The full protocol is described in detail in previous pub-
lications. Individuals were assessed using the MADRS at
nine time-points and were genotyped using the Illumina
Omni 2.5 BeadChip26. For our investigation on anti-
depressant response, we used remission status from week
eight of treatment before individuals received augmenta-
tion with aripiprazole.

Sustaining Remission of Psychotic Depression II (STOP-PD II)
STOP-PD II was a 36-week randomized clinical trial

(RCT) that compared the efficacy and tolerability of ser-
traline plus olanzapine with sertraline plus placebo in
preventing relapse of remitted psychotic depression24.
Before the RCT, patients aged 18–85 years with unipolar
psychotic depression received open-label sertraline (target
dose of 150–200mg/day) and olanzapine (target dose of
15–20 mg/day) for up to 12 weeks of acute treatment. For
analysis, remission of depressive symptoms was defined
post-hoc as an HRSD total score ≤ 7, which was the
definition used in STAR*D. Individuals were genotyped
on the Illumina PsychArray BeadChip at TCAG (Toronto,
Canada). We restricted the sample to 114 individuals of
European-ancestry who completed the acute phase of the
study with non-missing clinical (i.e. age, sex, baseline

HRSD score, final HRSD score) and genotype data (i.e.
European principal components and SNP genotypes).

Genome-wide association studies
Our primary and secondary outcomes of interest were

remission status defined as MADRS score ≤10 at the end
of treatment (i.e. week 12)27 and symptom improvement
defined as positive percentage change in MADRS score
from baseline to end of treatment, respectively. We chose
to prioritize remission as the phenotype of interest despite
it being a dichotomized outcome, given that remission is
considered a primary outcome of clinical antidepressant
treatment28. We conducted genome-wide logistic and
linear regressions adjusted for sex, recruitment site, age,
duration of treatment, duration of the current depressive
episode and the first two principal components from
standard ancestry analysis (for details, see Supplementary
Methods). For remission status, we also included the
baseline MADRS score as a covariate.
To validate any associations, we conducted meta-

analyses within three validation cohorts (i.e. STOP-PD
II, CANBIND-1 and STAR*D). In the case of STAR*D and
STOP-PD II, remission was defined as a Hamilton Rating
Scale for Depression (HRSD) score ≤729, whereas, for
CANBIND-1, we used similar MADRS score ≤10 criteria
as for IRL-GREY (see Supplementary Table 1). Separate
associations were first conducted within each cohort,
including similar covariates, were available, including sex,
age, baseline depressive severity and the first two principal
components from ancestry analysis. The meta-analysis
was conducted using METAL30 for variants present in at
least one validation cohort. Within METAL, variant
effects were combined using an inverse-variance-weigh-
ted, average method allowing for random effects, given
the heterogeneity across our four cohorts (assessed using
the Cochran I2 test for heterogeneity). We chose to use
inverse-variance weighting as opposed to weighting by the
effective sample size to estimate an averaged effect size
(i.e. beta). For the resulting association, we controlled for
multiple testing using genomic control (i.e. lambda).
Although these cohorts are heterogeneous and include
younger adults, validation of our top hits would allow us
to understand the generalizability of markers and their
associations with venlafaxine response across the adult
lifespan.
We further characterized associations using time-to-

remission (Cox regression using R package survival)31 and
response trajectories (linear mixed-effects models using R
package lme4)32, including the same covariates (see Sup-
plementary Figs. 3–4). Given that analyses of the smaller
African, Asian-Pacific, and admixed samples would have
resulted in a loss of power for genome-wide analyses, our
primary analyses focused on individuals of confirmed
European-ancestry.
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Genome-wide gene analyses
Genome-wide gene analyses were conducted using

MAGMA33 as performed using FUMA v1.3.5e34 with
default parameters (SNP-wide mean model). In brief,
SNPs were assigned to genes within a 10 kb window based
on a combined reference panel including 1000 Genomes
Phase 3 reference panels (2504 individuals, ~84.8 million
SNPs) and a subset of the UK Biobank data (10,000
individuals, ~17 million SNPs)34. We further explored
whether top-associated genes showed over-representation
for (1) tissue-specific, differentially expressed genes
(DEGs), (2) known biological pathways, and (3) previous
genome-wide significant associations. For gene expres-
sion, top-associated genes were compared to existing, pre-
calculated DEGs across 54 GTEx35 tissues. Next, we
explored geneset over-representation for biological pro-
cesses, molecular functions, and cellular localization
defined by Gene Ontology (10,192 genesets)36, as well as
canonical pathways from MsigDB, including KEGG37,
Reactome38, BioCarta39 and the Pathway Interaction
Database40. Lastly, top-associated genes were compared
to previously associated hits curated by the GWAS cata-
logue41. To assess over-representation, hypergeometric
tests were conducted within FUMA with Bonferroni-
correction.

Polygenic risk scores
Polygenic risk scoring (PRS) was used to evaluate the

potentially shared genetic architecture between LLD,
neurodegeneration, and cerebrovascular disease. We
constructed 11 risk scores for outcomes across six large
genome-wide studies, including for depression42–44, Alz-
heimer’s disease45,46, and various strokes, such as
ischemic, cardioembolic, large vessel and small vessel
stroke47 (see Supplementary Tables). These studies were
selected for their large sample sizes (i.e. mega- and meta-
analyses) and including publicly available summary sta-
tistics from individuals of European-ancestry. For each
outcome, scores were constructed using PRSice-2 v.2.248

across ten p-value thresholds, with lower and upper
thresholds of PT= 10−4 and PT= 1. The constructed
scores were then evaluated for their association with
either remission status or percentage symptom improve-
ment using linear and logistic regressions adjusted for
ancestry principal components 1 and 2, age, sex, recruit-
ment site, treatment duration, baseline MADRS score and
episode duration. To control for multiple testing, we
conducted within-score permutation testing across 10,000
resamples and between-score, Bonferroni-correction for
11 scores. To control for Type I error within the process
of calculating each PRS, we also conducted permutation
testing to obtain an empirical p-value for the best p-value
threshold (P0). Ten thousand random phenotype permu-
tations were used to assess the PRS model under the null.

Multiple polygenic risk scores and outcome prediction
Given the complexity of our traits of interest, we further

investigated the joint predictive capacity of combining
single polygenic scores, which may capture vulnerabilities
across different genetic pathways. The multiple polygenic
risk score (mPRS) approach has been shown to capture
more genetic variance than single scores potentially49.
Therefore, we followed a similar approach to building
predictive models using elastic net regression. Elastic net
regression allows for variable mixing of L1 and L2
shrinkage50, thereby potentially allowing for more corre-
lation (e.g. the genetic correlation between polygenic
scores) than LASSO regression, but less correlation than
ridge regression (i.e. allowing for exclusion of redundant
information).
First, PRS scores were calculated at a common p-value

threshold of 0.05 for all discovery samples to avoid
information leakage resulting from fitting the ‘best’ p-
value threshold from single polygenic score analysis.
After scoring individuals, we constructed the predictive
models in R using the caret51 and glmnet52 packages. The
cohort was randomly split into a 70% training set and a
30% holdout testing set. Within the training set, three
sets of models were constructed for each outcome of
interest (i.e. remission and improvement): (1) a null
model with a permuted outcome; (2) a clinical model
including individual, baseline predictors (i.e. sex, age,
baseline MADRS score and MDE duration) and, (3) a full
model including the four clinical variables and all poly-
genic scores. For variable pre-processing, we assessed for
excessive correlation (ρ > 0.8) and near zero-variance
(<5% frequency), as well as included dummy coding for
the recruitment site. Note, separate clinical and poly-
genic models were not constructed to select the best
predictors for a final model to avoid selection bias.
Furthermore, the elastic net model includes an internal
variable selection process, whereby unimportant vari-
ables (i.e. penalized coefficients= 0) are excluded from
the final model.
Within the training set, alpha and lambda hyperpara-

meters (random search grid) were tuned using 100x-
repeated 10-fold cross-validation to optimize the area
under the receiver operating curve (AUC) for remission,
and root mean square error (RMSE) for percentage
symptom improvement. The tuned models (null, clinical,
and combined) were then fit on the holdout testing to
assess their predictive performance. Models for remission
were assessed using AUC, sensitivity, and specificity, while
models for percentage improvement were assessed on
RMSE, R-squared (R2), and mean absolute error (MAE).
Lastly, to assess the importance of predictors, we retrieved
effect sizes (i.e. beta coefficients). The significance of
model performance was assessed using accuracy for
remission (i.e. one-sided exact proportion test compared
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to null remission prevalence) and two-sided Pearson
correlation test for percentage symptom improvement
(i.e. predicted symptom improvement compared to
observed).
Given that IRL-GREY is a unique cohort of older adults

treated with a specific antidepressant, we did not include
STOP-PD, CANBIND-1, and STAR*D in the analyses. In
particular, previous studies have shown that predictive
models may be antidepressant-specific53, therefore, we do
not expect that these models will generalize to older
adults treated with non-SNRIs (e.g. STOP-PD II and
STAR*D aged > 60) or younger adults treated with non-
SNRIs (e.g. STOP-PD II aged < 60, STAR*D aged < 60,
CANBIND-1). See Fig. 1 for analysis workflow overview.

Results
Sample demographics
Our final sample included 335 individuals who were

predominantly of European (n= 307, 91.6%) and African
(n= 22, 6.6%) ancestry. While the main results are pre-
sented from the European sub-cohort, where appropriate,
we also present associations from the African-ancestry
sub-cohort and mixed-ancestry, total sample. In the
European sub-cohort, individuals were predominantly
female (62.2%) with a mean age of 68.9 (SD= 7.0) years.
In brief, 52.4% of individuals were classified as remitters at
the end of treatment, reaching remission, within
10.3 weeks (SD= 4.7). The mean dose of venlafaxine was
241.4 mg/day (SD= 70.8) at the end of treatment. For
additional details, including summaries for the African-
ancestry sub-cohort and total, mixed-ancestry sample, see
Supplementary Table 2.

SNP-based GWAS
In brief, there were no genome-wide significant SNPs in

association with remission status or percentage change in
the MADRS score by the end of treatment (i.e. symptom
improvement). However, there were eight genomic loci at
a less conservative, suggestive threshold for significance
(p= 5 × 10−6), which we considered of potential interest
for exploration (see Fig. 2). For additional information, see
Supplementary Tables 3–12.
For remission status, the top-associated variant was

PIEZO1 rs12597726 (OR= 0.33 [0.21, 0.51], p= 1.42 ×
10−6) which also showed a non-GWAS significance in
association with improvement (unstandardized beta (B)=
−14.25 [−20.44, −8.06], p= 9.33 × 10−6). In other words,
individuals carrying at least one rs12597726 effect allele
(A) show a 67% decreased chance of being a remitter or
14.25% less improvement at the end of treatment. Fur-
thermore, having at least one A-allele was associated with
a worse response trajectory (F(6, 1681)= 4.64, p= 1.06 ×
10−4) and slower time to remission (Median= 14.3 weeks)
compared to those with a G/G genotype (Median=

11.9 weeks, 95% C.I.= [10, 13.1]) after adjusting for cov-
ariates (HR= 0.58 [0.42, 0.82], p= 1.58 × 10−3; see Fig. 3).
For model diagnostics, see Supplementary Figs. 3–4.
Although the African-ancestry sub-cohort had a

markedly low minor allele frequency for rs12597726 (3%)
compared to the European-Ancestry group, in the total,
mixed-ancestry sample, rs12597726 showed a similar
effect (see Supplementary Table 3). Furthermore, we
observed a similar directionality of association in the
STOP-PD II and CANBIND-1 cohorts, which included
the variant, under the random-effects models weighted
both by the standard error (OR= 0.51, p= 1.48 × 10−4)
and sample size (Neff= 474.16, Z=−3.96, p= 7.46 ×
10−5) after genomic control. Of note, the rs12597726 is
an annotated regulatory feature with a predicted func-
tionality CADD score of 12.4, suggesting that rs12597726
is among at least the 10% most deleterious substitutions
in the human genome. While rs12597726 does not
appear to affect PEIZO1 expression in brain tissue,
rs12597726 shows the strongest effect on expression
within the muscularis mucosae of the esophagus where
the A-allele is associated with higher PIEZO1 expression
(GTEx expression, normalized effect size= 0.15, p=
9.4 × 10−5; see Supplementary Figs. 5–6).
For improvement, the top-associated variant was

rs6916777 (B= 14.03 [8.47, 19.59], p= 1.25 × 10−6), an
intronic variant in the non-coding RNA, RP11-510H23.1.
Of note, rs6916777 was also one of three variants passing
the suggestive threshold for remission status (OR= 2.58
[1.73, 3.85], p= 3.53 × 10−6). Having at least one A-allele
was associated with a better response trajectory (F(6, 1676)=
4.36, p= 1.79 × 10−3) and faster time to remission (Med-
ian= 13.0) compared to those with a C/C genotype
(Median= 16.0 weeks) after adjusting for covariates (HR=
1.61 [1.10, 2.36], p= 0.01). Specifically, those with the A/A
genotype reach remission at a median time of 10.4 weeks
(95% C.I.= [10.4, 7.86]).
Although it is predicted that rs6916777 is unlikely to be

functional (CADD PHRED= 0.54), carriers of the A-allele
in IRL-GREY were 158% more likely to be remitters and
had 14.03% greater reduction in depressive severity
compared to C/C genotypes. However, we observed a
significant, opposite effect of rs6916777 in the African-
ancestry cohort (B=−26.03 [−44.75, −7.31], p= 0.016)
despite a similar minor allele frequency. Furthermore, no
effect of rs6916777 was found in the meta-analysis of the
four cohorts under either weighting scheme (by the
standard error, B= 2.22, p= 0.13; by sample size, Neff=
1325.65, Z= 1.09, p= 0.27).

Gene-based GWAS
Subsequently, we conducted genome-wide gene-based

associations with remission status and percentage
symptom improvement using MAGMA. The input SNPs
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were mapped to 17,748 protein-coding genes. No genes
reached genome-wide significance after Bonferroni-
correction (i.e. α= 0.05/17,748 genes= 2.82 × 10−6) for
remission status or percentage symptom improvement
(see Supplementary Table 13). PDE9A (Z-score= 3.71,
p= 1.05 × 10−4) and PIEZO1 (Z= 3.59, p= 1.60 × 10−4)
were the top two genes associated with remission status,
while FPR3 (Z= 3.73, p= 9.55 × 10−5) and GRIK4 (Z=
3.55, p= 1.90 × 10−4) were top associations with
improvement. Of note, PIEZO1 also showed a top
association with improvement (Z= 3.48, p= 2.51 ×
10−4). We saw added support for the SNP-based asso-
ciation for rs6916777 with RNF217, with RNF217 being
among the top ten genes associated with improvement
(Z= 3.37, p= 3.77 × 10−4). In addition, we extracted 51
genes from the literature that have been previously
associated with antidepressant response in MDD and
LLD (see Supplementary Table 14). Across the two

outcomes of interest, we observed associations of GRIK4
as a top-hit and SLC6A2 (Z-scoreRemission= 2.47, p=
6.69 × 10−3, Z-scoreImprovement= 3.55, p= 0.023).

Geneset and tissue enrichment
We did not observe any evidence of specific tissue

enrichment for remission status or symptom improve-
ment (see Fig. 4 and Supplementary Table 15). However,
we observed a significant association of two highly-
overlapping pathways for peptidase regulator activity with
symptom improvement (n= 25 of 190 genes, p=
8.03×10−6, Benjamini–Hochberg FDR-corrected p=
0.01). For remission status, the top-associated geneset
prior to FDR correction was the GO pathway for circu-
latory system processes (n= 43 of 479 genes, p= 1.26 ×
10−4, FDR-corrected p= 0.51; see Supplementary Tables
16–17). In addition, the top-associated GWAS Catalog
genesets were for cardiac structure and function (n= 4 of

Fig. 1 Analysis workflow. The primary presented analysis is for the IRL-GREY European-ancestry sub-cohort (n= 307). Results for the African-ancestry
sub-cohort and total, mixed cohort are presented in the Supplementary Tables.
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6 genes, p= 8.30 × 10−5, FDR-corrected p= 0.15; see
Supplementary Table 18).

Polygenic risk scores
The PRS for cardioembolic stroke was significantly

associated with remission status and symptom improve-
ment, which remained significant after permutation testing
and Bonferroni-correction (α= 0.0045) for the 11 PRS
scores that were built (see Fig. 5 and Supplementary Tables
19–20). The cardioembolic stroke PRS reached significance
at a p-value threshold of 0.05 and achieved the highest
explained variance (adjusted R2= 0.046) at the most lenient
p-value threshold, including 75,508 SNPs. In a full model, a
1 SD increase in polygenic risk for cardioembolic stroke,
was associated with decreased probability of remission
(OR= 0.63 [0.48, 0.83], p= 0.001, permutation p= 0.006)
or 5.51% less improvement (MADRS, beta=−5.51 [−9.45,
−1.57], p= 0.01, permutation p= 0.033). Overall, the
addition of polygenic risk for cardioembolic stroke
improved the model fit for remission as compared to
a model with only clinical variables (likelihood ratio test,
χ2(1)= 1.21, p= 4.78 × 10−4), as well as marginally for
improvement (χ2(1)= 3.78, p= 0.052).

Predicting treatment outcomes using mPRS
Given the association of the polygenic risk for cardi-

oembolic stroke with treatment non-remission and less
symptom improvement, we evaluated the predictive capa-
city of the 11 risk scores when added to a clinical model.

For remission status, both models showed significant pre-
dictive performance with the mPRS model achieving
marginally better performance (AUC= 0.70, Sensitivity=
0.72, Specificity= 0.67; Accuracy= 0.70 [0.59, 0.79], p=
2.45 × 10−4) compared to the clinical model (AUC= 0.70,
Sensitivity= 0.64, Specificity= 0.71; Accuracy= 0.67 [0.57,
0.77], p= 1.13 × 10−3; see Supplementary Tables 21–22).
In the full model, the top five predictors included sex
(100% importance), risk for ischemic stroke (60.9%
importance compared to sex), risk for cardioembolic stroke
(48.9%), MDE duration (38%) and risk for large vessel
stroke (30.8%; see Fig. 5). However, for percentage
improvement, neither the mPRS model (RMSE= 36.93, R2

= 0.04,MAE= 31.20; Pearson’s ρ= 0.19 [−0.02, 0.36], p=
0.07) nor the clinical model (RMSE= 37.43, R2= 0.03,
MAE= 31.73; Pearson’s ρ= 0.16 [−0.04, 0.36], p= 0.12)
was significant.

Discussion
This is the first genome-wide study of venlafaxine

response in older adults, with our sample being the largest
cohort of LLD patients with genome-wide SNP and
clinical data. Although we did not observe any genome-
wide significant association with remission status or per-
centage symptom improvement, it remains important to
evaluate suggestive findings in the context of previous
studies to begin generating further hypotheses for inves-
tigation and to explore if already-known processes are
involved in response.

Fig. 2 Primary analysis results. A Results from the SNP-based, genome-wide association study for remission status (top panel in blue) and percentage
symptom improvement (bottom panel in grey). B Q–Q plots for association p-values with remission status. C Q–Q plots for association p-values with
percentage symptom improvement. D Locus zoom plot of chromosome 6 top-associated locus surrounding rs6916777 (chr6:25251374:C:A). E Locus
zoom plot of chromosome 16 top-associated locus surrounding rs12597726 (chr16: 88820301:G:A).
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Our top association with remission status was
rs12597726 in the PIEZO1 gene, which encodes for Piezo
Type Mechanosensitive Ion Channel Component 1.
PIEZO1 channels are critical for vascular remodelling,
including angiogenesis, and have implications for hyper-
tension, aneurysms and stroke54–57. These channels pre-
vent microglial activation by pro-inflammatory cytokines
and chemokines, including IL-1β and TNF-α, in response
to neurodegenerative amyloid-beta plaques and ischemic
events58–61. Despite generally low PIEZO1 expression
levels in the brain, the rs12597726 A-allele is associated
with lower PIEZO1 expression, which may ultimately
contribute to higher inflammation and non-response (see
Supplementary Figs. 5–6). Overall, our finding that
increased vascular risk is associated with worse response
to venlafaxine in our sample support implicated
mechanisms and the vascular depression hypothesis11.
Our findings also implicate the ubiquitin-proteasome

system, which is involved in intracellular protein

degradation. Specifically, we observed that the intergenic
variant rs6916777 showed the strongest association with
symptom improvement. Although intergenic, rs6916777
is a cis-eQTL for the downstream gene RNF217 (Ring
Finger Protein 217) across multiple tissues (see Supple-
mentary Figs. 7–8). Although the function of RNF217
remains unclear, RNF217 facilitates B-cell maintenance
processes, primarily apoptosis through the ubiquitin-
proteasome system62. In the IRL-GREY cohort, the
rs6916777 A-allele was associated with better venlafaxine
response, which may be due to lower expression of
RNF217. This finding supports previous evidence of an
association between the ubiquitin-proteasome system and
antidepressant response63.
For the gene-based association study, there were no

genome-wide significant genes; however, we observed
whole-gene associations which echoed single-SNP results.
PIEZO1 showed a nominal association, as well as RNF217.
Other top gene associations included PDE9A for

Fig. 3 Secondary analysis results for top-associated SNPs, rs6916777 (chr6:25251374:C:A) and rs12597726 (chr16: 88820301:G:A).
A, B Mixed-effects analyses for rs6916777 and rs12597726, respectively. Values at each time-point denote mean per genotype, and error bars denote
standard error of the mean. C, D Kaplan–Meier survival plots for rs6916777 and rs12597726, respectively. Risk tables denote the number of non-
remitted or censored individuals at each time-point. Significance levels. ***p < 0.001, **p < 0.01, *p < 0.05, †p < 0.1.
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remission, as well as FPR3 and GRIK4 for symptom
improvement. GRIK4 encodes for the Kainate-type Iono-
tropic Glutamatergic Receptor Subunit 4, which has been
associated with citalopram response in the STAR*D
cohort64. Similarly, variants in the gene encoding for the
Phosphodiesterase 9 A enzyme (PDE9A) have been asso-
ciated with MDD risk but not response across various
antidepressants, including fluoxetine, desipramine, and
citalopram65,66. GRIK4 and PDE9A contribute to critical
pathways involved in depression and antidepressant
response, including glutamatergic signalling, neuroplasti-
city and neurogenesis67. Unlike GRIK4 and PDE9A, the
function of FPR3 remains unclear but shares 83% of its
sequence with FPR2, which has been implicated in neu-
roinflammation via microglial activation68,69. Nonetheless,
among these proteins, PDE9A is a druggable-target, which
is currently in clinical trials for Alzheimer’s disease, while
FPRs have been postulated as possible targets for miti-
gating ischemia-induced inflammation70,71.
In addition, we explored the polygenic overlaps between

venlafaxine response in late-life, all-age depression, Alz-
heimer’s disease and stroke. While we observed several
nominal associations, only the polygenic overlap between
venlafaxine non-response and increased risk for

cardioembolic and large vessel stroke remained sig-
nificant. Although it is difficult to disentangle the genetic
effects critical to confluent pathways involved in depres-
sion, neurodegeneration and cerebrovascular disease,
further investigation is required3.
The main limitation of this investigation is the relatively

small sample size. Given that we selected the dichot-
omized variable- remission as our outcome, the analysis
suffered a loss of power, which may have led to a lack of
significantly associated variants. Therefore, we attempted
to validate any putative associations in three external
cohorts of adults treated with antidepressants. However,
these cohorts were heterogeneous in age and venlafaxine
treatment, which did not allow for replication. Notably, the
validation cohorts included treatment with SSRIs that may
have different pharmacogenetic contributions than venla-
faxine, a dual serotonin-norepinephrine reuptake inhi-
bitor. While we also observed a significant predictive effect
of polygenic risk scores for cardioembolic and large vessel
stroke, overall, the improvement in performance com-
pared to a base clinical model was minimal. However, due
to the polygenicity of a complex outcome such as anti-
depressant response, variants likely contribute small
effects and the addition of other risk scores, for example,

Fig. 4 GTEx tissue and geneset enrichment for nominally associated genes with remission status (n= 878) or percentage symptom
improvement (n= 889). A GTEx tissue (n= 54) enrichment. B Enrichment across Gene Ontology and curated genesets. For genesets, only the top
15 sets are shown across both remission status and percentage symptom improvement for brevity. No significant enrichment was observed for tissue
or genesets. *Note. Pathways also among the top 15 associated for the second phenotype (either remission status or improvement, as indicated) but
at a lower p-value.
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for other psychiatric, neurodegenerative and cardiovas-
cular outcomes, may improve performance.
In the context of existing literature, our results under-

line the importance of neuroinflammation, as well as
vascular health and its consideration in venlafaxine
treatment in older adults. Among the genes identified,
such as PDE9A, there is a potential to inform druggable
targets and further exploration of drug repurposing and
treatment development to address neuroinflammatory
and vascular pathways. However, further investigations
will require more extensive and pooled samples to
increase the power to detect non-spurious associations
with small effects. Overall, these findings elucidate con-
tributions to venlafaxine treatment response, particularly

in older adults who may have unique pharmacokinetic
and pharmacodynamic characteristics.
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