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Fear-induced brain activations distinguish anxious
and trauma-exposed brains
Zhenfu Wen1, Marie-France Marin2, Jennifer Urbano Blackford 3,4, Zhe Sage Chen 1,5,6 and Mohammed R. Milad 1

Abstract
Translational models of fear conditioning and extinction have elucidated a core neural network involved in the
learning, consolidation, and expression of conditioned fear and its extinction. Anxious or trauma-exposed brains are
characterized by dysregulated neural activations within regions of this fear network. In this study, we examined how
the functional MRI activations of 10 brain regions commonly activated during fear conditioning and extinction might
distinguish anxious or trauma-exposed brains from controls. To achieve this, activations during four phases of a fear
conditioning and extinction paradigm in 304 participants with or without a psychiatric diagnosis were studied. By
training convolutional neural networks (CNNs) using task-specific brain activations, we reliably distinguished the
anxious and trauma-exposed brains from controls. The performance of models decreased significantly when we
trained our CNN using activations from task-irrelevant brain regions or from a brain network that is irrelevant to fear.
Our results suggest that neuroimaging data analytics of task-induced brain activations within the fear network might
provide novel prospects for development of brain-based psychiatric diagnosis.

Introduction
Nearly all medical fields rely on biological metrics that

help clinicians with accurate diagnoses and monitoring of
treatment outcomes. Psychiatry is one exception where
both diagnosis and treatment outcome are assessed based
on the clinician’s observations and patient reporting. Can
we develop neurobiologically based approaches to assist
with, or improve, efficacy and accuracy of diagnosis and
treatment in psychiatry? One way to begin to answer this
question is to apply machine learning approaches to study
neural pattern of activations within a well-established task
and well-studied psychopathologies. We have learned that
the amygdala, hippocampus, regions within the medial
prefrontal cortex, and the insular cortex are key

components of a network that mediates fear, arousal,
threat-detection, and regulating responses to fearful and
conditioned stimuli1–6. Henceforth in this article we refer
to the aggregate of these brain regions as the “fear net-
work”. Dysfunction of this fear network has been observed
in populations with post-traumatic stress disorder
(PTSD)7–11 and anxiety disorders12–16 using fear con-
ditioning and extinction paradigms. These data have
informed us about the mechanisms involved in the
acquisition and extinction of conditioned fear in healthy
controls and the relevance of fear network abnormalities
to the pathophysiology of anxiety and PTSD. This
knowledge base makes the study of fear-induced activa-
tions within PTSD and anxiety disorders one ideal starting
point to exploring brain-based approaches to classify
psychopathology.
Machine learning approaches have recently generated

growing interest in medicine and psychiatry, with appli-
cations in data-driven biomarker diagnoses17–19. Some
machine learning-empowered studies have shown the
possibility to diagnose anxiety-related disorders using
functional neuroimaging data20–23. However, most of
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these preliminary studies relied on a relatively small
sample size (N < 100) as reviewed in a recent study24,
which may suffer from overfitting problems25, and
therefore compromise the reliability and generalizability
of their predictive power26,27. Furthermore, most existing
machine learning-based diagnosis studies used brain
activation features derived from resting-state functional
magnetic resonance imaging (rs-fMRI). Previous studies
have suggested that many factors, such as recent experi-
ences and mind wandering, may alter rs-fMRI mea-
sures28,29. Therefore, patterns derived from rs-fMRI likely
reflect influences from arousal, attention, and conscious
thought. In contrast, tasks may require participants to be
more engaged, and offer an opportunity to manipulate or
induce brain state into relevant circuitry30,31. Therefore,
task fMRI may be better in capturing individual differ-
ences in cognition and behavior that might be of relevance
to the psychiatric disorders being studied.
In the present study, we used machine learning algo-

rithms and functional activations across 10 brain regions
within the fear network and across all training phases in
our fear conditioning and extinction paradigm and across
a heterogeneous patient population. We asked two specific
questions: (1) can we distinguish an anxious or trauma-
exposed brain from healthy control’s brain, and (2) how
essential the activations of the nodes within the fear net-
work (task-specific activations) are in this discrimination?
With a relatively large dataset, we demonstrate that a
neural network-based approach can distinguish anxious or
trauma-exposed brains from matched controls. We further

conducted several specificity analyses to demonstrate that
the fear network had significantly stronger predictive
power compared to other brain regions. Classification
analyses to distinguish subtypes of anxiety or PTSD were
not conducted due to small sample size. In summary, we
have demonstrated that fear-induced neuroimaging data
analytics can reliably distinguish anxious and trauma-
exposed individuals from controls.

Materials and methods
Participants
This cross-sectional study of 304 adults (111 men, 193

women) aged 18–65 years included 92 anxiety patients, 74
trauma-exposed individuals (35 of which with PTSD
diagnosis), and 138 matched controls (Fig. 1A). Among
the anxiety group, there were 24 patients diagnosed with
generalized anxiety disorder (GAD), 17 panic disorder
(PD) patients, 31 social anxiety disorder (SAD) patients,
and 20 specific phobia (SP) patients. Data from this
sample have been published elsewhere focusing on the
neural mechanisms of fear conditioning and extinction
within PTSD and anxiety disorders8,12,32. Specific and
detailed criteria pertaining to each patient population has
been detailed in these previous publications. For review of
exclusion criteria and a description of the study sample,
see Methods section in the Supplemental Material.
Demographic characteristics of this sample was listed in
Table S1. This study was approved by the institutional
review board of Partners HealthCare. Written informed
consent was obtained from all participants.

Fig. 1 Overview of data, experimental paradigm, and neural network classifier. A Summary of participants in each category. HC healthy control,
HT trauma-exposed healthy, PTSD post-traumatic stress disorder, SP specific phobia, SAD social anxiety disorder, GAD generalized anxiety disorder,
PD panic disorder. B The fear conditioning and extinction paradigm consisting of four phases: fear conditioning (‘Cond’), unconditioned shock
(‘Shock’), extinction learning (‘Ext’), and extinction memory recall (‘Recall’). C Ten target brain regions within the fear network. D Architecture of a
three-layer convolutional neural network.

Wen et al. Translational Psychiatry           (2021) 11:46 Page 2 of 10



Experimental procedure
All subjects underwent the same two-day fear con-

ditioning and extinction paradigm in a fMRI scanner (Fig.
1B) which is described in details in our prior publica-
tions8,9,33–35. On day 1, fear conditioning occurred, during
which 2 cues were paired with a shock (CS+, 62.5%
reinforced) and 1 cue was not paired with a shock (CS−).
This was followed by extinction learning, where 1 CS+
and the CS- were presented without shock. On day 2,
extinction memory recall was tested with all 3 cues,
including the extinguished CS+ (CS+ E), the unextin-
guished CS+ (CS+U), and the CS− (details are provided
in the Methods section in the Supplemental material).

Data processing
Neuroimaging data were preprocessed as previously

described9,12,32,36. We extracted brain activation features
across four phases: fear conditioning (‘Cond’), uncondi-
tioned response to the shock (‘Shock’), extinction learning
(‘Ext’), and extinction recall (‘Recall’) from first-level
contrast images. The contrasts used to define activation of
each phase were: onsets of CS+ vs. CS− for ‘Cond’ (all
trials of each CS), offsets of reinforced CS+ vs. unrein-
forced CS+ for ‘Shock’ (all trials of each CS), onsets of
CS+ vs. CS− for ‘Ext’ (the last 4 trials of each CS), and
onsets of CS+ E vs. CS+U for ‘Recall’ (the first 4 trials of
each CS). Based on previous studies, we focused our
analysis on mean activations from 10 predefined regions
of interest (ROIs) which are deemed the key components
of fear network (Fig. 1C): centromedial amygdala
(cmAMY), basolateral amygdala (blAMY), bilateral ante-
rior hippocampus (aHPC), bilateral posterior hippo-
campus (pHPC), subgenual anterior cingulate cortex
(sgACC), ventromedial prefrontal cortex (vmPFC), dorsal
anterior cingulate cortex (dACC), dorsal anterior insula
(dAI), ventral anterior insula (vAI), and posterior insula
(PI). The way in which each of these brain regions is
defined is described in the Supplemental material. And
the distributions of these brain activations were shown in
Figure S1. We divided the amygdala and the hippocampus
into sub-regions because both animal and human neu-
roimaging studies have suggested that blAMY and
cmAMY might have distinct functional roles in fear
processing: the blAMY is more related to fear-related
associative learning, whereas cmAMY is more related to
fear expression3,37,38. Similarly, evidence suggests a dif-
ferent functionality of anterior vs. posterior areas of the
hippocampus39–41. We focused on the fear network in our
study since these regions have been implicated in fear
processing, and prior studies have consistently reported
that abnormal activations of these regions are related to
the pathophysiology of anxiety and PTSD1,3,10,42,43.
Although there may be more regions involved in fear
processing, we did not try to include all of them, because a

large number of features may lead to the overfitting
problem in machine learning25, especially when the
sample size is not large44.

Machine learning analyses
We applied machine-learning classifiers to discriminate

anxious brains from non-anxious brains, or trauma-
exposed brains from controls. We constructed a con-
volutional neural network (CNN) for the classification
(Fig. 1D). The input of the CNN is the fear-induced fMRI
activations from the 10 ROIs across 4 phases. The output
of the CNN is the prediction score ranging from 0 to 1,
which is the probability that the subject belongs to the
anxious (or trauma) group25. We assessed the classifier
generalizability using a 5-fold stratified cross-validation
(repeated for 100 times to increase stability), reported the
area under receiver operating characteristic curve
(AUC)17. We used a non-parametric permutation test to
determine the statistical significance of the classification
results. We assessed the discriminative importance of
features by doing classification with the corresponding
features removed.
We also conducted a cross-subtype classification ana-

lysis. Specifically, we excluded subjects from a specific
type of anxiety disorder (e.g. GAD) and paired them with
a matched number of randomly selected controls as the
testing data and used the remaining data as the
training data.
We conducted three different specificity analyses to

examine the specificity of the fear network in the dis-
crimination. First, we randomly selected ten brain regions
from the whole brain and used their brain activations for
classification. Second, we randomly selected 10 regions
from the somatomotor network for the classification.
Third, we randomly replaced N brain regions from the
fear network with N (ranges from 1 to 9) randomly
selected brain regions outside of fear network.
We compared the CNN with several classical classifiers,

including support vector machine with linear kernel
(SVM), SVM with Gaussian radial basis function (RBF)
kernel (SVM-rbf), Gaussian process classifier with RBF
kernel (GP), random forest (RF), and logistic regression
with L2 regularization (LR). We also investigated the
impact of sample size on the classification (Methods of
the Supplemental material).

Results
Discriminating anxious from non-anxious brains
The CNN revealed a mean AUC of 0.84 ± 0.01, which

was significantly higher than the chance level (0.49 ± 0.05,
p < 0.001, Fig. 2A). Based on the CNN’s prediction score,
we classified subjects into anxious or non-anxious brains,
with 0.75 ± 0.03 sensitivity and 0.77 ± 0.02 specificity
(Fig. 2B). Classification performance was similar across
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both males and females (odds ratio= 0.61, p= 0.17) in
classification performance. In the cross-subtype classifi-
cation analysis, the derived mean AUCs were similar
across four anxiety disorder subtypes (leave PD: 0.80 ±
0.04, leave GAD: 0.85 ± 0.03, leave SAD: 0.83 ± 0.03, leave
SP: 0.79 ± 0.02, all p < 0.001, Fig. 2E, F).

Correlations between anxiety measures and prediction
score
To examine the distribution of prediction scores derived

from the CNN output, we split them into four percentiles
(0.0–0.25, 0.25–0.50, 0.50–0.75, 0.75–1.0). The accuracy
in classifying anxious participants increased as prediction
scores increased; for example, classification accuracy
increased from 76.9% for prediction scores located in
0.25–0.75 bins compared to 87.5% for prediction score
located in 0–0.25 or 0.75–1 (Fig. 2C). In the control
group, the prediction score was positively correlated with
the score on the anxiety sensitivity index (ASI; r= 0.41,
95% CI, 0.22–0.57, p < 0.001, Fig. 2D). In the anxious
group, there was no significant association between the
prediction score and the ASI score (r=−0.05, 95% CI,
−0.27 to 0.15, p= 0.65, Fig. 2D), this correlation value
was significantly lower than that for the control group (Δr
= 0.46, 95% CI, 0.18–0.72, p < 0.001).

Feature contribution for the classification
We quantified the contribution of different features in

diagnosing anxious brains by removing a specific type of
features from the data and re-assessed the classification
performance. In the presence of a missing feature, we fed
the CNN with a constant, which was equal to the mean
activation of that feature across all subjects. First,
removing a single feature yield a relatively small AUC
decrease (range from 0 to 0.02 for different feature).
Second, comparing to other phases, removing features
from the fear conditioning phase lead to larger AUC
decrease (decrease: 0.06). Third, comparing to other ROIs,
removing features across four phases from the vmPFC led
to the largest AUC decrease (decreased value: 0.08).
Overall, these feature ranking analyses suggest that the
activations from the fear conditioning phase and the
vmPFC contributed the most in distinguishing anxious
brains from controls (Fig. 2G).

Discriminating trauma-exposed brains from controls
We employed the identical CNN architecture, but

retrained the network parameters to discriminate trauma-
exposed individuals from controls. The mean AUC was
0.82 ± 0.01 (p < 0.001, Fig. 3A). Overall, the prediction
scores from the trauma-exposed individuals were

Fig. 2 Performance for discriminating anxious brains with various types of anxiety disorder. A ROC curves obtained using 5-fold cross-
validation. As a comparison, the ROC curves derived from shuffled data and the chance-level AUC are shown. B Box plots of specificity and sensitivity.
The whiskers extend to the most extreme data points not considered outliers, and the outliers are labeled as ‘♦‘. C Empirical distribution of prediction
scores. D The prediction score positively correlated with the anxiety sensitivity index (ASI) for the control group (r= 0.41, p= 7.4e-5), but at the
chance level for anxious brains (r=−0.05, p= 0.65). E Generalization of cross-subtypes in anxiety disorders (e.g., PD, GAD, SAD, or SP) was assessed
by classification analysis. F Box plots of specificity and sensitivity in cross-subtype classification. G The relative importance of 40 brain activation
features assessed by their contributions. A greater positive coefficient (a.u.) implied more importance.
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predominately found in the higher percentile (Fig. 3C).
The prediction score of the control group was sig-
nificantly correlated with the ASI (r= 0.32, 95% CI,
0.13–0.50, p= 0.002; Fig. 3D). In contrast, there was no
significant association between the prediction score and
the ASI for the trauma-exposed group (r= 0.004, 95% CI,
−0.24 to 0.26, p= 0.97; Fig. 3D). Since the difference
between these two correlations was not significant (Δr=
0.32, 95% CI, −0.01 to 0.61, p= 0.06), these results should
be interpreted with caution due to a smaller sample size
used in model training. For feature importance, brain
activations from the shock phase contributed higher than
other phases to the classification. Removing these features
would decrease the AUC by more than 0.05 (Fig. 3E). For
the ROI features, removing the blAMY or PI caused a
large decrease in AUCs (both larger than 0.05). Impor-
tantly, the derived feature importance map was different
from the one derived earlier (Fig. 3E vs. Fig. 2G), sug-
gesting that trauma and anxiety may differentially mod-
ulate the fear network in a task-specific manner.
Furthermore, we examined whether different psycho-
pathologies can be discriminated from one another using
machine learning. Specifically, we ran a similar classifi-
cation analysis to discriminate anxious from trauma-

exposed brains. The CNN obtained a mean AUC of
0.80 ± 0.02, which was higher than other compared clas-
sifiers (Fig. S2 in the Supplemental material).

Specificity analysis using randomly selected brain regions
We conducted three follow-up specificity analyses to

ask how critical are the activations of the fear network
contributed to the classification. First, when using
activations of 10 randomly selected brain, the obtained
AUCs (mean AUC: 0.67 ± 0.05) were significantly lower
than the AUC derived from the fear network (ΔAUC:
0.17 ± 0.05, p < 0.001; Fig. 4A). Second, the 10 brain
regions from a somatomotor network also led to sig-
nificant degradation of the AUC (mean AUC: 0.60 ±
0.02) when compared to the target fear network (ΔAUC:
0.24 ± 0.03, p < 0.001; Fig. 4A). Third, replacing N (N=
1–9) of 10 fear network brain regions with N other
randomly selected brain regions caused a monotonic
decrease in AUCs with increasing N (Fig. 4B). The
correlation between the prediction score and the ASI for
controls also decreased when we switched from the fear
network to other regions (Fig. S3 in the Supplemental
material). Similar results were obtained when compar-
ing controls with trauma-exposed brains, where AUCs

Fig. 3 Performance for discriminating trauma-exposed brains from controls. A ROC curves derived from 5-fold cross-validation. B Box plots of
specificity and sensitivity. C Empirical distribution of prediction scores. D The prediction score positively correlated with ASI for the control group
(Spearman r= 0.32, p= 0.0024), but at the chance level for trauma-exposed group (Spearman r= 0.004, p= 0.97). E The relative importance of 40
brain activation features assessed by their contributions.
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obtained using randomly selected brain regions (mean
AUC: 0.64 ± 0.04) or activations from the somatomotor
network (mean AUC: 0.62 ± 0.02) are significantly
smaller than the AUC derived from the fear network
(ΔAUC: 0.18 ± 0.05, ΔAUC: 0.21 ± 0.03, both p < 0.001;
Fig. 4C). There was a monotonic decrease in AUC when
an increasing number of fear network nodes was
replaced with activations from randomly selected brain
regions (Fig. 4D). We conducted an exploratory analysis
by incorporating feature selection into the cross-
validation procedure. We selected 10 other fear-related
regions based on a meta-analysis study2, and conducted
feature selection within the cross-validation procedure
(see Supplemental Material for more details). We
obtained similar results as in our main analysis, with an
AUC of 0.79 ± 0.02 for anxiety vs. control, AUC of
0.77 ± 0.02 for trauma-exposed vs. control (Fig. S4).
Notably, brain regions from the fear network were fre-
quently selected across the cross-validation procedure
(Fig. S5). We also found that using these 10 regions
resulted in degraded performance than the fear network
(Fig. S6). Overall, these results suggested that the

selected fear network contains critical information for
distinguishing anxious/trauma-exposed brains from
controls.

Comparison of classifiers and impact of sample size
Comparing with several standard machine-learning

classifiers, the CNN yielded a better performance (Fig.
5A, B), suggesting that the CNN can potentially extract
higher-order nonlinear features that were beyond the
power of other nonlinear classifiers. We also investigated
the impact of sample size on the classification perfor-
mance, by randomly selected a subset of subjects for
cross-validation (Fig. 5C). The AUCs exhibited an
increasing degree of variability when the sample sizes
were decreased. For instance, when the sample size was
reduced to 20, the maximum AUC was higher than 0.9,
whereas the mean AUC derived from 100 sampling
populations was ~0.6.

Discussion
Here we investigated whether fear-induced brain acti-

vations1–3 can be used to identify anxious or trauma-

Fig. 4 Specificity analysis of the fear network in classification. A Distribution of AUCs based on brain activations within the 10-node fear
network, or 10 regions within the somotomotor network, or 10 randomly selected brain regions for Controls vs. Anxious. B Mean AUCs were shown
when a specific number of regions within the fear network were replaced by a mathced number of randomly selected brain regions for Controls vs.
Anxious. C, D Corresponding analyses for Controls vs. Trauma-exposed.
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exposed brains from those that are not. We examined
brain activations of more than 300 subjects that under-
went a fear conditioning and extinction task. The com-
bination of deep learning strategy (i.e., CNN) and brain
activations of the fear network across 4 learning phases
enabled us to distinguish anxious and trauma-exposed
brains from controls. We further conducted a series of
analyses to show that task-driven activations within the
fear network provide specific and significant dis-
criminative information compared to task-irrelevant brain
regions as well as compared to a brain network not critical
for emotion regulation.
Our analyses focused on activations from 10 specific brain

regions in building our machine learning model. The
selection of these regions was based on accumulating evi-
dence showing that their activations are relevant to emotion
expression and regulation, fear learning and extinction, and
are dysfunctional in psychopathology1–3,13,45. Our ROI-
based analyses are novel and distinct from most previous
machine learning studies that have relied on whole-brain
activations20,22,46 or on functional networks estimated from
resting-state fMRI20,47–52. With collected features from the
whole brain, it might be challenging to interpret the results
of the obtained models in these studies53. In contrast, by
concentrating on task-induced activations within the fear
network, the CNN model is restricted to linking brain
activations in fear learning and extinction with psychiatric
states. Notably, when we switched from the fear network to
randomly selected brain regions or a brain network not
critical for fear learning or extinction, the discriminative
performance significantly decreased (Fig. 4). These results
highlight the specificity of the fear network and its activa-
tion during all experimental phases to further our under-
standing of the psychopathology underlying PTSD and
anxiety disorders.
Our study focused on fear-related task-induced activa-

tions, which we believe offers a significant advantage over

most of previous resting-state-based studies. Specifically,
in a recent anxiety-related machine learning literature
survey, only 2 of the 23 reviewed studies relied on task-
based fMRI data24. Increasing evidence suggests that
participants’ specific traits were better predicted when the
subjects attended the tasks31,54. Since the fear conditioning
and extinction paradigm is highly relevant to the patho-
logical of anxiety- and fear-based disorders36,45,55–58, and
numerous studies have observed and replicated dysregu-
lated neural activations during emotional regulation in
fear- and anxiety-related disorders1,3,59, it is natural to
expect the fear-induced activations would serve as a more
specific neural signature in classifying psychopathology.
However, we note that both task and rs-fMRI have their
pros and cons. For example, rs-fMRI is more convenient in
data acquisition, especially in clinical settings. The fear
conditioning and extinction paradigm lasts 2 days, which
may increase dropout rate of participants. For a more
detailed comparison of rs-fMRI and task fMRI, please see
Daliri and Behroozi60.
One interesting finding obtained from our CNN model

is that while activations from all 10 brain regions across all
phases were important for our classifications, there were
some differences between the prediction of the anxious
and trauma-exposed brains. Activations within the con-
ditioning phase of our experiment provided more robust
contributions to predicting patients with anxiety dis-
orders. Activations related to the shock response during
fear conditioning, on the other hand, had the most robust
contributions to our models in predicting the trauma-
exposed individuals. These results show that while acti-
vations within the network during extinction learning and
extinction recall were important, more robust contribu-
tions came from experimental phases associated with fear
acquisition and response to the aversive cues. These
results are consistent with prior studies showing the
importance of stress responses and variance in cortisol

Fig. 5 AUCs derived from different classifiers and different sample size. A The cross-validated AUC statistic derived from our proposed CNN was
better than the other five tested classifiers in Control vs. Anxious and B Control vs. Trauma-exposed. C Small sample size resulted in large standard
deviations of classification accuracies. CNN convolutional neural network, SVM support vector machine with linear kernel, SVM-rbf SVM with Gaussian
radial basis function (RBF) kernel, GP Gaussian process classifier with RBF kernel, RF random forest, LR logistic regression with L2 regularization. Box
plots show the AUC statistics derived from 100 random selections in 5-fold cross-validation.
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levels to the pathophysiology of PTSD and anxiety
disorders42.
The observed significant association between the pre-

diction score and the anxiety sensitivity index (ASI) in the
control group supports the idea that the interactive
functional activation of the interrogated brain regions
during threat conditioning and its extinction might con-
tribute to anxiety. It is, however, intriguing that this
association was absent in the patient group. The lack of
correlation within the anxiety group is unlikely to be
related to a ‘ceiling effect’, since the ASI values and pre-
diction scores for anxiety/trauma-exposed groups were
broadly distributed, which would have allowed the
detection of an association. A possible reason is that the
control group was more homogeneous than the anxious/
trauma-exposed groups. First, the anxious/trauma-
exposed groups included participants with different psy-
chiatric diagnoses, such as general anxiety disorder and
social anxiety disorder. Second, recent neuroimaging
studies have shown that the control group is more
homogeneous than groups with psychiatric disorders61,62.
The homogeneity of the control group led to having
similar small prediction scores, except those that were
atypical, i.e., with higher ASI values. As we can see from
Fig. 2D, individuals with lower ASI values were well
clustered with low prediction scores.
We employed the same architecture of the CNN in two

classification tasks (anxious vs. controls and trauma-
exposed vs. controls). Both tasks have resulted in AUCs
>0.8 (Figs. 2A and 3A), with an adequate tradeoff between
sensitivity and specificity (Figs. 2B and 3B), suggesting
generalizability of the CNN classifier. Furthermore, indi-
viduals from four distinct anxiety disorders were included
in this study, making our dataset highly heterogeneous.
To our knowledge, no study has investigated the possi-
bility to generalize classification across subtypes of anxiety
disorders. Most studies have either recruited individuals
from one particular anxiety disorder or treated subtypes
of anxiety disorders separately22,63. In our cross-subtype
classification analysis, the obtained AUCs were ~0.8 when
a specific subtype of individuals was left out as the testing
data (Fig. 2E), which achieved similar accuracy as when all
anxiety patients were included in the analysis. This cross-
subtype classification results support the Research
Domain Criteria (RDoC) approach64. We have recently
published a study showing that there are advantages to
use the RDoC approach in learning about the psycho-
pathology of anxiety disorders32. The results from this
study require further validation across a larger sample of
patients with PTSD and anxiety disorders.
Another strength in our results is the sample size

examined. Concerns have been raised regarding the
reliability and generalizability of prediction studies with
small sample size17,26. Here, functional neuroimaging of

more than 300 individuals were examined to explore
reliable psychiatric biomarkers. Our sample size is sub-
stantially larger than previous anxiety- and fear-related
disorder diagnosis studies where the sample sizes were
mostly fewer than 100 as reviewed in a recent study24.
Although there are neuroimaging biomarker studies with
large sample sizes for other disorders such as schizo-
phrenia65 and autism66, they are based on resting-state
fMRI. A small sample size can lead to biased predictive
accuracy, especially when the leave-one-out cross-
validation procedure was employed17. Our results show
that variance of accuracy increased as sample size is
decreased (Fig. 5C). These results are well-aligned with
previous studies suggesting that performances derived
from small samples are inflated26. We have examined the
fear network activations using the recommended 5-fold
cross-validation procedure17 in two classification tasks,
which increased the reliability of the results. Future stu-
dies with significantly larger sample sizes should be con-
ducted to test the generalizability of our data across larger
populations. And perhaps with larger sample size, addi-
tional analyses could be conducted to test the possibility
of distinguishing subtypes of anxiety disorders from one
another and PTSD from trauma-exposed non-PTSD. In
our exploratory analysis, we found that anxious and
trauma-exposed brains can be discriminated from each
other using activations of the fear network (Fig. S2).
Future analyses can be conducted to further explore how
the fear network is modulated across different
psychopathologies.
It is important to note that there exist skeptical views

within the field regarding the clinical utility of, or the need
for, neurobiological markers for anxiety and trauma. The
argument against the biomarkers here is that anxiety and
trauma-related symptoms are easy to diagnose and the
tests to be conducted for their diagnosis would not be
needed, would be costly, and time consuming. We argue,
however, that there is a clinical value as some patients
may not fully disclose all symptoms and others may wish
to have a biological explanation for why they feel the way
they do. Another challenge to establish neurobiological
markers for psychiatric disorders is that current methods
for diagnosis are largely based on self-report data from the
patients. These self-report data are very subjective to the
person experiencing the symptoms and cause a high
degree of variability across subjects, even within a given
diagnostic group. The result of the large variance in how
patients experience their symptoms often leads to absence
of meaningful or significant correlations between symp-
toms and psycho-behavioral indices from experimental
tasks, even if they are hypothesized to measure related
cognitive and emotional processes67,68. Therefore, the
ideal ‘diagnosis’ to establish a ‘biological marker’ might be
very broad and lacks clear boundaries, and such will be a
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major limitation to experimental effort. In our study, we
used the clinical labels in our supervised case–control
classification analyses similar to the literature. In this
paper, we provide more of a conceptional exploration in
the direction towards the neurobiological biomarker
development. Our results suggested that the activations of
the fear network are likely to provide critical information
to distinguish anxious and trauma-exposed brains from
those that are not. The insights gained from this study
could be subsequently applied to follow-up explorations
in this domain.
There are some limitations to the current study. First,

we used cross-validation to assess model performance. An
independent test set should be used in the future to fur-
ther assess the generalizability of the proposed model.
Second, the fear conditioning and extinction paradigm
lasts 2 days, which may make data collection more diffi-
cult than rs-fMRI. Third, we used activations of the fear
network for the classification in this study, which may
overlook the functional connectivity between brain
regions. Connectivity analyses that were widely used in rs-
fMRI may be incorporated as additional features to fur-
ther improve the classification performance.
In conclusion, we report data showing that a deep

learning-empowered data analytic approach can distin-
guish anxious and trauma-exposed brains from controls
using fear-induced brain activations. The fear network
(task-specific) activations exhibited more discriminative
information than activations obtained from other brain
regions. Our results suggest that fear-induced brain acti-
vations within the fear network may serve as potential
specific biomarkers for psychiatric diagnosis.
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