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Abstract

Childhood adversity is related to an increased risk for psychopathology in adulthood. Altered regulation of stress
response systems, as well as the changes in stress-immune interplay have been suggested as potential mechanisms
underlying these long-term effects. We have previously shown altered transcriptional responses to acute psychosocial
stress in adults reporting the experience of childhood adversity. Here, we extend these analyses using a network
approach. We performed a co-expression network analysis of genome-wide mRNA data derived from isolated
monocytes, sampled 3 h after stress exposure from healthy adults, who experienced childhood adversity and a
matched control group without adverse childhood experiences. Thirteen co-expression modules were identified, of
which four modules were enriched for genes related to immune system function. Gene set enrichment analysis
showed differential module activity between the early adversity and control group. In line with previous findings
reporting a pro-inflammatory bias following childhood adversity, one module included genes associated with pro-
inflammatory function (hub genes: IL6, TM4SF1, ADAMTS4, CYR61, CCDC3), more strongly expressed in the early
adversity group. Another module downregulated in the early adversity group was related to platelet activation and
wound healing (hub genes: GP9, CMTM5, TUBB1, GNG11, PF4), and resembled a co-expression module previously found
over-expressed in post-traumatic stress disorder resilient soldiers. These discovery analysis results provide a system
wide and more holistic understanding of gene expression programs associated with childhood adversity. Furthermore,

identified hub genes can be used in directed hypothesis testing in future studies.

Introduction

The experience of adversity and traumatic events in
early life are consistently identified as risk factors for the
development of a range of mental and physical dis-
orders'™, Over the past years, research aimed at unco-
vering the mechanisms linking early adversity, and disease
risk has intensified and is considered a major health care
priority. In particular, regulation of the stress response,
the immune response, and the interplay between the two
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systems have come into focus: a number of studies have
shown that inflammatory responses and the functioning
of the hypothalamic-pituitary-adrenal (HPA) axis con-
stitute pathways through which childhood adversity may
lead to disorder manifestation®”.

Adverse experiences in early life seem to shift the innate
immune response toward a more pro-inflammatory state,
and this pro-inflammatory bias continues to be observed
into adulthood'®™"?. Furthermore, altered adrenocortico-
tropic hormone (ACTH) and/or cortisol reactivity has
been observed in children and adults with adverse child-
hood experiences in prospective’®™* and retrospective
studies'®™"®, These long-term effects speak toward a
biological embedding of experience, and it has been
suggested that early adversity leads to a programming of
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molecular systems and related gene expression profiles,
resulting in an altered stress response and in differences in
the sensitivity of immune genes toward stress signals®*~>?,

There is evidence of extensive bidirectional interplay
between mediators of the stress response and immune
system effectors**~%°, and growing evidence of social
regulation of gene expression programs in innate immune
cells””. Activation of the HPA axis inhibits both antiviral
and pro-inflammatory gene modules, and activation of the
sympathetic nervous system only inhibits antiviral
responses and stimulates pro-inflammatory genes®®. It
was shown that diverse forms of social adversity, includ-
ing low socioeconomic status, chronic stress, and post-
traumatic stress disorder (PTSD), evoke a conserved
transcriptional response characterized by decreased
expression of antiviral response genes and increased
expression of pro-inflammatory genes®’. From an evolu-
tionary perspective, such an anticipation of challenging
situations manifested in shifts to the basal leukocyte
transcriptome could constitute a survival advantage in
hostile environments, by preparing an organism to
respond to injury in fight-or-flight situations***°. On the
other hand, this response pattern can become maladaptive
in modern times, where daily stressors are mainly of
psychosocial nature and occur without injury.

Taken together, exposure to different types of unfa-
vorable life circumstances is associated with distinct
transcriptional profiles in leukocytes, with monocytes as
the most transcriptionally sensitive subtype for social
conditions and traumatic experiences**~>', However, the
majority of studies focused on exposure to current
adversity, and investigated basal gene expression profiles.
Given the regulatory function of stress system activation
on immune gene expression, and given increased levels of
pro-inflammatory cytokines in adults reporting childhood
adversity'>?%, we previously investigated whether a pro-
inflammatory bias might be observed in response to acute
stress exposure on the transcriptional level. Examination
of genome-wide mRNA expression changes in monocytes
following acute stress exposure in healthy adults with and
without early trauma®® revealed several stress-responsive
transcripts, as well as transcripts with differential
expression between the groups. Furthermore, transcrip-
tion factor binding motif analysis showed an increased
activity of pro-inflammatory upstream signaling in the
early adversity group. Results of this provided first evi-
dence for persistent alterations in transcriptional control
of stress-responsive immune cells associated with the
experience of childhood adversity.

Here, we expand upon these findings through a
hypothesis-free discovery analysis of empirical differences
in gene co-expression patterns. The organization of gene
expression data into networks has been argued to provide
a robust and reproducible structure, and may have
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significant functional implications that cannot be derived
from standard differential expression analysis at the level
of individual genes***”. In the past, it was shown that co-
expressed genes are often involved in the same or related
biological pathways***”, and can be informative of the
biological state of an individual®®. As a system-based
approach, co-expression analysis places each gene in the
context of its molecular system and takes into account
interactions between the components®*~*'. At the same
time, it allows to integrate multiple levels of data, there-
with reduces dimensionality and the multiple testing
problem.

The aim of this analysis was to identify stress-related
molecular signatures of early adversity, using an analytic
approach that is promising to complement single gene
analyses with additional insights. The focus was set on
expression differences after acute stress exposure. By
constructing an unsupervised gene co-expression network
from samples taken from adults with and without child-
hood adversity, we expected to (i) identify differences in
the activity of various co-expression modules; and (ii) to
identify broader functional signatures related to pro-
inflammatory signaling compared to the previous single
gene analysis.

Materials and methods
Sample

Data used in this paper were generated in a project
investigating the long-term consequences of childhood
adversity on hormonal and genomic responses to stress>>
and emotion recognition abilities*>. For the current pub-
lication, gene expression data were reanalyzed with regard
to gene co-expression. For details on study procedure,
sample characteristics, and additionally collected data, see
Schwaiger et al>**?, In brief, the study included 60
healthy adults (40 males and 20 females). Our sample was
adequately powered for the gene co-expression analysis,
as a minimum of 15-20 samples are recommended for
weighted gene co-expression networks*®. All participants
were free of mental disorders for the past 12 months,
screened for with the German version of the Structured
Clinical Interview for DSM Disorders (SKID I & II)*%.
Further exclusion criteria were the intake of psychoactive
or cortisol-containing medication, and the use of oral
contraceptives for females. The German 28-item version
of the Childhood Trauma Questionnaire (CTQ)*>*® was
used to assess the presence of childhood trauma (sexual,
physical and emotional abuse, and physical and emotional
neglect). CTQ cutoff scores for moderate to severe
exposure to traumatic events were used to classify sub-
jects as positive for a history of childhood adversity (N =
30, mean age 52.57 years with SD =5.52 years). The
group assignment was validated in a structured interview
with the Early Trauma Inventory*”*®, The participants in
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the control group scored below cutoff on all CTQ sub-
scales (N =30, mean age 51.47 years with SD =4.64
years), and were matched to the early adversity group for
gender, age, current, and childhood socio-economic status
(SES). The study was approved by the Ethics Committee
of the Albert-Ludwigs-University Freiburg (183/11). All
participants gave informed consent and were paid 100
Euro for participation.

Experimental procedures

Participants were exposed to the Trier Social Stress Test
(TSST)*, a standardized 15-min laboratory stress proto-
col. TSST panel members were blinded to group status.
For RNA extraction, 10 ml ethylenediaminetetraacetic
acid blood samples were collected at 45 min before, and
45 min and 180 min after the TSST. Inmunomagnetic cell
separation (MACS; Miltenyi Biotec, Germany) was used
for isolation of CD14" monocytes. Purity of the isolated
monocyte population was checked with fluorescence-
activated cell sorting analyses and showed high purity
values (mean =92.92%, SE =0.59). Isolated cells were
resuspended in lysis buffer RA1, shock-frozen in liquid
nitrogen, and stored at —80°C. RNA was extracted
(Macherey-Nagel, Germany) and RNA integrity number
values ranged from 8.0 to 10.0 (mean=9.7, SE =0.03),
which were assessed with the Agilent 2100 bioanalyzer
(Agilent Technologies). For profiling on Agilent Whole
Human Genome Oligo Microarrays 8 x 60 K V2, 100 ng of
RNA was used. To avoid batch effects, all samples were
randomized within and between arrays. The assays were
performed with the manufacturer’s standard protocol at
the Molecular Service Center (Miltenyi Biotech).

Data preprocessing

Quantile-normalized gene expression values were log2-
transformed with the R (version 3.1.1) package limma®®.
From a total of 50,683 transcripts, multiple transcripts
corresponding to one gene were identified. Mean
expression values over all samples included in the net-
work construction were calculated for every transcript.
Only the transcript with highest mean expression was
kept for every gene associated with multiple transcripts,
leading to 32,080 unique genes which were used in the
further analyses.

Gene co-expression network analysis

For the construction of a weighted and signed co-
expression network, we used the R (version 3.5.1) pack-
age CEMiTool®" (version 1.9.3). This offers an imple-
mented unsupervised gene filtering method and more
automated parameter selection than the widely used
package WGCNA™?, aiming to enhance the reproduci-
bility of results. To reduce noise, the filtering procedure
starts with removing the 25% genes with lowest mean
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expression. Then, the variance of genes is modeled as an
inverse gamma distribution, and genes are filtered based
on a p-value. Here, we chose the standard p-value of 0.1,
as this was shown to be a good compromise between
noise reduction and information loss®!. After filtering,
3612 genes remained in the analysis. As the mean-
variance dependency was low in the data (R*> =.061), we
applied no variance stabilization transformation. To
construct the network, Pearson correlation was calcu-
lated as a similarity measure for all pair-wise genes. To
preserve the sign of correlation, the absolute value of
correlation was transformed, and scaled into the [0,1]
interval®®>. Then, soft thresholding of the correlation
matrix was used to determine the connection strengths
and preserve the continuous nature of the gene co-
expression information. The similarity values were raised
to a power of 3 (soft power adjacency function), leading
to the weighted adjacency matrix®%. In CEMiTool, the 8
parameter is selected by an algorithm, which is based on
the concept of Cauchy sequences. For adherence to the
scale-free topology, only B values with R*>0.80 are
considered, while lower f§ values are preferred due to
considerations of network connectivity. The default
parameters in CEMiTool were contained to preserve the
advantages of more reliable and consistent results with
the automatic selection of 5. This led to a power of =5
(scale-free R*=.834). From the adjacency matrix, the
topological overlap measure (TOM) can be calculated,
representing shared neighborhood between genes”.
Afterward, subtracting the TOM from 1 leads to a
topology dissimilarity measure, which can be used as
input for the clustering procedure. Clusters of highly co-
expressed genes (modules) were detected by a dynamic
algorithm for selecting branches of the hierarchical
clustering dendrogram implemented in the Dynamic
Tree Cut package®®. The minimum number of genes per
submodule was set to the default of 30 genes and the
module merging correlation threshold for eigengene
similarity was 0.8. To determine biological functions
associated with the modules, the C5 Gene Ontology
(GO) gene set list from MSigDB>* was used to perform
an over representation analysis via the clusterProfiler R
package®® in CEMiTool. Top gene sets enriched on each
co-expression module were detected by the hypergeo-
metric test with p = 0.05 and Benjamini—Hochberg cor-
rection for multiple testing. To visualize interactions
between the genes in each co-expression module, the
combined human interaction data from GeneMania®’
was included in the analysis. In order to assess differ-
ences in module activity between the early adversity and
control group, a gene set enrichment analysis with the
fgsea R package®® was performed with the default values
in CEMiTool. Here, genes from co-expression modules
are used as gene sets and the z-score normalized
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expression of the samples within each group are ranked
in the analysis. The enrichment score (ES) is normalized
by taking into account the size of each gene set, leading
to a normalized ES (NES). The proportion of false posi-
tives is controlled by calculating the false discovery rate
corresponding to each NES and an adjustment of the
respective p-value. Ultimately, the five most highly con-
nected genes (Hub genes)®® were determined for each
module. R Code is available on request.

Results

We constructed a weighted gene co-expression network
for peripheral blood monocyte RNA samples taken from
healthy adults, with and without adverse childhood
experiences 180 min after an acute psychosocial stress
exposure. The network comprised 13 modules, with sizes
ranging from 99 to 772 genes (Supplementary Table 1).
No genes were assigned as not correlated.

Opverall, seven modules were found to have at least one
significantly enriched pathway in the over representation
analysis (Fig. 1; see Supplementary Table 2 for compre-
hensive statistics).

Following our hypothesis of altered stress-immune
interplay, modules M1, M2, M8, and M13 are of parti-
cular interest, as they are all related to the immune
system.

For characterization of putative functions of genes
clustering in modules, it can be useful to examine the role
of some of its most central genes. While hub genes in
general are crucial for the network’s structure®®, intra-
modular hub genes are often of clinical importance and
biological relevance®.

Module 13, relatively over-expressed in the early
adversity group, contains transcripts enriched for leu-
kocyte migration, monocyte chemotaxis, and response to
steroid hormones. A central hub gene, also obtained
from the interaction data, is IL6 (Fig. 2). It codes for a
cytokine that is primarily produced at sites of acute and
chronic inflammation, and implicated in the develop-
ment of various autoimmune and chronic inflammatory
diseases®’. Another hub of M13 is CYR61, responsible
for a matricellular protein that was identified to be
important for inflammation and tissue repair in adult-
hood, and related to chronic inflammation®*®>, Three
more genes with high intramodular activity were iden-
tified through interaction analysis, all with known pro-
inflammatory function: EGR3, a classical pro-
inflammatory transcription factor®, CD69, a well-
known T-cell activation marker®, and CCL7, a mono-
cyte chemotaxis chemokine®®.

The largest module, M1, consists of genes that are over-
proportionally related to inflammatory responses. Central
genes of M1 can be seen in the module’s network graph
(Fig. 2). Among the hub genes of M1 are for example
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TNFRSF10C and CXCR2. TNFRSF10C codes for a protein
that is a member of the tumor necrosis factor (TNF)
receptor superfamily and one of several TRAIL (TNF-
related apoptosis-inducing ligand-like) decoy receptors.
CXCR2 codes for the interleukin 8 receptor, fulfills
complex regulatory functions in the innate immune sys-
tem and was defined as a potential target for the ther-
apeutic treatment of inflammatory processe567’68.

Another module, M2, is related to chemokine and
platelet activation. Chemokines are involved in the
migration of leukocytes and are both central for pro-
inflammatory responses and homeostasis of the immune
system®. They can also be activators of platelets, which
are themselves important for hemostasis and host
defense’®. These processes are again reflected in the
module’s central nodes (Fig. 2). Gene GP9 codes for a
membrane glycoprotein on the surface of human plate-
lets, and is both implicated by co-expression and inferred
gene interaction data. The intramodular hub gene
TUBBI is coding for a member of the beta tubulin pro-
tein family, and gene PF4 encodes a member of the CXC
chemokine family that was found to initiate a signal
transduction cascade of acute and delayed functions,
including phagocytosis, respiratory burst, survival, and
the secretion of cytokines’.

Module 8 contains transcripts related to lymphocyte
activation. A central hub gene of M8 is CDI9 (Fig. 2),
which is coding for a cell surface molecule assembling the
antigen receptor of B lymphocytes, decreasing the
threshold for antigen receptor-dependent stimulation.
The intramodular hub gene MS4AI also encodes a B-
lymphocyte surface molecule playing a role in the devel-
opment of B Cells.

All identified modules showed differential activity
between the early adversity and control group (Fig. 3; see
Supplementary Table 3 for a complete listing of NES and
adjusted p-values). While the activity of modules M1, M2,
and M8 is relatively lower in the early adversity group,
genes of MI13 are relatively upregulated in the early
adversity group.

In order to get an impression of expression patterns
over time for these modules, we illustrated the expression
of the top five intramodular hub genes across the three
time points (45 min pre, and 45 and 180 min post-stress;
Fig. 4). It can be seen that the strength, but not the
direction of group differences in expression levels changes
over time for modules M1, M8, and M13. On the other
hand, hub genes of M2 shift also in their direction of
group differences between the time points. Overall, these
results indicate altered interactions between the stress and
immune system in adults with a history of childhood
adversity, reflected in differential activity patterns of four
co-expression modules enriched for genes with immune-
related functions after acute stress exposure.
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Discussion

In the present study, we aimed to identify stress-related
transcriptional signatures of early life adversity on a sys-
tem level. By constructing a gene co-expression network
from data collected after acute psychosocial stress expo-
sure, we identified several modules consisting of genes
whose coordinated functions are potentially crucial for an
adaptive stress response. We found four modules to be
enriched for genes involved in functions of the immune
system, which is consistent with evidence for a close
relationship between acute psychological stress and reg-
ulatory immune system activities’. Additionally, these
modules showed different expression patterns between

adults with and without childhood adversity. This may be
indicative of dysregulations in the stress-immune axis,
assumed to be a consequence of early life stress’*”>, In
general, a key question in the study of how stress and
other types of adversities increase disease risk concerns
the mechanisms of how psychosocial processes are
transduced to the molecular level. The investigation of
gene expression signatures has emerged as a promising
way for capturing molecular manifestations of both acute
and chronic stress. For instance, a series of investigations
has demonstrated that various socio-environmental risk
factors, including poverty, bereavement, and chronic
stress, were associated with specific gene expression
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patterns, characterized by upregulated transcripts
involved in inflammation, and downregulated transcripts
involved in antiviral responses (termed conserved tran-
scriptional response to adversity; CTRA). In the face of
stress exposure, this transcriptional program is thought to
promote chronic low-grade inflammation, and thus pro-
vides a mechanistic link between stress and the develop-
ment of inflammation-related diseases’*. Whereas studies
investigating gene expression pattern using the CTRA
framework focus on specific gene sets and identification
of upstream transcription factors, we used gene co-
expression analysis, which focusses on interactions
between genes placed in the context of molecular systems.
Results presented here provide converging evidence for a
programming of immune gene responses to stress fol-
lowing early adversity, as we found two modules involved
in inflammation, and one module involved in wound
healing with differential activity between groups.

The first module of note is a monocyte activation
module (M13) that contains pro-inflammatory genes with
IL6 as a hub gene, and which is more active in the early

adversity group. Notably, IL6 was also found to be sig-
nificantly upregulated from pre-stress to 180 min post-
stress in our previous analysis with standard differential
gene expression analysis, but no interaction was found
with the group assignment®. This illustrates how con-
sidering not only a single gene, but also interactions
among genes can complement our insights into molecular
processes associated with a complex phenotype. In gen-
eral, this result is in accordance with previous studies
showing inflammatory activities after acute psychosocial
stress and exaggerated inflammation in individuals with
early life stress'®>”>, While an increase in peripheral
inflammation after acute stress can function as an
anticipatory protection against injury and infection, stable
differences toward higher inflammatory responses to daily
stressors can become maladaptive after repeated or
chronic psychological stress, especially if not carefully
regulated and terminated’®. In turn, a state of low-grade
chronic inflammation increases the vulnerability for a
range of mental and physical disorders’””®. There is
growing evidence for a causal link between inflammatory
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markers and depression, emphasizing the potential use of
anti-inflammatory drugs in prevention and treatment of
this disorder’™®", In addition, Tawakol et al.** found in a
prospective study that the association between stress-
associated amygdalar activity and cardiovascular disease
was mediated through arterial inflammation, and Khan-
daker et al.® report that the comorbidity between cor-
onary heart disease and depression arises from shared
environmental factors. Together, these findings support
the hypothesis that stress-associated inflammatory activ-
ities constitute a shared etiologic factor for distinct mul-
tifactorial diseases. The differences in module 13 activity
observed here thus support the overall picture of a pro-
inflammatory bias in individuals reporting early life
adversity, and provide further clues as to why early psy-
chosocial stress is not only related to increased risk for
mental health problems, but also for inflammation-related
cardiovascular and metabolic diseases.

A further noteworthy module is M2, enriched for genes
associated with chemokine and platelet activation,
important for homeostasis of the immune system and
wound healing processes. Whereas this module can be
considered a platelet activation module, we found all hub
genes upregulated 45 min post-stress exposure in
monocytes®’, with relatively higher expression increases
in the early adversity group. Gene set enrichment analysis
found lower module activity 180 min post-stress in the
early adversity group, which is not reflected in the
expression of the hub genes at this time point (Fig. 4).
However, gene set enrichment analysis takes into account
all genes in the network, and it is presumably other
members of the network that account for the overall
reduction in module activity at that time point. Addi-
tional time points and further dissection of this module
into distinct subcomponents might clarify whether there
are differences in the temporal dynamics of this gene
expression program associated with early adversity, with
relatively earlier and stronger activity, and subsequent
relative downregulation. Furthermore, it is unclear whe-
ther the observed module activity reflects gene expres-
sion signatures in platelets (which have little intrinsic
transcriptional ability), or whether genes of this co-
expression module also have distinct or complementary
functions within monocytes (e.g., representing a mono-
cyte transcriptional response to platelet activation).
Activation of coagulation after acute psychosocial stress
can be found in healthy subjects and is thought of as an
adaptive physiological response, but a hypercoagulable
state might be an indicator of imbalances to this hemo-
static system and linked to disease®**. Of note, a co-
expression module involved in hemostasis and platelet
activation which resembles our module was identified to
be over-expressed in PTSD resilient military personnel
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after deployment®. Direct comparison of the two studies
is, however, difficult, as Breen et al. found differences in
unstimulated gene expression between soldiers with and
without PTSD after recent trauma exposure, and we see
the strongest differences following acute stress exposure
in healthy individuals, reporting the experience of
childhood adversity. The evidence of differences in
module 2 activity does suggest, however, that regulation
of wound healing processes might potentially be affected
by early adversity.

Module 1 is composed of genes annotated as involved in
inflammatory responses and bone morphogenesis, and
relatively downregulated in the early adversity group. At
first glance, this seems to be somewhat contradictory to
studies reporting elevated pro-inflammatory tendencies
following childhood adversity'®'!. Here, the temporal
dynamics of the five hub genes shows that these tran-
scripts are downregulated from pre- to 180 min post-
stress in both groups, so that this module might represent
a subset of genes related to inflammation negatively
regulated by stress. It also is possible that the down-
regulation observed here reflects other aspects of these
genes’ pleiotropic function rather than their specific role
in inflammation.

Module 8 contains CD19 as a hub gene, a definitive
marker of B lymphocytes, so it can be considered a B cell
activation module. Although purity of our isolated cell
pool was very high, with 93% monocytes®, further ana-
lyses of cellular heterogeneity based on DNA methylation
profiles showed that B lymphocytes were present, at
levels of 2-5% (Supplemental Fig. 1). It remains unclear

whether module 8 reflects a B-cell-specific co-expression
module resulting from low-level B cell contamination or
whether the module contains transcripts that are also
expressed to some extent in monocytes. In general,
caution must be exercised in interpreting co-expressed
gene sets based on annotated biological functions
through indirect bioinformatic inference, e.g., over
representation analysis.

Further limitations need mention. We decided to
construct the co-expression network from samples col-
lected 3 h after the psychosocial stress exposure. This is a
time point where transcriptional effects of the TSST can
be expected, and we avoided dependencies in the network
structure that might have been induced by including
several probes from the same individual. Nevertheless,
other sampling times and a longer follow-up after the
stress exposure could have been also informative.
Because the present analysis did not focus on change
from baseline, and derived co-expression modules from a
single post-stress time point, it cannot be determined
which effects observed here represent stable individual
differences that would also appear under basal conditions
and which represent effects that occur only in response to
stress. It is also not clear if the structure and composition
of the co-expression modules identified here is stable or
would be different under basal conditions (or in response
to other stimuli or stressors). In addition, childhood
adversity was assessed with a retrospective measure, and
a more sensitive classification of type, time point and
duration of childhood trauma might reveal further dif-
ferences. This study isolated monocytes for analysis, and
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any effects of early adversity that manifest through other
cell types (e.g., T cells, B cells, NK cells, etc.), or changes
in the relative prevalence of monocytes compared to
these other cell types, are missed in this analysis. Also,
the sample size was limited due to the experimental
procedure, and while the groups were matched for gen-
der, age, current, and childhood SES, there remain some
potential sources of variance not accounted for, like
minor hidden infections, behavioral differences, possible
differences in substance use, eating behavior (and related
BMI), and other health behaviors. Linked to this, it can-
not be ruled out that some of the group differences may
have been driven by a slight imbalance of a small number
of individuals with exceptionally high gene expression
values. Lastly, there was an uneven sex distribution in our
sample, with twice as many females compared to men
taking part in the study. Given the specific statistical
analysis employed, the present study was not able to
address whether sex differences might exist in the mag-
nitude of the reported effects, or whether the adversity-
related differences might be confounded by the uneven
sex distribution. These questions represent important
topics for future research.

In summary, the results of our study reveal groups of
genes that are co-expressed after an acute psychosocial
stress exposure, and which probably constitute functional
molecular systems related to the acute stress response.
We highlight four modules involved in immune system-
related functions, possibly reflecting the interplay
between the stress and immune system on a transcrip-
tional level. Importantly, these modules also show dif-
ferent activity between our groups. Therefore, they
constitute potential targets to better understand the
effects of adverse childhood experiences on stress-related
gene expression programs. Furthermore, the network
approach provides a more integral view on the down-
stream pathways of stress, and possible dysregulations in
this system. These insights are a step toward a more
comprehensive understanding of how childhood adver-
sity increases the risk for a range of somatic and psy-
chiatric disorders.

GEO accession

The data discussed in this publication have been
deposited in NCBI's Gene Expression Omnibus and are
accessible through GEO Series accession number
GSE70603 (http:// www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE70603).
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